This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Luminescent Lanthanide-Organic Polyrotaxane Framework as a Turn-Off Sensor for nitrobenzene and Fe$^{3+}$

Xiao-Man Cao, Na Wei, Lin Liu, Li Li and Zheng-Bo Han*

Three isomorphous lanthanide-organic polyrotaxane frameworks [Ln(mtpc)$_{1.5}${(DMA)}($($H$_2$O$)$$)_2$$]·2H$_2$O [Ln = Tb (1); Dy (2); Er (3)] were assembled and characterized. In 1, the mtpc ligand transfer absorbed energy to Tb$^{3+}$ center to emit characteristic fluorescent. 1 can act as fluorescent probe for selectivity detecting nitrobenzene and iron(III) ions through the luminescence quenching. Importantly, the detection limit of nitrobenzene lows to 15-150 ppm scale.

On account of the environmental pollution and homeland security, nitroaromatic explosives and heavy metal ions have drawn extensive attentions. Nitrobenzene (NB) is a vital component of nitroaromatic explosives and an infamous environmental contaminant, which can give rise to grisly health problems. The rapid and precise detection of NB is crucial to environmental protection and homeland security. Iron is a necessary element for the human body. Deficient iron will result in tissue damage or increase cardiovascular diseases. Excess iron is also an important pollutant owing to its high toxicity. Therefore, selective detection of Fe$^{3+}$ with a lower detection limit is also of prime importance.

Lanthanide-organic frameworks (LnOFs) have become a content-rich research field over the past decade due to their unique optical properties and extensive applications in many areas, such as luminescent devices, luminescence bioassays and fluorescent probes. Among the multifarious potential applications, the fluorescent probes of chemicals are the most promising one because of their operability, rapidity, high sensitivity and high selectivity. Qian et al. reported a nanoscale luminescent metal-organic framework which could sense nitroaromatics resulting from the antenna effect. Recently, a luminescent europium-organic framework was reported by Sun and coworkers, displaying selectively sensing Fe$^{3+}$ and Al$^{3+}$ ions through a cation-exchange approach.

![Image](Fig. 1) (a) H$_2$mtpc ligand. (b) A two-dimensional polymeric layer structure of 1. (c) Schematic representation of the 2D polyrotaxane layer. (d) View of the stacking framework via the b-axis.

Although some intriguing polyrotaxane LnOFs have been well documented in the literature, their potential applications still remain unexplored. Herein, we report a series of isomorphous lanthanide-organic frameworks [Ln(mtpc)$_{1.5}${(DMA)}($($H$_2$O$)$$)_2$$]·2H$_2$O [Ln = Tb (1); Dy (2); Er (3)] ([H$_2$mtpc=$2'$.4'-dimethyl,1,1’-3’,1”-terphenyl,4,4”-dicarboxylic acid], which exhibit polyrotaxane structural features combining interpenetration and interdigitation. Remarkably, the H$_2$mtpc, a V-shape rigid ligand (Fig. 1a), was used for constructing LnOFs for the first time. Furthermore, 1 displays high stability and excellent fluorescent property, which can serve as luminescent probe of nitrobenzene and Fe$^{3+}$.

Three lanthanide-organic polyrotaxane frameworks are isomorphous (Table S1, ESI†) as proved by Single-crystal X-ray diffraction and powder X-ray diffraction. Thus, only the crystal structure of 1 is described here in detail. Single-crystal X-ray crystallography reveals that 1 features an interesting 3D interdigitated architecture. Its asymmetric unit consists of one Tb(III) center, a half of mtpc ligand, one aqua ligand, one coordinated DMA and two lattice water molecules (Fig. S3, ESI†). Each Tb(III) center is eight-coordinated and surrounded by six carboxylate oxyg...
from an aqua ligand and one oxygen atom is from a DMA molecule. As illustrated in Fig. S4, ESI†, two adjacent Tb(III) centres are interconnected by four V-shape mtpc ligands via the syn-syn mode of bridging carboxylate groups to form a 1D chain structure, which contains paddlewheel \([\text{Tb}_2(\text{COO})_4]\) secondary building units and \([\text{Tb}_4(\text{mtpc})_2]\) loops. Furthermore, the adjacent chains linked by V-shape mtpc ligands forming a 2D thick layer structure (Fig. 1b). The \([\text{Tb}_4(\text{mtpc})_2]\) loop can be seen as a wheel and the mtpc linkers among the adjacent 2D thick layers can be seen as axles based on polyrotaxane theme. The mtpc ligands act as both the axle-like segments and two half-loops of each \([\text{Tb}_4(\text{mtpc})_2]\) loop. Two adjacent layers interpenetrate and knit together to form 2D polyrotaxane sheets as shown in Fig. 1c and Fig. S5 ESI†. The capacity of selective sensing aromatic compounds of 1 was further studied. Some aromatic compounds with the same concentration (150 ppm), such as benzene (BZ), toluene (TO), phenol (PhOH), o-xylene (OX), chlorobenzene (Cl-BZ), bromobenzene (Br-BZ), iodobenzene (I-BZ), nitrobenzene (NB), o-nitrophenol (NP), m-nitrobenzoic acid (NBA), m-dinitrobenzene (DNB), and 2,4,6-trinitrotoluene (TNT) were added to the methanol suspension of 1 (Fig. 3). The result indicates that only NB causes an obvious quenching on the luminescence intensity of methanol suspension of 1, all other NB derivatives, NP, NBA, DNB, DNP, TNT showed little effect on the luminescence intensity, while other aromatic compounds, BZ, TO, PhOH, Cl-BZ, Br-BZ and I-BZ have negligible effects on the luminescence intensity. These results show that 1 has a selective luminescence response to NB through obvious luminescence quenching, providing a possibility of 1 being a wonderful luminescence sensor for NB.

Further studies on the exploring the detection limit of NB were carried out. As shown in Fig. 4, the luminescence quenching degree
decreased gradually with the reducing of the NB concentration. When the concentration of NB was 150 ppm, the quenching efficiency reached 87.9%, indicating a nearly complete quenching, which showed a higher quenching efficiency than that reported at the 150 ppm by Qian et al., and the order of quenching efficiencies for the selected NB derivatives at the same concentration with 150 ppm was NB (87.9%) > TNT (66.7%) > DNB (56.7%) ≈ DNP (52.4%) > NP (47.6%) > NTA (44.1%) (Fig. 3 and Fig. S8, ESI†). The detectable luminescence responses of NB were still observed at 15 ppm with the quenching efficiency of 16.6%, and this phenomenon give evidence to that NB possesses excellently high sensitivity toward NB.

The mechanism of quenching might be attributed to energy photo-screening (Scheme). In 1, the ligand mtpc absorbs photo energy and transfers the energy to Tb3+ by vibronic coupling between mtpc and Tb3+, which results in the luminescence properties of 1. The luminescence quenching of 1 in methanol suspension after adding NB is due to a competition of absorption of the excitation wavelength energy and the π–π electronic interaction between the NB and the mtpc. NB screens the energy which pristinely will be adsorbed by mtpc, thus reducing the possibility of energy transfer (ET) from mtpc to Tb3+ and quenching the luminescence of Tb3+ soon afterwards. Additionally, the reason for the high efficiency in luminescence quenching of NB compared to other NB derivatives is presumably due to the stereo-hindrance effect. The unique polyrotaxane structure of 1 with the small pores, which have controlled larger NB derivative molecules to enter into the channel of 1, leading to that the polyrotaxane structure of 1 is quite different from other porosity metal organic frameworks for the sensing of chemical species. This may explain the unprecedented selectivity for NB than other NB derivatives.

We also investigated the potential function of 1 for the sensing of metal ions. The studies were performed by adding Mn(NO3)2 (Mn2+, Ba2+, Na+, Cd2+, Al3+, Pb2+, Fe3+, Cr3+, Zn2+, Mg2+ and K+) to the methanol suspension of 1 at room temperature, respectively. As shown in Fig. 5, Fe3+ quenches the luminescence of 1 completely, while Al3+, Pb2+ and Cr3+ weaken the emission intensity of 1 in a small degree, and others had negligible effect on the photoluminescence of 1. In addition, the luminescence intensity of 1 shrinks gradually upon addition of 0.1-2.0 equiv of Fe3+ (Fig. 6) until the emission was completely quenched when 2.0 equiv of Fe3+ was introduced. The decrease of emission intensity after adding Fe3+ may be assigned to an energy-absorbing rivalry between Fe3+ and Tb3+ (Scheme). Meanwhile, in accordance with the previous reports, the selectivity to Fe3+ is not influenced by some other metal ions (Fig. S9 and S10, ESI†) as demonstrated by introduction of Ba2+, Na+, Cd2+, Al3+, Pb2+, Cr3+, Zn2+, Mg2+ and K+ into the system. Therefore, the results indicate that 1 can selectively sense Fe3+ among other metal ions.

In summary, three isomorphous polyrotaxane lanthanide-organic frameworks based on V-shape rigid ligands have been successfully constructed. The high-stability Tb(III) compound in methanol suspension can not only selectively sense nitrobenzene at the ppm scale, even in the presence of other NB derivatives, but selectively sense Fe3+ without interference by Ba2+, Na+, Cd2+, Al3+, etc. Furthermore, the optical observation of quenching makes 1 a promising material to trace NB and Fe3+. Our work demonstrated that lanthanide-organic frameworks could be excellent candidates for luminescent molecular probes, switches and sensors under realistic conditions in the near future.

This work was granted financial support from National Natural Science Foundation of China (21271096).

Notes and references

Fig. 5 Room-temperature luminescent intensity of 1 at 545 nm in methanol suspension of 1 upon addition of various metal ions (λex= 314 nm).

Fig. 6 Emission spectra of the complex 1 in methanol at room temperature in the presence of different equiv of Fe3+ ions with respect to 1, respectively (λex= 314 nm). Inset: photograph showing the change of the original fluorescence of methanol suspension of 1 (left) and the decreased luminescence upon the addition of Fe3+ ions in the methanol suspension of 1 (right).
Luminescent Lanthanide-Organic Polyrotaxane Framework as a Turn-Off Sensor for nitrobenzene and Fe$^{3+}$

Xiao-Man Cao, Na Wei, Lin Liu, Li Li and Zheng-Bo Han*

Three isomorphous lanthanide-organic polyrotaxane frameworks \([\text{Ln} (\text{mtpc})_3 (\text{DMA})(\text{H}_2\text{O})] \cdot 2\text{H}_2\text{O} [\text{Ln} = \text{Tb} (1); \text{Dy} (2); \text{Er} (3)]\) were assembled and characterized. In 1, the mtpc ligand transfer absorbed energy to Tb$^{3+}$ center to emit characteristic fluorescent. Importantly, 1 can act as fluorescent probe for selectivity detecting nitrobenzene and iron(III) ions through the luminescence quenching, and the detection limit of nitrobenzene lows to 15-150 ppm scale.