This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Determination of concentration-dependent diffusion coefficient of seven solvents in polystyrene systems using FTIR-ATR technique: Experimental and mathematical studies

Mohammad Karimi¹, Akbar Asadi Tashvigh², Fateme Asadi¹, Farzin Zokaee Ashtiani²

¹Department of Textile Engineering, Amirkabir University of Technology, No. 15914, Hafez Ave., 15914 Tehran, Iran
²Department of Chemical Engineering, Amirkabir University of Technology, No. 15914, Hafez Ave., 15914 Tehran, Iran

Abstract

In the present study a new mathematical model’s outcomes based on experimental data is considered to determine the diffusion coefficients in polystyrene/solvent systems as a function of solvent concentration. We used a calibrated Fourier transform infrared attenuated total reflectance (FTIR-ATR) instrument to collect the spectra from a thin layer of polymer solution covered optically dense ZnSe crystal. The collected spectra were transferred to the components’ concentration, using principal component regression analysis, representing the compositional change of the polymer solution during the time. Two approaches were employed to obtain the diffusion coefficients of seven solvents in polystyrene solutions: first, we considered whole range of polymer concentration to obtain the diffusion coefficient by fitting the diffusion model on experimental data. In the second approach only early stage of

* To whom correspondence should be addressed. E-mail: mkarimi@aut.ac.ir. Tel: +98-21-64542658. Fax: +98-21-66400245.
evaporation process was figured, considering vitrification phenomenon in the upper layers of polymer solution film. For all solvents, higher values of diffusion coefficients obtained using second approach, showing a satisfying agreement with the literature. As a concluding remark, vitrification is an important event taken place during mass transfer processes in which it should be considered to find a reliable value for diffusion coefficient.

Keywords: polymer solution; polystyrene; diffusion coefficient; glass transition temperature; vitrification.

1. **Introduction**

Diffusion of solvent in polymeric systems is of major importance in a number of applications, including fiber formation [1, 2], membrane manufacturing [3-6], and foaming processes [7]. In these processes, solvent molecules evaporate or are released from cast polymer solution into the atmosphere or a liquid bath. The process will continue with an arrangement of polymer chains in a special structure which is affected by solvent diffusion mechanism [8-10]. On the other hand, during the mass transfer, diffusion of solvent affects polymer concentration as well as mobility of polymer molecules. The latter case is controlled by glass transition temperature of the mixture, that is \(T_{g,\text{mix}} \). For the duration of solvent outflow, the \(T_{g,\text{mix}} \) rises to overtake processing temperature whether a polymer with \(T_g \) higher than processing temperature is selected; indeed at \(T = T_{g,\text{mix}} \) the polymer chains become frozen. This is while, the solid state and solution state differ on diffusion behavior [1]. The solvent diffusion through internal layers of sample depends on the boundary layer state. Solidification of this outermost layer affects the diffusion process of internal
layers. Little is known about the solvent diffusion coefficient with relation to internal layers when the boundary layer solidifies. Obtaining such information can help to understand the morphological evolution of materials.

Many attempts have been made to measure and predict the diffusion coefficient of solvent in polymer solutions [11-20]. A general method of measuring is determining the solvent evaporation rate. In particular, the gravimetric measurement of the solvent evaporated from appropriate cast polymer-solvent films are carried out through the experiments; such measurements provide no information about the concentration gradient of internal layers. In contrast analyzing the bottom layer of the cast polymer-solvent mixture using Fourier transmission infrared (FTIR) has been recently used as a robust experimental technique to determine the diffusion coefficient [15, 21-27]. Fieldson and Barbari [22] have successfully used FTIR-ATR spectroscopy, as a novel approach for measuring the diffusion coefficient of liquid water in polyacrylonitrile systems. Fu and Lim [23] used FTIR-ATR technique to investigate the multiple-component diffusion properties of 2-octanone, hexyl acetate, octanal, limonene and linalool in a linear low density polyethylene film. The investigation results were successfully validated using data from the literature. Hanh et al. [24], have successfully showed that FTIR-ATR technique is applicable for determining the diffusion coefficient of drugs in semisolids. Hong et al. [25] have measured the diffusion coefficients of toluene/methyl ethyl ketone (MEK) mixtures in polyisobutylene at 50 °C using vapor sorption FTIR-ATR spectroscopy. They also showed that diffusion coefficient of penetrant is strongly affected by concentration gradient. Finally Elabd et al. [28] presented a review about the application of FTIR-ATR spectroscopy in measuring of diffusion coefficient in polymers.
In this work we are motivated to use FTIR technique for measuring the concentration variation of solvent through internal layers of cast polymer-solvent films during solvent evaporation process. The bottom layer of cast polymer-solvent mixture is probed by capturing spectra at a rate of one per 0.2 second to quantify the solvent concentration in this layer. These data was then used to obtain diffusion coefficient of solvent applying mathematical methods.

2. Experimental

2.1. Material

Commercial grade of Polystyrene (PS) (Solarene G144) with melt flow index of 8.5 (200 °C, 5 kg) was purchased from Dongbu Hannong Chemical Co (South Korea). The solvents: tetrahydrofuran (THF), acetone (AC), chloroform, dichloromethane (DCM), toluene, benzene, 1,4-dioxane and tetrachloroethylene (TCE) were obtained from Merck, Germany and used as received.

2.2. FTIR-ATR Technique

According to the principle of ATR technique [29], when a beam of infrared light propagates through a dense medium (an ATR crystal) in such a way that it reflects at least once off the internal surface in contact with a rarer medium (a polymer solution), attenuated total internal reflection (ATR) occurs. This reflection forms an evanescent wave which extends into the sample. The schematic of ATR crystal is depicted in Figure 1.

The polymer solutions (15 wt%) were precisely prepared by dissolving the specific quantity of polymer in appropriate solvent at room temperature, continued with
stirring until a clear polymer solution was obtained. Afterwards, it was cast directly on the surface of the flat crystal (ZnSe, refractive index 2.4 and incident angle 45°) equipped with a bottomless liquid cell. The depth of polymer solution which defines the film thickness was controlled by a blade, together with keeping the interfacial area of polymer solution under control to firmly set a 1.35 cm² of area by a frame, made of nonabsorbent material. Before collecting the spectra, FTIR-ATR was calibrated by spectrum of background under steady flow of N2 purge; this was performed under 40 scans and 4 cm⁻¹ spectral resolution; the wavenumber range was 650-4000 cm⁻¹. The spectra for all samples were recorded at 0.2 second intervals after casting the solution on the ATR crystal. FTIR-ATR spectrum was measured using a Nexus 670 (Nicolet) spectrometer in kinetic mode.

Insert Figure 1

The penetration depth of the IR beam in polymer solution sample can be calculated by Eq. (1).

\[
dp = \frac{\lambda}{2\pi \sqrt{n_1^2 \sin^2 \theta - n_2^2}}
\]

where penetration depth of evanescent wave is shown by \(dp\), \(\lambda\) is the wavelength of the infrared radiation, \(n_1\) and \(n_2\) are the refractive indices of flat crystals and polymer solutions respectively and \(\theta\) is the angle of incidence beam [29, 30].

Figure 2 shows the spectra collected from PS/THF solution under evaporation process. Evaporating the THF from top surface of solution causes to form a concentration gradient under diffusion control. After a period of time, a change in concentration is detected at the bottom-surface of solution which is a typical layer of ATR analyzing. As seen in Figure 2, a gradually decrement of intensity is observed for the characteristic peak of THF in region between 2800 cm⁻¹ and 2900 cm⁻¹,
indicating that the THF molecules at the bottom layer of polymer solution, in contact with ATR prism, decrease because of evaporation. In contrast, an increase of intensity is observed for characteristic peak of PS in region between 2900 cm\(^{-1}\) and 2950 cm\(^{-1}\), in which it means that PS concentration increases with time.

Insert Figure 2

To determine the solvent concentration in the cast PS solution, the IR spectra were quantified using TQ ANALYST software by means of principal component regression (PCR) technique[31]. Calibration of the system was accomplished by capturing spectrum from pure components and also binary mixtures of each solvents and polystyrene. PCR technique provides the possibility of decoupling and calibrating the component peaks or regions that overlap. Basic knowledge of using FTIR-ATR technique and quantifying concentration via analyzing the specified spectra have been presented elsewhere [11] that realizes this paper. This technique, based on measuring the FTIR-ATR spectrum and calibrating the system, can be most possibly employed to determine the composition of polymer solution at the layer close to ATR prism dynamically, as the intensity of the characteristic peak changes.

3. Mathematical modeling

In this work, laboratory experiments were combined with mathematical modeling, in order to evaluate the accuracy of diffusion coefficient prediction. In particular, the laboratory experiments consist of detecting solvent concentration at the bottom layer of polymer solution film (PSF) during the time using ATR-FTIR technique stated above. The experimentally amount of evaporated solvent was compared with model predictions, in order to estimate the unknown parameters of the diffusion coefficient model.
The PSF which is depicted in Figure 3, was considered as a rectangular layer with dimensions of 0.540×7×20 mm as height, width and length, respectively. According to the geometrical dimensions, the ratio of height (H) with respect to width (W) and length (L) of the PSF is far less than unity, i.e. H/W ≇0.07 and H/L ≇0.027. Hence the effect of mass diffusion in directions of x and z was neglected [32], and the model was intended to be one-dimensional for mathematical calculations.

\[\text{Insert Figure 3}\]

3.1. Governing equations

The unsteady-state mass transport equation is

\[
\frac{\partial C}{\partial t} = \frac{\partial}{\partial y} \left(D(C) \frac{\partial C}{\partial y} \right)
\]

where, \(C\) is the concentration of solvent, and \(D(C)\) is diffusion coefficient of solvent, which may be a function of concentration.

Initial and boundary conditions for the diffusion equation are as follow:

\[C(y, 0) = C_0 \quad \text{at} \quad t = 0\]
(3)

\[C(0, t) = C_{\text{ftir}} \quad \text{for} \quad y = 0\]
(4)

\[-D(C) \frac{\partial C}{\partial y} (H,t) = k \left(C_e(t) - C_\infty \right)\]
(5)

Equation 3 provides the initial concentration for solvent. Equation 4 specifies the solvent concentration in the layer facing the IR prism. \(C_{\text{ftir}}\) is concentration data extracted from FTIR spectra. Equation 5 is mass transfer balance at the top layer of PSF, where the solvent enters to the ambiance via convection mechanism. \(k\) is the mass transfer coefficient between PSF and ambient air, \(C_\infty\) indicates concentration of solvent vapor in ambient air, and \(C_e(t)\) represents the concentration of solvent
vapor in the air just adjacent to the surface of PSF, that is in equilibrium with $C(H,t)$. These concentrations are shown schematically in Figure 4. In order to estimate k, an empirical relation was used as below [33]:

$$Nu = \frac{kL}{D_a} = 0.646Re^{0.5}Sc^{1/3}$$

(6)

where, Nu, Re and Sc are dimensionless number of Nusselt, Reynolds and Schmidt of ambient air, and D_a, is diffusion coefficient of solvent vapor in the air.

As shown in Figure 4, $C_e(t)$ and $C(H,t)$, are in equilibrium, so, the activity of solvent that corresponds to $C_e(t)$ and $C(H,t)$ must be equal. The Flory-Huggins theory was employed to describe activity of solvent in PSF [34], the procedure for calculation of $C_e(t)$ is described as below:

✓ The activity of solvent that corresponds to $C(H,t)$ was calculated as:

$$Ln(a(H,t)) = Ln(\phi(H,t)) + \left(1 - \frac{v_s}{v_p}\right)(1-\phi(H,t)) + (1-\phi(H,t))^2 \chi$$

(7)

where, a and ϕ are activity and volume fraction of solvent in PSF, v_p and v_s are the molar volume of polymer and solvent, respectively, and χ is the Flory-Huggins interaction parameter between polymer and solvent.

✓ The activities of $a(H,t)$ and $a_e(t)$, must be equal

$$a_e(t) = a(H,t)$$

(8)

where, $a_e(t)$ corresponds to activity of $C_e(t)$.
As the concentration of solvent in ambient air fairly remains low during the test, ambient air was assumed to be ideal solution and activity of solvent was considered to be equal to its concentration; it means:

\[\varphi_e (t) = \alpha_e (t) \]

where, \(\varphi_e (t) \) corresponds to volume fraction of \(C_e (t) \).

For conversion of \(\varphi_e (t) \) to \(C_e (t) \) the below equation was used

\[C_e (t) = \varphi_e (t) \rho_s \]

where, \(\rho_s \) is density of solvent vapor.

3.2. Diffusion coefficient model

To indicate the concentration dependency of diffusion coefficient of solvent in polymer, two linear and exponential models were introduced which are common diffusion models in literature [35-41] as below.

\[D(C) = D_0 e^{\alpha C} \]

\[D(C) = D_0 (1 + \alpha C) \]

where, \(D_0 \) and \(\alpha \) are constant parameters.

3.3. Solution Method

Eq. 2 was solved making an initial guess about \(D_0 \) and \(\alpha \) in diffusion models (Eqs. 11, 12), in addition the solvent evaporation rate was calculated as below

\[J^{pred} = D(C) \frac{\partial C(H,t)}{\partial y} \]
where, J_{s}^{prd} is flux of solvent evaporation. So, the total amount of solvent, that vaporates would be (m_{s}^{prd})

$$m_{s}^{prd} = LW \int_{0}^{t_f} J_{s}^{prd} dt$$ \hspace{1cm} (14)

where t_f is the time that polymer solution solidifies.

To determine the diffusion coefficient's unknown parameters, the objective function was defined as

$$OF = |m_{s}^{prd} - m_{s}^{exp}|$$ \hspace{1cm} (15)

where, m_{s}^{exp} is the amount of solvent evaporated, obtained experimentally. This objective function needs to be minimized by changing the D_0 and α. The genetic algorithm toolbox of Matlab software[42, 43], was supporting to minimize Eq. 15. The procedure of solution is depicted in Figure 5.

Insert Figure 5

4. Results and Discussion

Figure 6 shows a series of spectra collected as a function of time during evaporation of THF from polystyrene (PS) solution. As the solvent evaporated, the intensity of characteristic peak of THF clearly decreases during the process (Figure 6a), meaning that the solvent concentration decreases at the bottom layer of polymer solution film in contact with ATR prism. On the contrary, the peak specified at 1492 cm$^{-1}$ grew in over 10 min since the beginning of the experiment and is assigned to the PS (Figure 6b).

Insert Figure 6

Using principal component regression (PCR) analysis, the concentration of THF was calculated, point to point during the evaporation process based on collected FTIR-
ATR spectrum; the results are shown in Figure 7. Data was collected under nitrogen atmosphere with flow rate of 100 ml/min at 25 °C and thickness of 740 µm. Three regimes are recognized in Figure 7. The first regime is related to initial delay time in propagating diffusion front; it moves from surface to bottom of polymer solution because of surface solvent evaporation. As solvent molecules are evaporating, the solvent concentration in bottom layer of PSF is reduced due to concentration gradient distributed throughout the thickness. This is the second regime that the weight loss of solvent starts and continues until the release of solvent becomes slow significantly; this is the beginning of third regime. This slowing of mass transfer rate is due to morphological state of polymer by which the vitrification phenomena on top layer of solution can happen. Vitrification is the transformation of solution into a glass if the glass transition of mixture overtakes the processing temperature.

Insert Figure 7

To consider the physico-chemical nature of solvent on diffusion process, seven other solvents were selected for investigating in similar way as THF. Figure 8 is representative of normalized solvents concentration during evaporation process in polystyrene solutions. As seen, the same trend and three regimes of evaporating process are observed for all solvents, but different types of kinetics are taken place.

Insert Figure 8

4.1. Determination of diffusion coefficient model parameters

Preliminary works were done to figure out the degree of fitting between experimental data and diffusion models presented in Eqs. 11 and 12. Results showed that linear diffusion model (Eq. 12) is more capable to describe the mass transfer pattern in polymer solutions, and exhibits less error than exponential model (Eq. 11). The
model’s predicted outcomes for evaporated solvent were plotted versus its experimental values correspondingly in Figure 9. As seen for all solvents, a good agreement was observed between linear model and experimental data. Parameters of diffusion coefficient models were obtained for all intended polymer/solvent mixtures and listed in Table 1. Spite of good agreement, the obtained diffusion coefficients are a bit lower than those reported in the literatures [12-14, 18, 19]. Structural variations during the process may be the key reasons of this discrepancy. Indeed, the rate of solvent evaporation is not constant during the drying process. It depends not only on concentration variation but also molecular structure of the media. When solvent molecules escape from the top layer of PSF, a transition from rubbery to glassy state may take place in polymer chains. Therefore, it can be expected that dynamics of solvent transport in the mixture follows by different behavior.

4.2. Effects of operating condition on applicability of the model

The diffusion model which earlier employed to evaluate the diffusion coefficient of THF in PS solution was assessed for various operating conditions. The experimental and predicted results for three various initial PSF thicknesses are depicted in Figure 10. As shown, for PSF thickness lower than 740μm, model tends to underestimate while it predicts an overestimated value for higher thicknesses than that. Two reasons are probably involved. The first is vitrification of top layer through which the glass transition of polymer/solvent mixture overtakes the processing temperature. At
this situation, we expect the mass transfer rate to change. The second reason can be due to the essential assumption behind the calculation. Indeed, we considered the diffusion process as a one-dimensional model and also neglected the solvent evaporation from PSF side walls. In lower thicknesses, evaporated solvent from side walls was lower than that of 740 μm, therefore predicted evaporated solvent was more than that experimentally obtained. For higher thicknesses, evaporated solvent from side walls was more than that of 740 μm, therefore predicted value was lower than that experimentally measured.

Insert Figure 10

Nitrogen flow rate purged the atmosphere of PSF was another operating condition for investigation. The experiment was carried out under two various nitrogen flow rates of 50 and 150 ml/min. The model predictions and experimental data of evaporated THF were plotted in Figure 11 for comparison. It becomes clear from the picture that the difference between model outcomes and experiment data is not so significant. Indeed, the flow rate of nitrogen only changes the mass transfer coefficient (Eq. 5) but it does not affects the diffusion coefficient of solvent in the mixture; therefore, the mass transfer is only mechanism which dominates the evaporation process.

Insert Figure 11

The last investigated parameter was the nitrogen gas flow temperature. The prediction and experimental values of evaporated solvent under various temperature are depicted in Figure 12 to compare. As shown in Figure 12, the model over predicts for all gas temperatures. As a reason for this observation, it is concluded that the gas temperature only changes the mass transfer coefficient and has no impact on diffusion coefficient of components. On the other hand, the change in gas
temperature may just vary the temperature of upper layers of PSF in which we ignored its probable effect on reliability of predicted diffusion coefficient (Eq. 12).

4.3. Diffusion coefficient at the early stage
As stated earlier, the values of diffusion coefficients for all seven solvents in polystyrene solutions, presented in Table 1 are obtained by means of fitting technique. Indeed the diffusion model was fitted on experimental data in the whole range of concentration. According to the basic knowledge of polymer physics, the thermodynamic situation of polymers in solution state is related to its concentration. The motion of polymer chains is going to be slower when the solvent molecules evaporate more and more. At last, all polymer chains are frozen in spite of probably presence of solvent in the system, meaning that glass transition of mixture overtakes the process temperature; this is called vitrification. Consequently, as expected the diffusion mechanism changes to a new form when the mixture is at its glassy state. Table 2 summarizes the solvent concentrations of mixtures at their vitrification point. These values were calculated based on Eq. 16 [32].

\[
\frac{1}{T_{g,m}} = \frac{w}{T_{g,p}} + \frac{1-w}{T_{g,s}}
\]

(16)

where, \(w \) is the polymer weight fraction and \(T_{g,p}, T_{g,s} \) and \(T_{g,m} \) are glass transition temperatures of polymer, solvent and polymer solution, respectively. Glass transition temperatures of solvents were calculated based on Eq. 17 [44].

\[
1.15 = \frac{T_m + T_b}{T_g + T_b}
\]

(17)

where \(T_m, T_b \), and \(T_g \) are melting, boiling, and glass transition temperatures.
Insert Table 2

With the view of vitrification phenomenon, our procedure of calculating the diffusion coefficients is the same as statement in section 3.3. Only one and important difference is \(t_f \), the time that a polymer solution needs to be completely dried. In the new approach we introduce \(t'_f \) as the time which the polymer solution transfers from rubbery to glassy state. To calculate \(t'_f \) as an unknown value, the trial and error solution method was used. Initial value for computation was inflection point of compositional curve of solvent against time, as illustrated in Figure 13 for PS/THF system. Extending the time for calculation was continued until significant deviation between predicted and measured concentration solvent was observed; this time is called \(t'_f \). Then characterization of parameters in Eq. 12 was carried out for seven polymer solutions in the range of \(t = 0 \) and \(t = t'_f \), and presented in Table 3.

Insert Figure 13

Insert Table 3

The comparison of both diffusion coefficients (Tables 1 and 3) follows larger values for the approach which considers the early stage of the evaporation process. Besides, a satisfying agreement is observed for the results of this approach to the literature. However the overall diffusion coefficient which is applicable in the whole range of concentration cannot exactly explain evaporation process. On the other hand, it can be concluded that the vitrification phenomenon is an important factor influencing the kinetics of the processes which are governed by diffusion-control.

5. Conclusions
The original purpose of this work was introduction of new approach for estimating the diffusion of small molecules like solvents in polymer/solvent mixtures. Results showed that the diffusion coefficients of seven solvents in polystyrene solutions were successfully measured using Fourier transform infrared attenuated total reflectance (FTIR-ATR) and principal component regression (PCR) analysis. A general diffusion model was adapted to experimental data of solvent evaporation. The concentrations with respect to time were applied as a boundary condition for the mass transport balance equation. The predictions for different operating conditions were generally acceptable. Diffusion coefficients of solvents were not to be as we expected; lower values for all solvents were obtained in comparison with the literature. Analyzing the early stage of mass transfer to fit the diffusion model leads to more reliable values. The reason for doing this procedure was the solidification of polymer before it becomes completely dry at the top layer of polymer solution film. Such an event is known as vitrification phenomenon. The diffusion coefficients obtained by this approach were found in good agreement with those measured by other methods.

Abbreviations and Nomenclature

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Acetone</td>
</tr>
<tr>
<td>ATR</td>
<td>Attenuated total internal reflection</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transmission infrared</td>
</tr>
<tr>
<td>PCR</td>
<td>Principle component regression</td>
</tr>
<tr>
<td>PS</td>
<td>Polystyrene</td>
</tr>
<tr>
<td>PSF</td>
<td>Polymer solution film</td>
</tr>
<tr>
<td>TCE</td>
<td>Tetrachloroethylene</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>ZnSe</td>
<td>Zinc selenide</td>
</tr>
<tr>
<td>a</td>
<td>Activity fraction of solvent</td>
</tr>
<tr>
<td>C</td>
<td>Concentration (g.cm(^{-3}))</td>
</tr>
<tr>
<td>(C_{\text{ftir}})</td>
<td>Concentration data extracted from FTIR spectra (g.cm(^{-3}))</td>
</tr>
<tr>
<td>(C_e)</td>
<td>Concentration of solvent vapor in the air (g.cm(^{-3}))</td>
</tr>
<tr>
<td>(C_{\infty})</td>
<td>Concentration of solvent vapor in ambient air (g.cm(^{-3}))</td>
</tr>
<tr>
<td>(D_o)</td>
<td>Constant parameter of diffusion coefficient (m(^2).s(^{-1}))</td>
</tr>
<tr>
<td>(D)</td>
<td>Diffusion coefficient (m(^2).s(^{-1}))</td>
</tr>
<tr>
<td>(D_a)</td>
<td>Diffusion coefficient of solvent vapor in the air (m(^2).s(^{-1}))</td>
</tr>
<tr>
<td>(d_p)</td>
<td>Penetration depth of evanescent wave ((\mu)m)</td>
</tr>
<tr>
<td>H</td>
<td>Height (mm)</td>
</tr>
<tr>
<td>(J_{\text{pred}})</td>
<td>Flux of solvent evaporation (kg.m(^{-2}).s(^{-1}))</td>
</tr>
<tr>
<td>k</td>
<td>Mass transfer coefficient (m.s(^{-1}))</td>
</tr>
<tr>
<td>L</td>
<td>Length (mm)</td>
</tr>
<tr>
<td>(m_{\text{pred}})</td>
<td>Mass of evaporated solvent (g)</td>
</tr>
<tr>
<td>(n_1)</td>
<td>Refractive index of ATR crystal</td>
</tr>
<tr>
<td>(n_2)</td>
<td>Refractive index of polymer solution</td>
</tr>
<tr>
<td>(\dot{N}_u)</td>
<td>Nusselt number</td>
</tr>
<tr>
<td>(OF)</td>
<td>Objective function</td>
</tr>
<tr>
<td>(Re)</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>(Sc)</td>
<td>Schmidt number</td>
</tr>
<tr>
<td>t</td>
<td>Time (s)</td>
</tr>
<tr>
<td>(t_f)</td>
<td>Time needed for polymer solidification (s)</td>
</tr>
<tr>
<td>(T)</td>
<td>Temperature (K)</td>
</tr>
<tr>
<td>(T_g)</td>
<td>Glass transition temperature (K)</td>
</tr>
<tr>
<td>(T_{g,\text{mix}})</td>
<td>Glass transition of mixture (K)</td>
</tr>
<tr>
<td>(v_p)</td>
<td>Molar volume of polymer (cm(^3).mol(^{-1}))</td>
</tr>
<tr>
<td>(v_s)</td>
<td>Molar volume of solvent (cm(^3).mol(^{-1}))</td>
</tr>
<tr>
<td>w</td>
<td>Weight fraction</td>
</tr>
</tbody>
</table>
W Width (mm)

Greek Letters
α Constant parameter
θ Angle of incidence beam
λ Wavelength of the infrared radiation
ρ_s Density of solvent vapor \((\text{g.cm}^{-3})\)
φ Volume fraction
χ Flory-Huggins interaction parameter

Subscripts
b Boling temperature
ftir Fourier transmission infrared
m Mixture
m Melting temperature
p Polymer
s Solvent

Superscripts
prd Predicted value

References

42. Higham, D.J. and N.J. Higham, MATLAB guide. 2005: Siam.

Table 1. Parameters of diffusion coefficient for various solvents

<table>
<thead>
<tr>
<th>solvent</th>
<th>Linear model</th>
<th>Exponential model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D_0 (m²/s)</td>
<td>α</td>
</tr>
<tr>
<td>THF</td>
<td>4.91E-10</td>
<td>0.9321</td>
</tr>
<tr>
<td>CHCl₃</td>
<td>1.62E-10</td>
<td>1.6139</td>
</tr>
<tr>
<td>CH₂Cl₂</td>
<td>5.03E-10</td>
<td>0.9291</td>
</tr>
<tr>
<td>Toluene</td>
<td>2.86E-10</td>
<td>1.5344</td>
</tr>
<tr>
<td>Benzene</td>
<td>6.50E-10</td>
<td>0.2512</td>
</tr>
<tr>
<td>Dioxane</td>
<td>1.71E-10</td>
<td>0.5624</td>
</tr>
<tr>
<td>C₂Cl₄</td>
<td>7.90E-11</td>
<td>0.1699</td>
</tr>
</tbody>
</table>

Table 2. Concentration of polymer solution at $T_g = 25$ °C

<table>
<thead>
<tr>
<th>solvent</th>
<th>T_g (°C)</th>
<th>solvent weigh fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>THF</td>
<td>130</td>
<td>0.85</td>
</tr>
<tr>
<td>CHCl₃</td>
<td>110</td>
<td>0.88</td>
</tr>
<tr>
<td>CH₂Cl₂</td>
<td>103</td>
<td>0.89</td>
</tr>
<tr>
<td>Toluene</td>
<td>116</td>
<td>0.88</td>
</tr>
<tr>
<td>Benzene</td>
<td>196</td>
<td>0.70</td>
</tr>
<tr>
<td>Dioxane</td>
<td>198</td>
<td>0.69</td>
</tr>
<tr>
<td>C₂Cl₄</td>
<td>169</td>
<td>0.77</td>
</tr>
</tbody>
</table>
Table 3. Diffusion coefficient of various solvents in the early stage of evaporation process

<table>
<thead>
<tr>
<th>Solvent</th>
<th>D_0 (m2/s)</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>THF</td>
<td>9.83E-10</td>
<td>1.9717</td>
</tr>
<tr>
<td>CHCl$_3$</td>
<td>1.04E-09</td>
<td>0.0002</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>2.40E-09</td>
<td>0.0006</td>
</tr>
<tr>
<td>Toluene</td>
<td>3.95E-10</td>
<td>0.5049</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.07E-09</td>
<td>0.0572</td>
</tr>
<tr>
<td>Dioxane</td>
<td>2.28E-10</td>
<td>0.6877</td>
</tr>
<tr>
<td>C$_2$Cl$_4$</td>
<td>1.03E-10</td>
<td>0.8257</td>
</tr>
</tbody>
</table>
Figure 1. Description of the main concepts of ATR-FTIR spectroscopy applied to the study of diffusion in polymer solution.
Figure 2. ATR-FTIR spectrum of polystyrene/THF solution during evaporation of THF as a function of time in the region of 600-4000 cm$^{-1}$.
Figure 3. Dimensions considered for polymer solution film in mathematical modelling
Figure 4. Concentration boundary conditions around polymer solution film
Figure 5. Iterative procedure of mathematical solution to estimate diffusion coefficient of solvent in polystyrene

1. Input starting estimate of D_0 and α
2. Solve Eq. 2
3. Calculate the rate of solvent evaporation from Eq. 14
4. Calculate the total amount of solvent that vaporized from Eq. 14
5. Reiterate With GA
6. Objective function is minimized? (Eq. 16)
 - Yes: Show the correct D_0 and α
 - No: Reiterate With GA
Figure 6. Spectra of release of THF from PS solution; inset shows decrease of characteristic band of THF (a) as a function of time as well as the increase of characteristic band of PS (b) with time.
Figure 7. THF Concentration in PSF at interface of polymer solution and ATR prism obtained from calibrated instrument with use of principle component regression.
Figure 8. Representative of normalized weight fraction of different solvents during solvent evaporation in polystyrene solutions.
Figure 9. Measured versus predicted evaporated solvent from PSF for initial thickness of 740 μm, nitrogen flowrate of 100 ml/min and temperature of 25 °C.
Figure 10. Measured versus predicted evaporated THF from PSF for various thicknesses under nitrogen flowrate of 100 ml/min and temperature of 25 °C.
Figure 11. Measured versus predicted evaporated THF from PSF with thickness of 740μm for various flowrates at 25°C.
Figure 12. Measured versus predicted evaporated THF from PSF with thickness of 740 μm under nitrogen flowrate of 100 ml/min and various temperatures
Figure 13. Inflection point of THF concentration against time as an initial value for finding t'_i in the trial and error solution method using Equation 12.