RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

COVAL SOCIETY

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Bio-degradation of Polyethylene Waste by Simultaneous Use of Two Bacteria: *Bacillus licheniformis* for production of Bio-surfactant and *Lysinibacillus fusiformis* for Bio-degradation.

Shritama Mukherjee^a,Uttam RoyChaudhuri^b, Patit P. Kundu^a*

A unique method of biodegradation of commercial polyethylene by using simultaneously a bio-surfactant produced by *Bacillus licheniformis* and *Lysinibacillus* bacterium in various combinations was investigated in this study. Bio-surfactant produced by *B.licheniformis* did not have any anti-adhesive property for bio-film formation unlike other types of bio-surfactant produced by other strains of the same bacterium. It was also observed that the lower the surface tension, the higher is the level of oxidation of polyethylene. *Lysinibacillus* was able to form a bio-film on the control polyethylene without any pre-oxidation step and simultaneously oxidizing that polyethylene. Polyethylene samples which were treated with *Lysinibacillus* along with biosurfactant showed weight loss. Maximum weight loss of 2.97 ± 0.05 % was achieved in the case of polyethylene treated with *Lysinibacillus* for 1 month, then treated with bio-surfactant for 1 month, followed by treatment with *Lysinibacillus* for another 1 month. Polyethylene is biodegraded via conversion of carbonyl groups into unsaturated hydrocarbon by both bio-surfactant and *Lysinibacillus* bacterium. In GC-MS analysis, partial oxidation of anti-oxidant used in commercial polyethylene was also observed. So, our present method of biodegradation by simultaneous use of two bacteria is very environmental friendly as well as very efficient.

1 1.Introduction:

- 2 Need for an environmental friendly and efficient degradation
- 3 process rises with the drastic increase in the usage of

polyethylene and its subsequent accumulation in the 4 5 environment in the last three decades. Additional inertness of 6 commercial polyethylene towards oxidation and bio-7 degradation can be due to the presence of anti-oxidants. Anti-8 oxidants are mixed with commercial polyethylene (less than 1%) as polyethylene can undergo oxidations during high 9 10 temperature processing; this results in the loss of physical properties of polyethylene, leading to its premature failure ¹. 11

 ^{a.}Advanced Polymer Laboratory, Department of Polymer Science and Technology, University of Calcutta, 92 APC Road, Kolkata-9, West Bengal, India. Email ID: <u>ppk923@yahoo.com</u>. Telephone number: +913323525106
 ^{b.}Chemical Technology, University of Calcutta, 92 APC Road, Kolkata-9, West

Bengal, India . Supplementary Figure S1-S8 are added as supplementary information section.

[.] See DOI: 10.1039/x0xx00000x

ARTICLE

12 Several studies have been reported that the microbial 13 degradation or bio-degradation can be used as an 14 environmental friendly method for degradation of 15 Bio-degradation of polyethylene mainly polyethylene. 16 consists of two steps. The primary step is the oxidation of 17 polyethylene and the secondary step is the bacterial incubation 18 of oxidised polyethylene for bio-degradation. Microbes 19 cannot utilise polyethylene due to its highly hydrophobic 20 nature and large molecular weight. It is reported that the pre-21 oxidation step is used to increase hydrophilic nature of 22 polyethylene by introducing polar groups like carbonyl groups 23 into the carbon-hydrogen backbone of polyethylene. 24 Increased hydrophilic nature and carbonyl groups introduced 25 into the polymer backbone can enhance utilisation of 26 polyethylene by microbes and thereby increasing the bio-27 degradation². Photooxidition by irradiation with U.V. light at 28 temperature above 50°C, thermal and chemical oxidation are 29 the examples of abiotic oxidation generally used in studies for 30 oxidation of polyethylene ³. Polyethylene mixed with U.V. 31 photosensitizer (pro-oxidant) has been photooxidised by 32 irradiation with U.V. at 70°C for 60 hour before subjecting it 33 to the biodegradation by Rhodococcus ruber and Brevibacillus borstelensis^{4,5}. 34 Pre-oxidation of polyethylene, prior to 35 biodegradation by fungi, has been done by two methods which 36 are by accelerated aging at 70°C under U.V. light for 29 days 37 and by thermal treatment at 105°C and 150°C for 120 hour⁶. 38 Prior to biodegradation, polyethylene has also been 39 photooxidised by natural weathering for 93 days, followed by 40 thermal treatment at temperature ranging from 45°C to 65°C 41 for 200 days. In this case, polyethylene mixed with prooxidant has been used ¹. Although, oxidation level of 42 43 polyethylene mixed with pro-oxidant is high, when oxidised 44 by abiotic method; but, these methods have inherent

Journal Name

45 disadvantages. Use of high temperature, U.V. light and 46 chemicals is not cost effective. A more economical way can 47 be the biotic method i.e using microbial sp. In our previous 48 study, commercial polyethylene is oxidised by the bio-49 surfactant produced by *Bacillus sp*(ATCC- 39307)⁷. 50 Oxidation of polyethylene by bio-surfactant cause similar 51 effect in the chemical structure of polyethylene as reported in 52 case of abiotically oxidised polyethylene like an increase in 53 the carbonyl index. Surfactant is an amphiphilic molecule. 54 Hydrophobic part of the bio-surfactant remains attached with 55 the hydrophobic surface of the polyethylene while hydrophilic 56 part remains protruding towards the aqueous solution. This 57 method increases polyethylene's availability to dissolved 58 oxygen which leads to oxidation of polyethylene. So, even 59 after proper washing and drying, surfactant can remain 60 attached with the surface of the polyethylene. On other hand, bio-surfactant isolated from other variants of Bacillus 61 62 licheniformis bacterium like B.licheniformis strain 603, 63 B.licheniformis BAS50, B.licheniformis V9714 have shown 64 anti-microbial and anti-adhesive property for bio-film formation against different microbial sp^{8,9,10,11}. So, further 65 investigation is required to confirm whether microbes can 66 form bio-film on the biotically oxidised polyethylene. Due to 67 higher metabolic activity of bio-film forming microbial 68 69 population than that of the suspended bacteria, formation of 70 bio-film on polyethylene surface is important for bio-71 degradation. Another advantage is that the carbon availability 72 is much greater where solid surface serves as the support and 73 substrate for the bio-film formation⁴. Several bacterial sp 74 have been reported for their ability to form bio-film on the 75 polyethylene surface. Rhodococcus ruber, Brevibacillus 76 borstelensis are such bacteria which have the ability to form bio-film on the polyethylene surface^{4,5}. One bacterial sp, 77

78 identified as Lysinibacillus fusiformis has been isolated from 79 Kolkata municipal wastewater and it is previously reported 80 that this bacterium is able to form bio-film on di (2ethylhexyl) phthalate which has short -CH₂ chain ¹². Two 81 82 bacterial sp, one for oxidation of polyethylene (Bacillus 83 licheniformis) and another for degradation (Lysinibacillus 84 fusiformis) of polyethylene has never been used 85 simultaneously for biodegradation of commercial polyethylene 86 waste bags.

87 In this study, polyethylene was treated with 88 Bacillus licheniformis and Lysinibacillus fusiformis in 89 different combinations for 3 months when the time allowed for 90 each treatment was 1 month to obtain maximum weight loss 91 due to bio-degradation. B.licheniformis was used for biotic oxidation of polyethylene by the formation of bio-surfactant. 92 93 Lysinibacillus sp. was used for its ability to form bio-film on 94 the oxidized and un-oxidized polyethylene samples.

95 2. Methods and materials:

96 2.1. Test materials:

97 Daily used 0.01 mm thick, transparent
98 colourless polyethylene bags were collected from the waste
99 bins of Kolkata Municipal Corporation. Rectangular pieces
100 (5mm × 5mm) of the polyethylene bags were vigorously
101 washed with soap water and distilled water. Rectangular
102 pieces were dried at 60°C for overnight and were used as
103 control polyethylene in this study.

104 2.2. Microbial culture:

105 Bacillus licheniformis JF2 (ATCC No. 39307, MTCC No.
106 2454) was used for bio-treatment study. This microbial
107 culture was obtained from Institute of Microbial Technology,
108 Chandigarh, India. Microbial culture was maintained in

109 nutrient broth (Himedia). One bacterial strain was isolated 110 from the waste water collected from the Bangur area of Kolkata Municipal Corporation through serial dilution 111 112 method. After purification, isolated strain was maintained in 113 nutrient media (Himedia) at 37°C. The isolated strain was 114 identified as Lysinibacillus fusiformis and partial nucleotide 115 sequence of 16s rDNA was submitted in NCBI database with 116 accession number: HE648060.

117 Mediums used for treatment of polyethylene by 118 B.licheniformis were YPD media containing yeast extract 10 119 g, glucose 20 g, peptone 20 g and sodium chloride (NaCl) 10 g 120 in 1 litre of double distilled water and mineral media 121 containing glucose 10 g, sodium chloride 10 g, NH₄NO₃ 4 g, 122 Na₂HPO₄ 1.5 g, MgSO₄ 0.4 g, CaCl₂ 0.1 g in 1 litre of double 123 distilled water. Medium used for treatment of polyethylene by Lysinibacillus sp. contained glucose 10 g, NH₄NO₃ 3 g, 124 125 KH₂PO₄ 0.4 g, K₂HPO₄ 0.5 g, MgSO₄ 0.2 g per litre of double 126 distilled water. Liquid culture mediums were sterilised at 127 120°C for 15 minutes. Control polyethylene samples were 128 treated as described in Table 1 with B.licheniformis and 129 Lysinibacillus sp. For environmental aging, polyethylene 130 samples were kept under sun continuously for 1 month during 131 day and night in an enclosed glass beaker with a white paper 132 to prevent polyethylene samples from dust and other air 133 polluting agent. Each bacterial treatment was carried out in 134 triplicate at 37°C for 1 month. Control polyethylene 135 (commercial unoxidized) was incubated with Bacillus 136 licheniformis in YPD medium (PE 1.1), in mineral media (PE 137 6.1) and with Lysinibacillus bacterium in mineral media (PE 138 4.1) for 1 month. Then PE 1.1 was aged under Sun light for 1 139 month (PE 1.2) and PE 1.2 was incubated with B.licheniformis 140 in YPD medium for 1 month (PE 1.3). Control polyethylene 141 was incubated with B.licheniformis in YPD medium for 2

ARTICLE

142	months (PE 2.2) and PE 2.2 was further incubated with	
143	Lysinibacillus for 1 month (PE 2.3). PE 1.1 was incubated	
144	with Lysinibacillus. Samples were collected after 1 month	
145	(PE 3.2) and 2 months (PE 3.3). PE 4.1 was subjected to	
146	natural aging under Sun light for 1 month (PE 4.2) and PE	
147	4.2 was further incubated with Lysinibacillus for 1 month (PE	
148	4.3). PE 4.1 was incubated with B.licheniformisin YPD	
149	medium for 1 month (PE 5.2) and PE 5.2 was further	
150	incubated with B.licheniformisfor 1 month (PE 5.3). PE 6.1	
151	was treated similarly as PE 3.2 (PE 6.2) and PE 6.2 was	
152	treated similarly as PE 3.3 (PE 6.3). PE 6.1 was treated	
153	similarly as PE 1.2 (PE 7.2) and PE 7.2 was treated similarly	
154	as PE 1.3, but using mineral medium instead of YPD medium	
155	(PE 7.3). Control polyethylene was incubated with	
156	B.licheniformis for 2 months in mineral media (PE 8.2) and	
157	PE 8.2 was incubated with Lysinibacillus for 1 month (PE	
158	8.3) (Table 1). Polyethylene kept in three different media	
159	without any bacterial sp was kept as negative control. After	
160	each treatment, polyethylene samples were carefully washed	
161	and dried at $60^\circ\mathrm{C}.$ These treated polyethylene samples were	
162	then characterized by FTIR, SEM, and XRD. Initial weight	
163	and final weight of each treated polyethylene samples was	
164	noted.	

Sample name	Starting material	Types of treatment	Name of the bacteria	Types of Medium	Duration
PE 1.1	Commerc ial polyethyl ene	Bio-surfactant treatment	Bacillus licheniformis	YPD medium	1 month
PE 1.2	PE 1.1	Natural aging under Sunlight			1 month
PE 1.3	PE 1.2	Bio-surfactant treatment	Bacillus licheniformis	YPD medium	1 month
PE 2.2	PE 1.1	Bio-surfactant treatment	Bacillus licheniformis	YPD medium	1 month
PE 2.3	PE 2.2	Bacterial treatment	Lysinibacillu s fusiformis	Mineral medium	1 month
PE 3.2	PE 1.1	Bacterial treatment	Lysinibacillu s fusiformis	Mineral medium	1 month
PE 3.3	PE 3.2	Bacterial treatment	Lysinibacillu s fusiformis	Mineral medium	1 month
PE 4.1	Commerc ial polyethyl ene	Bacterial treatment	Lysinibacillu s fusiformis	Mineral medium	1 month
PE 4.2	PE 4.1	Natural aging under Sunlight			1 month
PE 4.3	PE 4.2	Bacterial treatment	Lysinibacillu s fusiformis	Mineral Medium	1 month
PE 5.2	PE 4.1	Bio-surfactant treatment	Bacillus licheniformis	YPD Medium	1 month
PE 5.3	PE 5.2	Bacterial treatment	Lysinibacillu s fusiformis	Mineral Medium	1 month
PE 6.1	Commerc ial polytehyl ene	Bio-surfactant treatment	Bacillus licheniformis	Mineral Medium	1 month
PE 6.2	PE 6.1	Bacterial treatment	Lysinibacillu s fusiformis	Mineral medium	1 month
PE 6.3	PE 6.2	Bacterial treatment	Lysinibacillu s fusiformis	Mineral medium	1 month
PE 7.2	PE 6.1	Natural aging under Sunlight			1 month
PE 7.3	PE 7.2	Bio-surfactant treatment	Bacillus licheniformis	Mineral Medium	1 month
PE 8.2	PE 6.1	Bio-surfactant treatment	Bacillus licheniformis	Mineral medium	1 month
PE 8.3	PE 8.2	Bio-surfactant	Bacillus licheniformis	Mineral	1 month

165

166 2.3. Characterization:

167 Surface tension (σ) of culture media incubated with
168 *B.licheniformis* was measured by stalagmometer at 25°C at
169 day zero and at different intervals of time (days) ¹³. Reduction
170 of surface tension is an indirect measure of bio-surfactant
171 production by *B.licheniformis*. Surface tension was calculated
172 by following formula.

 Table 1: Information of samples and their respective treatment procedure during 3months of study

4 | J. Name., 2012, **00**, 1-3

173	$\sigma_{water} \times \frac{weight of Ndrops of solvent}{weight of Ndrops of water} = -$	σ _{zolvent}
174		

Fourier transform infrared spectra (FTIR) analysis was carried 175 out with ATR-FTIR (model alpha, Bruker, Germany) 176 177 spectrometer, scanning from 4000 cm⁻¹ to 500 cm⁻¹ at room temperature. The resolution was set at 4 cm⁻¹ with 42 scans 178 179 per spectrum. Carbonyl index (C.I.) and double bond index 180 (D.B.I.) were calculated using the ratio of absorbance 181 frequency of the carbonyl peak (1740 cm⁻¹) and double bond 182 peak (1650 cm⁻¹) to that of the CH_2 group bending frequency 183 (1465 cm⁻¹) respectively.

184 All polyethylene samples were sputter coated 185 with gold layer by a Hitachi sputter coater (model-E1010 Ion 186 Sputter), Japan. Photomicrographs were observed under 187 scanning electron microscope (EVO 18, Carl Zeiss, Germany). 188 X-ray diffraction study of all types of polyethylene samples 189 were recorded with an X-ray diffractometer (PANalytical, 190 Netherlands) at an angle of 2θ from 3° to 50° and fixed scan rate of 1° min⁻¹. Percentage (%) of crystallinity was calculated 191 192 by using following formula.

 $%Crystallinity = \frac{Area under crystalline peaks}{Total Area under all peaks} \times 100\%$

194 Difference of crystallinity in percentage (%) was calculated by195 using following formula.

155 using following f

196

193

197 BATH' (Bacterial adhesion to hydrocarbon) is a test to 198 measure bacterial hydrophobicity⁴. Affinity of bacterial cells 199 towards hydrocarbon increases with bacterial hydrophobicity. 200 Due to this property, bacterial cells with higher affinity for 201 hydrocarbon [hexadecane $(C_{16}H_{34})$ in the present case], 202 transfer from aqueous suspension to organic phase, leading to 203 the reduction in the turbidity of the culture. BATH' method 204 was carried out to check hydrophobicity of Lysinibacillus sp. 205 as described by Gilan et al⁴. E.coli was used as negative 206 control.

207 Extraction of the degraded part of polyethylene samples in 208 chloroform was performed as per procedure reported by Roy 209 et al ¹⁴. Unoxidized commercial polyethylene was used as 210 control. The presence of different compounds in commercial 211 polyethylene and in the oxidation products and degradation 212 products of commercial polyethylene was identified by GC-213 MS (Thermo Scientific TSQ 8000) analysis. The oven 214 temperature was programmed at 40°C for 3 min, then rose to 215 280°C at a rate of 10°C/min, and then held for 4 min at 280°C. 216 Helium was used as carrier gas. The identification of 217 degradation products was established by comparison of their 218 mass spectra with NST database.

219

220 3. Result and Discussion:

221 3.1. Bacterial Hydrophobicity:

ARTICLE

Figure 1: Hydrophobicity of bacterium Lysinibacillus sp represent in BATH assay

222 BATH assay is the measure of bacterial 223 hydrophobicity. The graph depicted from BATH assay of 224 Lysinibacillussp and E.Coli is represented in Figure 1. From 225 the BATH assay, affinity of Lysinibacillus towards 226 hydrocarbon is evident. More than 30% reduction in cell 227 turbidity is observed after addition of 0.6 ml of hexadecane. 228 After this concentration, reduction of cell turbidity becomes 229 stabilized. Reduction of turbidity occurs as hydrophobic 230 bacterial cells get attached with the hydrocarbon, due to which 231 the transfer of bacterial cells from aqueous phase to organic 232 phase occurs. Similar result has been observed in case of 233 another bacterium, Rhodococcus rubber. These bacteria have 234 been able to form bio-film on the surface of polyethylene, 235 leading to the biodegradation of polyethylene 4. So, 236 Lysinibacillus sp can be used for bio-film formation on the 237 surface of the polyethylene.

E.coli used as the negative control, does not show any change 238 239 of cell turbidity during addition of different concentration of 240 hexadecane.

241 3.2. Surface Tension:

242 Surface tension reduction by B.licheniformis incubated in two 243 different mediums is represented in Figure 2. From this 244 observation, it is clear that the maximum surface tension

Figure 2: surface tension of biosurfactant produced by

Page 6 of 18

	B.licheniformis grown in different medium
245	reduction i.e 51.9% is achieved in case of the <i>B.licheniformis</i>
246	grown in YPD medium for 2 months. Surface tension
247	reduction in case of B.licheniformis grown in mineral media
248	for 2 months is 29% which is much less than the earlier case.
249	Higher amount of bio-surfactant produced by B.licheniformis
250	in YPD medium is due to the abundant presence of carbon and
251	nitrogen sources in the YPD medium. In the case of
252	B.licheniformis grown in the mineral medium, surfactant
253	production is much less due to the presence of limited amount
254	of nitrogen and carbon sources. As <i>B.licheniformis</i> is able to
255	produce bio-surfactant in both YPD and mineral media, both
256	media has been used for the treatment of polyethylene to study
257	the effect of surface tension on polyethylene oxidation.
258	3.3. Bio-surfactant induced oxidation followed by natural

259 aging under sunlight and biodegradation treatment:

260 Polyethylene sample oxidised by bio-surfactant produced by 261 B.licheniformis grown in YPD medium for 1 month was 262 subjected to natural aging under sunlight for 1 month to 263 improve oxidation level. In the next step of treatment, this 264 oxidized polyethylene incubated with Lysinibacillus for 1 and

6 | J. Name., 2012, 00, 1-3

Please do not adjust margins RSC Advances

200

ARTICLE

- 265 2 months. It was observed that Lysinibacillus was able to
- **266** form a bio-film on the oxidised polyethylene sample.

267 3.3.1. FTIR analysis:

Journal Name

268 In case of PE 1.1, a strong absorbance peak at 269 1500-1800 cm⁻¹ is observed in the FTIR spectra 270 (Supplementary Figure S1). From the broad absorbance peak 271 at 1700-1785 cm⁻¹ in the FTIR spectra of PE 1.1, it is apparent 272 that more than one type of C=O containing oxidation product is formed. Mainly ketones (1740 cm⁻¹), aldehydes (1733 cm⁻¹) 273 and unsaturated hydrocarbons (1650 cm⁻¹) are formed as 274 oxidation product ^{15,16}. After further oxidation by natural 275 276 aging under sunlight (PE 1.2), another absorbance peak 277 appears at 1715 cm⁻¹. This peak is due to formation of acids 278 as the oxidation product of polyethylene ¹⁷. Polyethylene 279 sample oxidised in the presence of bio-surfactant and natural 280 aging, again treated with bio-surfactant for 1 month (PE 1.3). 281 In this case of PE 1.3, drastic change in the absorbance can be 282 observed in the 1500-1800 cm⁻¹ region in the FTIR spectra. Absorbance peak at 1650 cm⁻¹ increases rapidly, indicating 283 284 formation of higher amount of unsaturated hydrocarbons. In 285 our previous study, similar observation of conversion of 286 carbonyl groups into unsaturated hydrocarbons during 287 oxidation by bio-surfactant has been observed⁷.

289	Absorbance peak at 1650 cm in the FTIR spectra of PE 2.2
290	increases and this is due to the formation of unsaturated
291	hydrocarbons as oxidation product (Supplementary Figure
292	S2). This oxidised Polyethylene was incubated with
293	Lysinibacillus sp. for 1 month for bio-film formation (PE 2.3).
294	After 1 month, absorbance peak at 1740 cm ⁻¹ almost
295	disappears and absorbance peak at 1650 cm ⁻¹ increases. This
296	may be due to the utilization of oxidation product by
297	Lysinibacillus sp and also conversion of carbonyl groups into
298	unsaturated hydrocarbon by the same bacterium. Similar
299	phenomenon exhibited by other polyethylene degrading
300	bacteria is also reported ¹⁸ .

After oxidation of polyethylene in the presence of biosurfactant for 1 month, it was incubated with *Lysinibacillus*for 2 months (PE 3.3). After 2 months incubation with *Lysinibacillus*, absorbance peak at 1500-1800 cm⁻¹ region
increases further than that of the PE 1.1; this can be due to
formation of ketones, aldehydes and unsaturated hydrocarbons
(Supplementary Figure S3).

308 Carbonyl index (C.I.) and double bond index (D.B.I.) of all
309 samples is represented in Figure 3. C.I. of P.E 1.2 is found to
310 be higher than PE 1.1. It is reported that the presence of
311 carbonyl groups in polyethylene can act as the initiator of

ARTICLE

photo-oxidation during natural aging under sunlight ¹⁵ due to 313 314 which, oxidation level of PE 1.2 is much higher than that of 315 the PE 1.1. But in case of PE1.3, C.I. decreases and D.B.I. 316 increases drastically. In this case, oxidation product of 317 polyethylene gets solubilised into the aqueous media. During 318 oxidation by bio-surfactant, initially, C=O containing 319 oxidation product i.e ketones, aldehydes along with 320 unsaturated hydrocarbons are formed. During later stage of 321 this oxidation, solubilisation of oxidation products and 322 conversion of carbonyl groups into unsaturated hydrocarbon is 323 reported in the previous study ⁷. This phenomenon can be 324 resulted due to hydrocarbon solubilisation ability of biosurfactant which is also reported by other studies ¹⁹. In case of 325 326 PE 2.3, its C.I. decreases, whereas its D.B.I. increases in 327 comparison to that of the PE 2.2. In this case, Lysinibacillus is 328 able to utilize the oxidation product for bio-film formation and 329 is also able to convert the carbonyl groups into unsaturated 330 hydrocarbons. In case of PE 3.2 and PE 3.3, both C.I. and 331 D.B.I. increases. Lysinibacillus bacterium may be able 332 oxidize polyethylene further, due to which, more carbonyl 333 groups and unsaturated hydrocarbons are formed. But in case 334 of PE 2.3, such oxidation is not observed. Lysinibacillus only 335 utilizes that oxidized part of polyethylene for forming the bio-336 film due to the presence of higher amount of the oxidation 337 product in PE 2.2. But in case of PE 1.1, the amount of 338 oxidation product is comparatively less, enabling 339 Lysinibacillus to oxidise the polyethylene sample further as 340 well as to utilize oxidation product.

341 3.3.2. XRD analysis:

342 The level of crystallinity of control polyethylene is343 compared for the samples PE 1.1 to 3.3 in Figure 4. After344 oxidation in the presence of bio-surfactant, reduction of

Journal Name

345 crystallinity of polyethylene is reported in our previous study 346 (PE 1.1) 7 . This reduction is mainly due to the formation of 347 oxidation products which act as the impurities and may be due 348 to the alteration of crystalline structure by attached surfactant to the polyethylene surface ²⁰. 349 After natural aging, 350 crystallinity of oxidised polyethylene again increases (PE 1.2). 351 Increase of crystallinity during natural aging under sunlight is a common phenomenon and reported in several studies ^{21,22}. 352 353 During photooxidation, small molecular weight chains 354 resulted due to chain scission, can initiate or promote 355 secondary crystallization. Formation of new polar bonds 356 between oxidised polyethylene molecules can also initiate 357 secondary crystallization. During natural aging of 358 polyethylene at a relatively low temperature during night time 359 can also lead to this effect. Crystallinity increases after 360 oxidation in the presence of bio-surfactant (PE 1.3). 361 Crystallinity of PE 1.3 increases due to the erosion of oxidised 362 amorphous region of polyethylene into aqueous media in the presence of bio-surfactant 15. In case of PE 2.2, crystallinity 363 364 increases with the increase in the oxidation level (Figure 3). 365 But after incubation with Lysinibacillus (PE 2.3), crystallinity 366 slightly decreases. During bio-film formation, Lysinibacillus 367 first utilises oxidised amorphous part and simultaneously 368 further oxidises the crystalline region of polyethylene. In case 369 of PE 3.3, crystallinity also decreases with the increase in the 370 oxidation level. During initial phase, amorphous region is 371 readily oxidised followed by biodegradation by Lysinibacillus 372 due to easier availability of amorphous region to the dissolved 373 oxygen. Due to further oxidation and biodegradation by 374 Lysinibacillus, some part of crystalline region may also further 375 be oxidised, resulting in a decrease in the crystallinity.

376

- 377 3.4. Bio-film formation and oxidation of control
- 378 polyethylene by Lysinibacillus bacterium:

379 Additional oxidation ability of Lysinibacillus along with its 380 ability to form bio-film on polyethylene is observed during the 381 first part of this study. In this part, control (unoxidized) 382 polyethylene was incubated with Lysinibacillus. Natural 383 aging under sunlight and bio-surfactant induced oxidation 384 were also used to enhance oxidation level (Table 1). Bio-film 385 formation was observed on the control polyethylene within 7 386 days of incubation with Lysinibacillus.

387 3.4.1. FTIR analysis:

388 In the FTIR spectra of polyethylene incubated with 389 Lysinibacillus for 1 month (PE 4.1), certain changes are 390 observed in the absorbance peak region at 1500-1800 cm⁻¹ 391 (Supplementary Figure S4). This change corresponds to the 392 formation of ketones, aldehydes, acids and unsaturated 393 hydrocarbons as oxidation product. Polyethylene is oxidized 394 by extracellular enzymes of Lysinibacillus and by dissolved 395 oxygen. Then, this oxidation product is further utilized by 396 Lysinibacillus for the formation of bio-film on the 397 polyethylene surface. Abiotically oxidised polyethylene has

Figure 5: Carbonyl Index and Double Bond Index of control polyethylene and PE 4.1-PE 5.3 398 been biodegraded by another strain of Lysinibacillus in the 399 identical manner i.e conversion of carbonyl group into 400 unsaturated hydrocarbons in another study ²³. This oxidized 401 polyethylene was then subjected to natural aging under 402 sunlight for 1 month to improve the level of oxidation (PE 403 4.2), followed by the incubation of polyethylene with 404 Lysinibacillus for another 1 month (PE 4.3). After each 405 treatment, appearance or disappearance of no new peak is observed in the 1500-1800 cm⁻¹ region (Supplementary 406 407 Figure S4). This indicates that polyethylene is further 408 oxidized by each treatment.

409 After incubating polyethylene with Lysinibacillus, 410 polyethylene was incubated in the presence of bio-surfactant 411 for 1 month (PE 5.2). In the FTIR spectra of PE 5.2, absorbance peak at 1740 cm⁻¹ decreases, while the absorbance 412 peak at 1650 cm⁻¹ increases (Supplementary Figure S5). This 413 414 is due to the solubilisation of oxidation products into aqueous 415 media and subsequent conversion of carbonyl groups into 416 unsaturated hydrocarbons in the presence of bio-surfactant. 417 This bio-surfactant treatment of polyethylene is followed by 1 418 month incubation with Lysinibacillus for biodegradation (PE 419 5.3). In the FTIR spectra of PE 5.3, a drastic increase in the 420 absorbance peak at 1650 cm⁻¹ is observed; this is due to the 421 utilization of oxidized part by Lysinibacillus and subsequent 422 conversion of carbonyl groups into unsaturated hydrocarbons.

423 After 1 month incubation of control polyethylene with 424 Lysinibacillus, significant rise in the values of both C.I. and 425 D.B.I can be observed (Figure 5). Carbonyl groups present in the polyethylene act as the initiator of photo-oxidation, due to 426 427 which higher oxidation level is resulted in PE 4.2. Slight 428 decrease in both of C.I. and D.B.I. of PE 4.3 is due to the 429 utilization of oxidation products by Lysinibacillus. In case of 430 PE 5.2, the decrease in C.I. and D.B.I. is possibly due to the 431 solubilisation of oxidation product into the aqueous media in 432 the presence of bio-surfactant. In case of PE 5.3, drastic 433 increase in D.B.I. and comparatively less increase in C.I. are 434 So, Lysinibacillus bacterium utilizes carbonyl apparent. 435 groups and converts it into unsaturated hydrocarbon. Slight 436 increase in the C.I. in case of PE 5.3 is due to the oxidation of 437 polyethylene by extracellular enzymes of Lysinibacillus and 438 by the dissolved oxygen present in the bacterial media.

439 3.4.2. XRD analysis:

The level of crystallinity of control polyethylene is
compared to that of the treated polyethylene i.e PE 4.1-5.3
(Figure 6). In the case of PE 4.1 to PE 4.3, the crystallinity is
found to decrease from that of the control polyethylene.
During the oxidation of polyethylene by dissolved oxygen and

Page 10 of 18

Journal Name

445	extracellular enzymes of Lysinibacillus, oxidation products
446	can act as the impurities. This phenomenon can cause the
447	reduction in the crystallinity $^{20}\!.$ Crystallinity of PE 4.2
448	decreases after the oxidation by natural aging under sunlight,
449	though the crystallinity of PE 1.2 increases due to the
450	secondary crystallization initiated by oxidation product. From
451	FTIR studies, C.I. of PE 4.2 is comparatively higher than that
452	of the PE 1.2 as both were oxidised by natural aging under
453	sunlight, indicating higher oxidation level of PE 4.2 (Figure
454	5). Oxidation of amorphous region as well as crystalline
455	region of polyethylene can be resulted due to higher oxidation
456	level of PE 4.2 which consequently causes the decrease in the
457	crystallinity of PE 4.2. Further decrease in the crystallinity
458	level in case of PE 4.3 is due to the utilization of oxidised
459	product and further oxidation by Lysinibacillus bacterium.
460	Crystallinity of PE 5.2 and PE 5.3 decreases from that of the
461	control polyethylene. This decrease is due to the
462	solubilisation of oxidized part and further oxidation during
463	incubation with bio-surfactant. The solubilisation of oxidation
464	product can be observed in FTIR studies where C.I. decreases
465	in case of PE 5.2 from that of the PE 4.1 (Figure 5).
466	Crystallinity of PE 5.3 decreases though oxidation level is not
467	high. In case of PE 4.1, polyethylene is oxidised and that part
468	is eventually utilised simultaneously by Lysinibacillus
469	bacterium. Then, this polyethylene is again oxidised, followed
470	by its solubilisation into the aqueous media simultaneously by
471	bio-surfactant (PE 5.2). Then PE 5.2 is incubated with
472	Lysinibacillus (PE 5.3). In this stage, oxidised part of
473	polyethylene already present in the sample is utilised by
474	Lysinibacillus and also this polyethylene sample is further
475	oxidised simultaneously by the same bacterium. In this way,
476	treated polyethylene gets bio-degraded and bio-deteriorated
477	simultaneously. Total disruption of crystalline region of the

Please do not adjust margins RSC Advances

ARTICLE

polyethylene may be resulted due to this phenomenon which isindicated from the decrease in the crystallinity of PE 5.3 to acomparatively lower value.

481 3.5. Oxidation of polyethylene by bio-surfactant produced
482 by *B.licheniformis* in mineral media and subsequent
483 biodegradation:

484 Similar type of treatment of polyethylene as first part 485 of this study was done in this section (Table 1). Use of 486 mineral media as growth media for B.licheniformis instead of 487 YPD media was the only difference in this case. Higher 488 surface tension was observed in case of B.licheniformis grown 489 in mineral media than B.licheniformis grown in YPD media. Treatment used for PE 6.1 and PE 1.1 were the same except 490 491 the difference in the growth media used for bio-surfactant 492 production. Similarly, treatment used for PE 6.2-6.3, PE 7.2-493 7.3, and PE 8.2-8.3 were the same for PE 3.2-3.3, PE 1.2-1.3, 494 PE 2.2-2.3, respectively (Table 1).

495 3.5.1. FTIR analysis:

496 New peak appears in the 1500-1800 cm⁻¹ region of
497 the FTIR spectra of polyethylene incubated with the bio498 surfactant produced by *B.licheniformis* using mineral media as

Figure 7: Carbonyl Index and Double Bond Index of control polyethylene and PE 6.1- PE 8.3

499	growth media (Supplementary Figure S6). Peaks at 1740 cm ⁻¹
500	and 1650 $\mbox{cm}^{\mbox{-}l}$ are due to the formation of ketones, aldehydes
501	and unsaturated hydrocarbons as oxidation product. In case of
502	PE 6.3, absorbance peak at 1740 $\mbox{cm}^{\mbox{-l}}$ almost disappears due to
503	the utilization of carbonyl groups by Lysinibacillus bacterium
504	(Supplementary Figure S6). Changes in the FTIR spectra of
505	PE 7.2 and PE 7.3 after treatment are identical to that of the
506	PE 1.2 and PE 1.3 (Supplementary Figure S7, S1). Similarly,
507	changes in the FTIR spectra of PE 8.2 and PE 8.3 after
508	treatment are identical to that of the PE 2.2 and PE 2.3 $$
509	(Supplementary Figure S8, S2). Only difference in case of PE
510	8.3 is that the increase in the absorbance peak at 1650 \mbox{cm}^{-1} is
511	comparatively less than that of the PE 2.3.

512 C.I. of PE 6.1 is comparatively less than the C.I. of PE 1.1 though both of the polyethylene samples are oxidised by 513 514 bio-surfactant (Figure 7). Higher surface tension is recorded 515 in case of B.licheniformis grown in mineral media; this can be 516 a reason for lower level of oxidation in case of PE 6.1. 517 Characteristic higher D.B.I and lower C.I. of PE 3.2 and 3.3 is 518 also observed in case of PE 6.2 and 6.3. But, the value of both 519 C.I. and D.B.I. of PE 6.2 and 6.3 is comparatively less than 520 that of the PE 3.2 and 3.3. This is also due to the lower 521 oxidation level of polyethylene. In case of PE 7.2-7.3 and PE 522 8.2-8.3, changing pattern of C.I. and D.B.I. value is identical 523 to that of the PE 1.2-1.3 and PE 2.2-2.3 respectively. But, the 524 value of C.I. and D.B.I. of PE 7.2-7.3 and PE 8.2-8.3 are 525 comparatively low. From this observation, this is apparent 526 that the lower the surface tension of the culture media, the 527 higher is the oxidation level of polyethylene by bio-surfactant 528 and vice-versa.

529 3.5.2. XRD analysis:

561 3.7. Gravimetric Analysis:

562 Out of eight treated polyethylene samples, six563 shows weight-loss after treatment for 3 months (Figure 10).

Figure 8: Crystallinity graph of control polyethylene and PE 6.1 to PE 8.3

530 Crystallinity level of control polyethylene is compared to
531 that of the treated polyethylene i.e. PE 6.1 to PE 8.3 (Figure
532 8). Changing pattern of crystallinity of PE 6.1, PE 6.2-6.3, PE
533 7.2-7.3 and PE 8.2-8.3 is almost identical to that of the PE 1.1,
534 PE 3.2-3.3, PE 1.2-1.3 and PE 2.2-2.3 respectively. But the
535 corresponding changes are comparatively less in amount due
536 to the lower level of oxidation.

537 3.6. Morphological analysis:

538 539

SEM images of the control polyethylene and other treated polyethylene samples are represented in Figure 9.

540 Rough surface is observed in all eight treated polyethylene

564 No weight loss is observed after 3 months of treatment in case 565 of PE 1.3 and PE 7.3 which were also not treated with 566 Lysinibacillus bacterium. Weight-loss is observed in other six 567 treated polyethylene samples i.e PE 2.3, PE 3.3, PE 4.3, PE 568 5.3, PE 6.3 and PE 8.3 which were treated with Lysinibacillus 569 during last stage of the treatment (Table 1). So, it is apparent that biodegradation of polyethylene is only caused by 570 571 Lysinibacillus bacterium. Maximum weight loss is achieved 572 in case of PE 5.3 which is $2.97 \pm 0.5\%$. In case of PE 5.3, 573 during first month of treatment, control polyethylene is 574 simultaneously oxidised and that oxidised part is utilised by 575 Lysinibacillus bacterium (PE 4.1). Then during second month, 576 that polyethylene is oxidised and the oxidised part of polyethylene is solubilised by bio-surfactant produced by 577 578 B.licheniformis (PE 5.2). During third month of treatment, 579 that polyethylene is again oxidised and biodegraded by 580 Lysinibacillus simultaneously (PE 5.3) (Table 1). In case of 581 PE 4.1, 5.2 and 5.3, these changes can be observed in FTIR

582	analysis by the respective increase and decrease in the value of
583	C.I. and D.B.I. (Figure 5). This way, polyethylene is
584	biodegraded. In a recent study, less than 1% weight loss is
585	achieved during the biodegradation of thermally treated
586	polyethylene by Bacillus cereus and Bacillus sphericus after 3
587	months $^{16}\!\!.$ In another study, rate of polyethylene degradation
588	ranging from 3.5% to 8.4% in 10 years has been reported $^{\rm 25}.$
589	After 15 years of treatment in soil, 16% weight-loss of
590	polyethylene has been achieved in another $study^{26}. \label{eq:study}$ The
591	achieved rate of degradation in this study is higher than the
592	rate of degradation of polyethylene as reported in the previous
593	studies.

594 3.8. GC-MS analysis:

595 Summarized list of all products identified in GCMS
596 analysis of treated polyethylene is represented in Table 2.
597 Con_PE is the control polyethylene. Con_lyn is the control
598 polyethylene

599

600 Antioxidants:

[Compound name	Con_PE	Con_lyn	Con_lich	PE3.3	PE5.3
	Phenol, 2,4-bis(1,1-dimethylethyl)-	Y	Y	Y	Y	Y
	Pentanoic acid, 5-hydroxy-, 2,4-di-t-butylphenyl esters	Y	Y	Y	Y	Y
	Phenol, 2,6-bis(1,1-dimethylethyl)-	Y	Y	Y	Y	Y

601

602 CH₂ group:

-						
2	Tetracosane, 11-decyl- (24C)					
		Y	Ν	Ν	Ν	Ν
3	Heneicosane (21C)					
		Ν	Y	Y	Ν	Ν
4	Eicosane, 7-hexyl- (20C)					
		Υ	Ν	Ν	Ν	Ν
	Eicosane					
		Υ	Y	Y	Ν	Ν
	Eicosane, 2-methyl-	Ν	N	Ν	Ν	Ν
	Cycloeicosane	Ν	N	N	N	Y
	Eicosane, 10-methyl-	Ν	N	Y	N	N

This iournal is	© The Roval	Society of	Chemistry 20xx

Please do not adjust margins RSC Advances

Journal Name

		-				
5	Nonadecane	N	Ν	Y	N	N
	Nonadecane, 9-methyl- (19C)	Ν	Y	Ν	Ν	N
6	Octadecane, 3-ethyl-5-(2-ethylbutyl)- (18C)	Ν	Y	Ν	Ν	Ν
	Octadecane	Ν	Y	Ν	N	N
7	Heptadecane, 9-hexyl- (17C)	Y	Y	N	N	Ν
	Heptadecane, 7-methyl	N	N	N	N	N
	Haptadaaana	V	N	v	N	N
8	Hexadecane, 2,6,11,15-tetramethyl- (16C)	1	IN	I	IN	IN
		N	Y	N	N	N
	Hexadecane, 2,6,10,14-tetramethyl-	N	N	Ν	N	N
	Cyclohexadecane		N	Y	Ν	N
0	Hexadecane	Y	Y	Y	Ν	N
9	Pentadecane (15C)	Ν	Y	Ν	Ν	Ν
	Pentadecane, /-methyl	Ν	Y	Ν	N	N
	Pentadecane, 3-methyl-	N	N	N	N	N
10	Tetradecane, 2,6,10-trimethyl- (14C)	N	N	Y	N	N
	Tetradecane, 4-methyl-	N	N	N	N	N
	Tetradecane, 2-methyl-	N	N	N	N	N
	Cyclotetradecane	N	N	N	Y	Y
	Tetradecane	Y	Y	N	Y	N
	Tridecane	N	N	Y	N	N
11	Dodecane, 5,8-diethyl- (12C)	N	Y	N	N	N
	Dodecane, 2,5-dimethyl-	N	N	N	N	N
	Dodecane, 2,6,10-trimethyl	Y	N	N	Y	Y
	Dodecane	Y	Y	Y	Y	Y
12	Undecane (11C)	N	Y	N	N	N
	Undecane, 2,6-dimethyl-	N	N	N	Y	N
13	Decane, 3,6-dimethyl- (10C)	N	Y	Y	N	N
	Decane	N	N	N	Y	Y
	Decane, 2-methyl-	N	N	N	N	
14	Octane, 3,5-dimethyl-	N	N	N	Y	N
15	Benzene, 1,3-bis(1,1-dimethylethyl)- (6C)	Y	Y	N	N	N
	Benzene, 1,4-bis(1,1-dimethylethyl)-	Y	Y	N	N	N
16	m-Cymene, 5-tert-butyl-	Y	Y	N	N	N

RSC Advances Accepted Manuscript

603

604 Oxidation product:

605 Acids:

17 9-Hexadecenoic acid	Ν	Y	Y	N	Ν
------------------------	---	---	---	---	---

606

607

608

609

610

611

612

613

Please do not adjust margins RSC Advances

Journal Name

	Pentadecanoic acid	N	N	Y	Ν	N
	Oleic acid, 3-(octadecyloxy)propyl ester	N	Y	Y	N	N
	Octadecanoic acid	N	Ν	Y	N	N
	Docosahexaenoic acid, 1,2,3-propanetriyl ester	N	Y	N	N	N
	Oleic acid, eicosyl ester	N	N	v	N	N
	9-Octadecenoic acid (Z)-, tetradecyl ester	N	N	I V	N	N
	Erucic acid	N	N	Y	N	IN N
	22-Tricosenoic acid	N	N	Y	N	N
	cis-13-Octadecenoic acid	N	N	Y	N	N
	cis-Vaccenic acid	N	N	Y	N	N
	Nonahexacontanoic acid	N	N	Y	N	<u>N</u>
	Cyclopropaneoctanoic acid, 2-[(2-	N	N	Y	N	N
	pentylcyclopropyl)methyl]-, methyl ester,	N	N	V	N	N
	trans,trans-	N	N	Y	N	IN
Keton	es: 2-Pentanone, 4-hydroxy-4-methyl-	T				
		Ν	Y	Y	N	Ν
N19	1-Heptatriacotanol	N	Ν	Y	N	N
	2-Hexanol 2-methyl-	N	N	Y	N	N
	2 Dentenel 2.4 direction	N	Y	Y	N	N
	2-Pentanoi, 2,4-dimetnyi-	N	Ν	Y	Ν	Ν
	1-Octanol, 2-butyl-	N	N	Y	N	N
	1-Undecanol			-	11	
	Ethanol, 2-(9-octadecenvloxy)-, (Z)-/ 2-	N	N	N	N	Y
	Ethanol, 2-(9-octadecenyloxy)-, (Z)-/ 2- (tetradecyloxy)-	N N	N N	N Y	N N	Y N
	Ethanol, 2-(9-octadecenyloxy)-, (Z)-/ 2- (tetradecyloxy)- E,E,Z-1,3,12-Nonadecatriene-5,14-diol	N N N	N N N	N Y Y	N N N	Y N N
Esters	Ethanol, 2-(9-octadecenyloxy)-, (Z)-/ 2- (tetradecyloxy)- E,E,Z-1,3,12-Nonadecatriene-5,14-diol	N N N	N N N	N Y Y	N N N	Y N N
Esters:	Ethanol, 2-(9-octadecenyloxy)-, (Z)-/ 2- (tetradecyloxy)- E,E,Z-1,3,12-Nonadecatriene-5,14-diol : E-8-Methyl-9-tetradecen-1-ol acetate	N N N	N N N	N Y Y Y	N N N	Y N N
Esters: 20	Ethanol, 2-(9-octadecenyloxy)-, (Z)-/ 2- (tetradecyloxy)- E,E,Z-1,3,12-Nonadecatriene-5,14-diol : E-8-Methyl-9-tetradecen-1-ol acetate	N N N	N N N	N Y Y Y	N N N	Y N N
Esters 20 Other	Ethanol, 2-(9-octadecenyloxy)-, (Z)-/ 2- (tetradecyloxy)- E,E,Z-1,3,12-Nonadecatriene-5,14-diol : E-8-Methyl-9-tetradecen-1-ol acetate oxidation product:	N N N	N N N	N Y Y	N N N	Y N N
Esters: 20 Other 21	Ethanol, 2-(9-octadecenyloxy)-, (Z)-/ 2- (tetradecyloxy)- E,E,Z-1,3,12-Nonadecatriene-5,14-diol : E-8-Methyl-9-tetradecen-1-ol acetate oxidation product: 3,8,12-Tri-O-acetoxy-7-desoxyingol-7-one	N N N	N N N N	N Y Y Y	N N N	Y N N N
Esters 20 Other 21	Ethanol, 2-(9-octadecenyloxy)-, (Z)-/ 2- (tetradecyloxy)- E,E,Z-1,3,12-Nonadecatriene-5,14-diol : E-8-Methyl-9-tetradecen-1-ol acetate oxidation product: 3,8,12-Tri-O-acetoxy-7-desoxyingol-7-one 9-Octadecene, 1-[2-(octadecyloxy)ethoxy]-	N N N N	N N N N N Y Y Y	N Y Y Y	N N N N	Y N N N
Esters: 20 Other 21	Ethanol, 2-(9-octadecenyloxy)-, (Z)-/ 2- (tetradecyloxy)- E,E,Z-1,3,12-Nonadecatriene-5,14-diol : E-8-Methyl-9-tetradecen-1-ol acetate oxidation product: 3,8,12-Tri-O-acetoxy-7-desoxyingol-7-one 9-Octadecene, 1-[2-(octadecyloxy)ethoxy]- Dodecane, 1-methoxy-	N N N N N	N N N N Y Y N	N Y Y Y Y	N N N N N N	Y N N N N N N
Esters: 20 Other 21	Ethanol, 2-(9-octadecenyloxy)-, (Z)-/ 2- (tetradecyloxy)- E,E,Z-1,3,12-Nonadecatriene-5,14-diol : E-8-Methyl-9-tetradecen-1-ol acetate oxidation product: 3,8,12-Tri-O-acetoxy-7-desoxyingol-7-one 9-Octadecene, 1-[2-(octadecyloxy)ethoxy]- Dodecane, 1-methoxy- 1-Tetradecanol, methyl ether	N N N N N N N	N N N N N Y Y N N	N Y Y Y Y	N N N N N N N N	Y N N N N N N

-						
	Citral	Ν	N	Ν	Y	N
	2,6-Octadienal, 3,7-dimethyl-, (Z)-	Ν	N	Ν	Y	N
	Benzaldehyde, 2,5-dimethyl-	Ν	N	Ν	Y	Y
	Benzaldehyde, 2,4-dimethyl-	N	N	N	Y	Y
	Benzaldehyde, 2-ethyl-	N	N	N	Y	Y
	Benzaldehyde, 2-hydroxy-/ 3-hydroxy/ 4- hydroxy	N	N	Y	N	N

614

615 Unsaturated Hydrocarbon:

2

2	3-Tetradecene, (Z)-	N	Ν	Ν	Y	Ν
	trans-3-Decene	N	Ν	N	Y	Ν
	1-Dodecene	N	Ν	N	Y	Ν
	10-Heneicosene (c,t)	Ν	Ν	Ν	Y	Y
	6-Dodecene, (Z)-/ (E)	Ν	Ν	Ν	Y	Y
	9-Nonadecene	Ν	Ν	Ν	Y	Y
	1-Octadecene	N	N	Ν	Ν	Y

616

Table 2: List of identified chemicals in GC-MS analysis of treated polyethylene samples.

Con_PE: control polyethylene. **Con_lyn**: control polyethylene incubated with *Lysinibacillus* for 1 month.**Con_lich**: control polyethylene incubated with *B.licheniformis* for 1 month

617 incubated with Lysinibacillus for 2 months. Con lich is the control polyethylene incubated with bio-surfactant produced 618 619 by B.licheniformis for 1 month using YPD medium. Acids, 620 alcohols and ether are formed during oxidation of polyethylene by Lysinibacillus and bio-surfactant ^{22,14}. But 621 622 only one type of ketones and esters formed after oxidation. As 623 observed in Figure 3 and Figure 5, the value of C.I. and D.B.I. 624 of PE 3.3 is comparatively higher than that of the PE 5.3. 625 Presence of comparatively higher variety of alcohols, acids 626 and unsaturated hydrocarbons in PE 3.3 compared to PE 5.3 is 627 in correspondence with the observed value of C.I. and D.B.I 628 (Figure 3, 5). In case of PE 5.3, biodegradation of treated 629 polyethylene is apparent from the presence of small molecule 630 of hydrocarbons i.e. decane, dodecane. But less variety of 631 oxidation products is identified in case of PE 5.3 which is due 632 to utilization of oxidation product by Lysinibacillus. From

- 633 GC-MS analysis, it is also apparent that polyethylene is bio-
- 634 degraded via conversion of carbonyl group into unsaturated
- 635 hydrocarbons by the two bacteria.
- 636 Different varieties of nitrogenous compounds are identified in
- 637 the case of control polyethylene incubated with Lysinibacillus
- 638 and PE 3.3, PE5.3, which are parts of bio-film of bacterium
- 639 formed on the polyethylene surface. Benzaldehyde present in
- 640 oxidized polyethylene is formed due to partial oxidation of
- 641 anti-oxidant i.e. Phenol, 2,4-bis(1,1-dimethylethyl) present in
- 642 the commercial polyethylene ²⁷.

Two negative control polyethylenes kept in mineral medium
and YPD medium without any bacterium do not exhibit any
chemical, structural and morphological changes during 3
months of incubation.

647 4. Conclusion: 648 From the above observation, it is apparent that 649 Lysinibacillus is a unique bacterium with the ability of 650 oxidation and bio-degradation of commercial polyethylene 651 Mainly oxidation of polyethylene by waste bags. 652 Lysinibacillus is observed when used polyethylene is either 653 unoxidized or oxidation level is very low. But, when the 654 oxidation level of polyethylene is very high, then the 655 conversion of the carbonyl groups into unsaturated 656 hydrocarbons is observed rather than formation of more 657 carbonyl groups. So, polyethylene is oxidised by 658 Lysinibacillus for the formation of oxidation product from 659 polyethylene which can later be utilized by the same 660 bacterium for bio-film formation. Bio-surfactant produced by 661 B.licheniformis JF2 (ATCC- 39307) does not have any anti-662 adhesive property. Lysinibacillus has been able to form bio-663 film on the surface of the polyethylene, oxidised by bio-664 surfactant as well as on the surface of the control 665 polyethylene. Out of the eight treated polyethylene samples, 666 six samples have been incubated with Lysinibacillus. Weight-667 loss is observed in these six polyethylene samples after 668 treatment of 3 months. Oxidation level of other two 669 polyethylene samples i.e. PE 1.3 and 7.3, treated with bio-670 surfactant and aged under Sun-light is comparatively higher, 671 though no weight-loss is observed for these two polyethylene 672 samples. So, Lysinibacillus is mainly responsible for bio-673 degradation process of polyethylene and this biodegradation 674 process of polyethylene mainly advanced through the 675 conversion of carbonyl group into unsaturated hydrocarbons. 676 In this study, biodegradation is carried out using two bacteria. 677 One bacterium B.licheniformis is used for the production of 678 bio-surfactant and oxidation of polyethylene followed by 679 solubilisation of oxidation product by that bio-surfactant.

680 Another bacterium Lysinibacillus is used for biodegradation as 681 well as oxidation of commercial polyethylene. Using these 682 two bacteria simultaneously, one can lead to the 683 biodegradation and bio-deterioration of commercial 684 polyethylene. This method is also very environmental 685 friendly.

686 5. Acknowledgement:

- 687 Shritama Mukherjee is grateful to Council for Scientific and
 688 Industrial Research (CSIR), New Delhi, for providing senior
 689 research fellowship for conducting this research. Thanks to
 690 the Central Instrumentation Laboratory, Panjab University,
 691 India for providing GC-MS analysis of the polyethylene
 692 sample.
- 693

694 6. Reference:

695 696 697	1	A. Corti, S. Muniyasamy, M. Vitali, S. H. Imam and E. Chiellini, <i>Polym. Degrad. Stab.</i> , 2010, 95 , 1106–1114.
698 699	2	AC. Albertsson, S. O. Andersson and S. Karlsson, <i>Polym. Degrad. Stab.</i> , 1987, 18 , 73–87.
700 701 702	3	K. Yamada-Onodera, H. Mukumoto, Y. Katsuyaya, A. Saiganji and Y. Tani, <i>Polym. Degrad. Stab.</i> , 2001, 72 , 323–327.
703 704	4	I. G. (Orr), Y. Hadar and A. Sivan, <i>Appl. Microbiol.</i> <i>Biotechnol.</i> , 2004, 65 , 97–104.
705 706	5	D. Hadad, S. Geresh and A. Sivan, J. Appl. Microbiol., 2005, 98 , 1093–1100.
707 708	6	a Manzur, M. Limon-Gonzalez and E. Favela-Torres, J. Appl. Polym. Sci., 2004, 92, 265–271.
709 710	7	S. Mukherjee, U. R. Chaudhuri and P. P. Kundu, <i>RSC Adv.</i> , 2015, 5 , 75089–75097.
711 712	8	K. Jenny, O. Käppeli and A. Fiechter, <i>Appl. Microbiol. Biotechnol.</i> , 1991, 36 , 5–13.
713 714 715	9	F. Rivardo, R. J. Turner, G. Allegrone, H. Ceri and M. G. Martinotti, <i>Appl. Microbiol. Biotechnol.</i> , 2009, 83 , 541–553.
716 717 718 719 720	10	S. G. Batrakov, T. A. Rodionova, S. E. Esipov, N. B. Polyakov, V. I. Sheichenko, N. V Shekhovtsova, S. M. Lukin, N. S. Panikov and Y. A. Nikolaev, <i>Biochim. Biophys. Acta - Mol. Cell Biol. Lipids</i> , 2003, 1634 , 107–115.

ARTICLE

721	11	M. M. Yakimov, K. N. Timmis, V. Wray and H. L.
722		Fredrickson, Appl. Environ. Microbiol., 1995, 61,
723		1706–1713.

- 72412I. Latorre, S. Hwang and R. Montalvo-Rodriguez, J.725Environ. Sci. Health. A. Tox. Hazard. Subst. Environ.726Eng., 2012, 47, 2254–62.
- 727
 13
 D. Konz, S. Doekel and M. A. Marahiel, J.

 728
 Bacteriol., 1999, 181, 133–140.
- 729
 14
 P. K. Roy, S. Titus, P. Surekha, E. Tulsi, C.

 730
 Deshmukh and C. Rajagopal, *Polym. Degrad. Stab.*,

 731
 2008, 93, 1917–1922.
- 732
 15
 P. Roy, P. Surekha, C. Rajagopal, S. Chatterjee and

 733
 V. Choudhary, *Polym. Degrad. Stab.*, 2007, 92,

 734
 1151–1160.
- 73516M. Sudhakar, M. Doble, P. S. Murthy and R.736Venkatesan, Int. Biodeterior. Biodegradation, 2008,73761, 203–213.
- 738
 17
 C. Naddeo, L. Guadagno and V. Vittoria, 2004, 85, 1009–1013.
- 74018A. Esmaeili, A. A. Pourbabaee, H. A. Alikhani, F.741Shabani and E. Esmaeili, 2013, 8.
- 742
 19
 A. K. Singh and S. S. Cameotra, *Environ. Sci. Pollut.*

 743
 Res., 2013, 20, 7367–7376.
- 744 20 T. Ojeda, A. Freitas, K. Birck, E. Dalmolin, R.
 745 Jacques, F. Bento and F. Camargo, *Polym. Degrad.*746 *Stab.*, 2011, 96, 703–707.
- 747
 21
 Y.-C. Hsu, M. P. Weir, R. W. Truss, C. J. Garvey, T.

 748
 M. Nicholson and P. J. Halley, *Polymer (Guildf).*,

 749
 2012, 53, 2385–2393.
- 750
 22
 F. Khabbaz, A. Albertsson and S. Karlsson, *Polym.*

 751
 Degrad. Stab., 1999, **63**, 127–138.
- 752
 23
 A. Esmaeili, A. A. Pourbabaee, H. A. Alikhani, F.

 753
 Shabani and L. Kumar, *Bioremediat. J.*, 2014, 18, 213–226.
- 755
 24
 S. Bonhomme, A. Cuer, A.-M. Delort, J. Lemaire, M.

 756
 Sancelme and G. Scott, *Polym. Degrad. Stab.*, 2003,

 757
 81, 441–452.
- 758
 25
 A.-C. Albertsson and S. Karlsson, *Prog. Polym. Sci.*,

 759
 1990, 15, 177–192.
- 760
 26
 S. Karlsson and A. Albertsson, *Polym. Eng. Sci.*,
 761
 1998, 38, 1251–1253.
- 762
 27
 M. S. Dopico-García, J. M. López-Vilariñó and M. V.

 763
 González-Rodríguez, J. Agric. Food Chem., 2007, 55,

 764
 3225–3231.

765

Journal Name