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Identification of different states in cancer is of vital importance for cancer treatment and management. A powerful 

diagnostic algorithm based on Lasso-partial least squares-discriminant analysis (Lasso-PLS-DA) was developed here for 

improving blood surface-enhanced Raman spectroscopy (SERS) analysis, with the aim to classify different states in 

nasopharyngeal cancer (NPC). A total of 160 blood plasma samples were collected for this study, obtained from 60 normal 

volunteers, 25 T1 stage cancer and 75 T2–T4 stages cancer patients. Results show that a diagnostic sensitivity of 68% and a 

specificity of 84.0% can be achieved for separating T2-T4 stage from T1 stage cancer, which had a 20% improvement in 

diagnostic specificity compared with the previous work. This exploratory study demonstrates that the Lasso-PLS-DA can be 

integrated with blood SERS analysis as a promising clinical complement for different T stages detection in NPC.

1 Introduction 

Early detection and accurate identification of different stages for 

cancer is crucial to improving patients’ survival by making proper 

treatment strategy. In the past decades, several optical spectroscopic 

technologies have been comprehensively explored for non-invasive 

and objective cancer detection, mainly including infrared, 

fluorescent and Raman spectroscopy (RS)  1, 2. In particular, RS is 

capable of probing ‘fingerprints’ information of specific 

biomolecular showing promising application for cancer diagnosis3-6. 

Specifically, the advent of surface-enhanced Raman spectroscopy 

(SERS) has further extended the biomedical application of 

conventional RS7-9, as the Raman signals can be dramatically 

enhanced to enable single molecule detection by exploiting the 

interaction between the analytes of interest and metal nanoparticles 

(NPs) surface 10-11. Compared with infrared and fluorescent 

spectroscopy technologies, SERS holds significant advantages in 

minimal photobleaching, minimal background signal from aqueous 

samples, and multiplexing capabilities under a single excitation light. 

With the ability to explore extremely subtle changes of biomolecular 

content and structure associated with cancer transformation, SERS 

has recently attracted increasing attentions as a potential tool for 

cancer screening. For instance, Wang et al. reported a specific and 

sensitive methodology using epidermal growth factor-SERS 

nanoparticles that can rapidly detect circulating tumor cells in 

peripheral blood specimens from patients with squamous cell 

carcinoma of the head and neck 12. Additionally, a novel method 

based on SERS for human saliva analysis has been investigated for 

non-invasive nasopharyngeal and lung cancer detection 13, 14. 

It should be noted that each raw Raman spectrum obtained from 

biological sample usually contains high dimension of the spectral 

space such as intensity variables, which will result in computational 

complexity and inefficiency in extracting the most diagnostically 

significant information. Besides, the Raman spectra belong to similar 

subjects are commonly similar, making it a challenge to differentiate 

them sensitively with simplistic band feature analysis. These main 

limitations will hinder further clinical applications of Raman 

spectroscopy in medical diagnosis. Numerous developments in 

multivariate analysis including principal component analysis (PCA), 

linear discriminant analysis (LDA), partial least-squares regression 

(PLS), artificial neural networks (ANNs), support vector machines 

(SVM) and genetic algorithm (GA), within the past decade have 

enabled significant progress of RS and other technologies in 

biomedical detection 
1, 15-19

. For example, Huang et al. demonstrated 

the ability to identify dysplasia from normal gastric muscosa tissue 

using RS in conjunction with PCA-LDA 4. Similar diagnostic 

algorithm was also used for cell and blood identification based on 

Raman spectra for cancer detection 20, 21. Most previous researches 

focused on discriminate cancer from normal subjects using Raman 

method with multivariate analysis, however there is few study on 

identification of different cancer stages, which is of great importance 

for cancer treatment and management. Very recently, we have 

evaluated the feasibility of a label-free method based on blood 

plasma SERS with PCA-LDA for exploring variability of different 

tumor (T) stages in nasopharyngeal cancer (NPC) 22. This 
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preliminary study showed high diagnostic accuracies of 83.5% and 

93.3%, respectively, can be achieved for classification of T1 stage 

cancer and normal, and T2–T4 stage cancer and normal blood 

groups. However, the diagnostic accuracy is only 63.0% for 

classification of T1 stage cancer and T2–T4 stage cancer. Thus, the 

development of a more powerful diagnostic algorithm that could 

identify Raman spectra belong to different NPC stages would be of 

significant clinical value during blood SERS analysis. 

In this work, a robust multivariate statistical method based on 

Lasso-partial least squares-discriminant analysis (Lasso-PLS-DA) 

was employed to develop efficient diagnostic algorithm for 

classification of SERS spectra between blood samples from different 

NPC stages.  

 

2 Material and Methods 

2.1 Preparation of Au Colloids and Human Blood Plasma 

Samples 

The stable Au colloid solutions used for SERS were prepared 

following the protocol reported by Grabar et. al. 
23

 The obtained NPs 

of Au colloid follow a normal distribution with a mean diameter of 

43 nm and standard deviation of 5 nm. A total of 160 blood plasma 

samples were collected in this study, from 60 normal volunteers, 25 

T1 stage cancer and 75 T2–T4 stages cancer patients. After 12 hours 

of overnight fasting, a single 3 mL blood samples were collected 

from the study subjects between 7:00–8:00 A.M. with the use of 

EDTA anticoagulant. This study was performed in compliance with 

the relevant laws and institutional guidelines, and was approved by 

ethical committee of Fujian provincial cancer hospital. In addition, 

the informed consent was obtained from all subjects. Finally, a drop 

of plasma-Au NPs mixture (20 µL blood plasma and 20 µL Au 

colloid) was transferred onto a rectangle aluminum plate for SERS 

measurement. More detail information has been described in our 

previous paper 22. 

 

2.2 SERS Measurement 

In brief, a Renishaw Raman micro-spectrometer (Great Britain) was 

employed for blood plasma SERS measurement using a 785 nm 

laser excitation source. The system acquires SERS spectra in the 

wavelength region of 400–1750 cm-1, and each spectrum was 

acquired within 10 s integration time and with ×20 objective (NA = 

0.4). The spectral resolution of the system is 2 cm-1. The software 

package WIRE 2.0 was used for spectral acquisition and analysis. 

 

2.3 Data Processing 

Least absolute shrinkage and selection operator 

Lasso is fundamentally based on the familiar expression for multiple 

linear regression, which is of the form: 

0 1 1 2 2 n nY= + X + X + + Xβ β β βK  

Where Y is a combination of the parameters, β0 is the regression 

coefficient for the residual and the βi values are the regression 

coefficients (for predictor variables 1 through n) computed from the 

data. The data X is highly correlated in a multi-dimensional space 

(wavelength bins). Different group of statistical methods can be used 

to shrinkage regression in different ways. 

Lasso regression is a regularization technique by reducing the 

number of predictors in a regression model. It uses the original data 

matrix X to constrain the values of the correlation coefficients values 

of the multiple linear regression. It produces shrinkage estimates 

with potentially lower predictive errors than ordinary least squares 

(the model parameter of lasso should be adaptively chosen to 

minimize an estimate of expected prediction error.). Under this 

constraint, the model weighs the importance of each channel for 

prediction, and unimportant channels are driven to β values equal to 

0 by the optimization process. The formulae of Lasso is expressed as 
24:  

2

0

1 1 1

ˆ arg min ( )  subject to 
p pN

lasso

i ij j j

i j j

y x tββ β β β
= = =

= − − ≤∑ ∑ ∑  

Where, ˆ lassoβ  represent the estimated coefficient, arg minβ is the 

vector β with minimal mean squared error, N is the number of 

observations, xij is data, a vector of p values at observation ij, yi is the 

response at observation i, the parameters β0 and βj are scalar and p-

vector respectively. 

In general, the advantage of Lasso is to drive the parameters to 

zero deselects the features from the regression. Thus, Lasso 

automatically selects more relevant features and discards the others 

in an iterative process. This advantage also has the effect of making 

the Lasso robust restrain noise. A sparser model with smaller 

number of non-zero coefficient (called β values) could be produced 

by Lasso model most significantly. 

After obtaining the useful spectral variables using the Lasso, we 

noticed that not all of the useful variables were distributed in each 

SERS bands, and some bands had more useful variables than others. 

In order to avoid the uncertainty of prediction result due to the 

interference part variables by the noise, we choose some integral 

SERS spectral ranges which contain one or more useful spectral 

variables to establish further prediction model. PLS-DA is employed 

to classify the cancer stages detection based on the spectral bands 

selected above in this study. Two block regression is made by the 

PLS. Firstly, the dependent block (X) can predict the independent 

block (Y). The Y block represents the class labels and each X block 

represents each spectrum. PLS-DA integrates the basic principle of 

PCA, and maximizes the covariance between group affinity and 

spectral variation in order to rotate the components further. 

Therefore, the diagnostically relevant variation could be explained 

by the PLS components. However, the number of model components 

causes the complexity of the PLS-DA model. The performance of 

the PLS-DA is measured by comparing the root mean square error in 
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prediction (RMSEP) of the model proposed by PLS-DA with the 

RMSEP of the model containing all the variables. 

RMSEP is defined as  

2

1

ˆ( )

RMSEP

N

i i

i

y y

N

=

−

=
∑

 

Where, N is the number of objects in the evaluation set. Due to 

overfitting, an external validation set is used to avoid overoptimistic 

results. Moreover, it often does not allow us to perform statistical 

tests on the significance of the difference in RMSEPs for the limited 

size. The prediction results based on Lasso-PLS-DA with RMSEP 

analysis are always better than that using complex full-spectrum 

model based on PLS-DA with RMSEP. 

 

3 Results and Discussion 

Using Au-NPs as substrate, we have successfully acquired blood 

plasma SERS spectra from 160 subjects. In these samples, 60 were 

histopathological normal and 100 were NPC. According to TNM 

classification, 25 cancers were of T1 stage and 75 T2–T4 stages. The 

fluorescence background of the original SERS data was removed 

using a modified multi-polynomial fitting algorithm 25, then each 

spectrum was normalized by the integrated area under the curve, and 

after that the whole normalized SERS data sets were fed into Matlab 

for analysis. All the analysis method was coded and run in Matlab 

(MATLAB R2013b, MathWorks, Natick, MA, US). 

 

Fig. 1 The selection variables of SERS bands using Lasso algorithm. 

The black arrows show nine significant bands selected by Lasso 

algorithm. Two integral SERS spectral ranges (550-585 and 1435-

1730 cm-1) which contain more useful spectral variables are marked 

by the cyan shadow area. 

 

The Lasso algorithm with Leave-one-out cross-validation 

(LOOCV) was employed to seek the significant SERS spectral 

features that were immediately bound up with different stage cancer 

pathologies firstly. The latter convention was used as the Lasso’s 

model parameter in this paper because this parameter can contact to 

the useful features more intuitively and directly than others. In 

LOOCV, one cancer sample (i.e., one spectrum) was taken out from 

all of these 100 cancer samples, and then the rest of blood spectra 

were used to reconstruct by the Lasso algorithm for classifying the 

selected spectrum. This procedure was iterated until all withheld 

cancer sample were classified 4. The features for SERS spectrum 

obtained by Lasso algorithm were shown in Fig. 1. Both LOOCV 

and 10-fold cross-validation got the same nine significant band 

regions of spectral variables. Nine significant band regions of 

spectral variables (483-487, 562-566, 573-577, 704-708, 1011-1015, 

1388-1392, 1445-1449, 1561-1565 and 1702-1706 cm-1) were 

selected from the SERS band regions. Two integral SERS spectral 

ranges (550-585 and 1435-1730 cm-1) which contain more useful 

spectral variables were also marked by the cyan shadow area. 

According to previous literatures 22, the selected spectral ranges were 

possibly related to DNA/RNA bases and Amide I. It can be seen that 

the spectral features (band positions, intensities and bandwidths) of 

the two regions between T1 and T2-T4 cancer plasma are very 

similar, whereas some significantly diagnostic variables can be 

extracted by Lasso algorithm from them. The reason may be that 

cancer belongs to part of a widely accepted multistep, continuum 

progression cascade from normal to cancer, and it suggests subtle 

and vague molecular distinction, making it a challenge to identify 

different cancer stages by simplistic spectral features analysis. This 

result confirms a potential role of the proposed method based on 

Lasso algorithm for classification of different cancer stages. 

Similarly, Huang et al. applied genetic algorithm to select significant 

spectral variables from the Raman band regions for providing 

clinically discrimination between normal and precancer cervical 

tissues 15. Different from their work, the selected spectral range in 

this work is wider aim to avoid interference to variables from the 

noise. 

 

Fig. 2 Root mean standard error of prediction (RMSEP) as a 

function of the number of variables.
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Fig. 3 Receiver operating characteristic (ROC) curves of 

discrimination results for different T stages of NPC generated from 

Lasso-PLS-DA, PLS-DA and PCA-LDA with leave-one-out cross-

validation algorithms. The integrated areas under the ROC curves 

(AUC) for Lasso-PLS-DA, PLS-DA and PCA-LDA are 0.812, 0.683 

and 0.631. 

 

The PLS-DA model was then further used for the selected 

SERS band regions. The optimum number of variables was 

determined with leave-one-out cross-validation using root mean 

standard error method. Fig. 2 represents that the number of variables 

was generated by RMSEP. The minimum value for the optimum 

number of variables was showed in RMSEP, and due to overfitting it 

raises with the increasing number of variables. To assess the 

predictive accuracy of the Lasso-PLS-DA based diagnostic 

algorithms, the receiver operating characteristic (ROC) curve (Fig. 

3) was produced. The ROC curves for Lasso-PLS-DA was generated 

by calculate the selected two spectral ranges, with the integration 

area under the ROC curve (AUC) of 0.812 (the optimum number of 

components was 10). The ROC curve for PLS-DA and PCA-LDA 

by calculate the full-spectrums was 0.683 (the optimum components 

= 4), and 0.631 (the optimum components = 4), respectively. It was 

found that the Lasso-PLS-DA algorithm was capable of achieving 

greater efficiency in comparison to conventional algorithm based on 

PLS-DA and PCA-LDA. This is explainable. Using the full-

spectrum variables, the diagnostic efficiency of PLS-DA and PCA-

LDA may be interfered by non-significant variables and noise. For 

Lasso-PLS-DA, spectral regions including the selected most 

significant spectral variables, were employed as an optimal input for 

further PLS-DA, allowing a reliable way to solve these limitations. 

Posterior probability values were also used to predict the response 

(Fig. 4). The posterior probability scatter plot yielded a diagnostic 

sensitivity of 68% (51/75) and a specificity of 84.0% (21/25) for 

separating T2-T4 stage from T1 stage cancer with a threshold line, 

which had a remarkable improvement compared with the previous 

work (a sensitivity of 62.7% (47/75) and a specificity of 64.0% 

(16/25)) 22. Excitingly, the diagnostic specificity was increased by 

20% in this work. From the result above, we can find that the Lasso-

PLS-DA algorithm renders a powerful way to identify different 

stages cancer by developing a classification model from the 

significant Raman features. 

 

Fig. 4 Scatter plot of the posterior probability values for different 

stages cancer using the Lasso-PLS-DA with the leave-one-out, 

cross-validation. The separate line provides a diagnostic sensitivity 

of 68% (51/75) and a specificity of 84.0% (21/25) for discriminating 

T2-T4 stage from T1 stage cancer. 

 

We also calculated the ROC curves of discrimination results for 

normal and cancer (Table 1). The results using PLS-DA and PCA-

LDA with leave-one-out cross-validation for full-Spectrum were 

0.931 and 0.919, whereas the result was 0.930 using Lasso-PLS-DA. 

Results indicate that the Lasso-PLS-DA used to efficiently 

distinguish different NPC stages is also can be used to 

distinguish normal and cancer groups.  
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Table 1 Classification results of SERS prediction using Lasso-PLS-DA, PLS-DA and PCA-LDA together with the leave-one-out, cross-

validation. 

Diagnostic combinations 

The integration area under the ROC curve 

Lasso-PLS-DA PLS-DA PCA-LDA 

T1 stage vs. T2-T4 stage Cancer 0.812 0.683 0.631 

Normal vs. Cancer 0.930 0.931 0.919 

 

4 Conclusions 

In summary, a powerful diagnostic method based on SERS 

combined with Lasso-PLS-DA algorithm was developed for 

differentiating blood plasma obtained from NPC patients in different 

states. Lasso algorithm is capable of extracting some significantly 

diagnostic variables for classify the SERS spectra which have 

similar spectral features. Further, these valuable variables can be 

used for determining some SERS spectral ranges in order to avoid 

interferences to the variables from the noise. Thus, Lasso algorithm 

is suitable and reliable for evaluation of SERS spectra. Besides, 

results shows the diagnostic efficiency can be significantly increased 

by Lasso-PLS-DA in comparison to conventional algorithm based 

on PLS-DA and PCA-LDA, demonstrating that plasma SERS 

analysis with Lasso-PLS-DA algorithms has great potential to be a 

clinical complement for NPC detection, especially for the 

classification of different tumor stages. Our next step is to conduct 

more detailed prospective studies and obtain more data set to verify 

the novelty and reliability of this potential diagnostic algorithm. 

Acknowledgements 

This work was supported by the Program for Changjiang Scholars 

and Innovative Research Team in University (IRT15R10), and the 

National Natural Science Foundation of China (Grant Nos. 

61575043, 61178090, 61210016, 81101110 and 61405036). 

References 
1. C. Krafft, G. Steiner, C. Beleites and R. Salzer, J. Biophotonics, 

2009, 2, 13-28. 

2. J. Hegyi, V. Hegyi, T. Ruzicka, P. Arenberger and C. Berking, 

JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 

2011, 9, 368-372. 

3. Q. Tu and C. Chang, Nanomedicine, 2012, 8, 545-558. 

4. S. Teh, W. Zheng, K. Ho, M. Teh, K. Yeoh and Z. Huang, Br. J. 

Cancer, 2008, 98, 457-465. 

5. H. J. Lee, W. Zhang, D. Zhang, Y. Yang, B. Liu, E. L. Barker, K. 

K. Buhman, L. V. Slipchenko, M. Dai and J.-X. Cheng, Sci Rep, 

2015, 5, 7930. 

6. E. Brauchle, S. Thude, S. Y. Brucker and K. Schenke-Layland, 

Sci rep, 2014, 4, 4698. 

7. D. Zhu, Z. Wang, S. Zong, H. Chen, P. Chen and Y. Cui, RSC 

Adv, 2014, 4, 60936-60942. 

8. J. Wang, R. Liu, C. Zhang, G. Han, J. Zhao, B. Liu, C. Jiang and 

Z. Zhang, RSC Adv, 2015, 5, 86803-86810. 

9. D. Pissuwan, A. Hobro, N. Pavillon and N. Smith, RSC Adv, 

2014, 4, 5536-5541. 

10. L. Ou, Y. Chen, Y. Su, Y. Huang, R. Chen and J. Lei, J. Raman 

Spectrosc., 2013, 44, 680-685. 

11. J. Lin, Z. Huang, S. Feng, J. Lin, N. Liu, J. Wang, L. Li, Y. Zeng, 

B. Li and H. Zeng, J. Raman Spectrosc., 2014, 45, 884-889. 

12. X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. 

Lewis, H. J. C. Shin, S. Nie and D. M. Shin, Cancer Res., 2011, 

71, 1526-1532. 

13. S. Feng, D. Lin, J. Lin, Z. Huang, G. Chen, Y. Li, S. Huang, J. 

Zhao, R. Chen and H. Zeng, Appl. Phys. Lett., 2014, 104, 

073702. 

14. X. Li, T. Yang and J. Lin, J. Biomed. Opt., 2012, 17, 0370031-

0370035. 

15. S. Duraipandian, W. Zheng, J. Ng, J. J. Low, A. Ilancheran and Z. 

Huang, Analyst, 2011, 136, 4328-4336. 

16. V. L. Tsang, A. X. Wang, H. Yusuf-Makagiansar and T. Ryll, 

Biotechnol. Prog., 2014, 30, 152-160. 

17. H. Kuang, Y. Xia, J. Liang, B. Yang, Q. Wang and Y. Sun, 

Carbohydr. Polym., 2011, 84, 1258-1266. 

18. J. A. Etzel, N. Valchev and C. Keysers, Neuroimage, 2011, 54, 

1159-1167. 

19. M. Z. Martin, M. A. Mayes, K. R. Heal, D. J. Brice and S. D. 

Wullschleger, "Spectrochim. Acta, Part B ", 2013, 87, 100-107. 

20. J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano 

and T. Huser, Anal. Chem., 2008, 80, 2180-2187. 

21. S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. 

Huang, J. Chen and H. Zeng, Biosens. Bioelectron., 2010, 25, 

2414-2419. 

22. D. Lin, J. Pan, H. Huang, G. Chen, S. Qiu, H. Shi, W. Chen, Y. 

Yu, S. Feng and R. Chen, Sci rep, 2014, 4, 4751. 

23. K. C. Grabar, R. G. Freeman, M. B. Hommer and M. J. Natan, 

Anal. Chem., 1995, 67, 735-743. 

24. T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, J. Friedman and 

R. Tibshirani, The elements of statistical learning, Springer, 

Page 5 of 7 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Journal Name 

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

2009. 

25. Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam and H. 

Zeng, Int. J. Cancer, 2003, 107, 1047-1052. 

 
 

Page 6 of 7RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



  

 

 

 

21x10mm (300 x 300 DPI)  

 

 

Page 7 of 7 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t


