This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Revisit of the Oxidation Peak in the Cathodic Scan of Cyclic Voltammogram of Alcohol Oxidation on Noble Metal Electrodes

Yangzhi Zhao, Xuemin Li, Joshua M. Schechter, and Yongan Yang*

This work reports straightforward, intuitive, and convincing evidence to elucidate the origin of the oxidation peak in the cathodic scan of cyclic voltammogram of alcohol oxidation on noble metal electrodes. Consequently, three new indicators are also proposed for assessing the electrocatalytic performance of electrodes.

TOC Figure: The origin of the oxidation peak in the cathodic scan of alcohol oxidation is elucidated with suggestion of new performance indicators.

Keywords: Alcohol Oxidation / Fuel Cells / Electro catalysis / Cyclic Voltammogram / Performance Indicator

1. Introduction

Direct alcohol fuel cells (DAFCs), which “burn” alcohols (such as methanol CH$_3$OH) at ambient temperatures to generate electricity, are important energy conversion and storage devices for clean and sustainable technologies.$^{1-5}$ The electrooxidation of alcohols relies on the catalytic effect of anodes, which are predominantly noble metals and their alloys.3 In acidic solutions, platinum (Pt) is the most efficient electrocatalyst among all monometallic electrodes.3 In alkaline solutions, palladium (Pd) turns out to be the most efficient one.3 Being consistent with the fact that the alcoholic electrooxidation is a multi-electron reaction, a variety of carbonaceous chemicals have been identified as intermediates, among which carbon monoxide (CO) is widely believed to strongly adsorb on the electrode surface and impair the catalytic performance due to the poisoning effect.6,7 The seriousness of the CO poisoning has long been indexed by an oxidation peak in the cathodic scan of the cyclic voltammogram (CV).6,8 More specifically, the intensity ratio (J$_f$/J$_b$) of the peak current in the anodic (forward) scan (J$_f$) versus that in the cathodic (backward) scan (J$_b$) is used to describe the “CO-tolerance”.6 the higher the value, the better the tolerance.$^9-17$ This criterion is generally attributed to a paper published in 1992.6 The conjecture was based on 1) an assumption that the anodic current beyond the methanol oxidation peak J$_f$ result from oxidation of surface-adsorbed CO to CO$_2$.6 and 2) a fact that J$_b$ weakened when the anodic switching potential in the CV was increased.6,9 Later on, the CO adsorption on electrode surfaces was confirmed by spectroscopic measurements;7,9 since then, the “J$_f$/J$_b$” criterion for indexing the “CO-tolerance” has been widely used in the literature for alcohol fuel cells and referred to for searching high-performance electrocatalysts.$^9-21$

In 2012, Tong et al. published a pioneering article to question the validity of this criterion for methanol oxidation on Pt/C and PtRu/C electrodes in acidic solutions.22 By using in-situ surface enhanced infrared spectroscopy, they observed that both J$_f$ and J$_b$ presented opposite correlations with the amount of methanol (but not CO) adsorbed on electrode surfaces.22 The observed correlations underlay the conclusion that both oxidation peaks originated from
the oxidation of surface-adsorbed methanol and the peak intensity ratio was an inadequate parameter to gauge CO-tolerance.23–27 However, to date, this opinion has not been well adopted in the community;23–28 the vast majority of subsequent publications still embrace the old opinion.10,14,18,55,56 Some papers quoted both opinions without preference.35–38 Thus, further clarification on this question is needed.

Herein we provide simple, intuitive, and convincing evidence to clarify the origin of \(J_b \) by revealing the cause-and-effect relationship straightforwardly on the basis of adding alcohol only during the cathodic scan (Fig. 1). That is, the apparent \(J_b \) is the net current of fresh alcohols’ oxidation (\(J_b' \)) triggered and counteracted by the reduction of catalyst oxides (\(J_{MOX,2M} \)), because 1) the peak potential \(E_b \) emerges right after \(E_{MOX,2M} \) and shifts correspondingly when \(E_{MOX,2M} \) changes; 2) \(J_b \) is strongly dependent on \(J_{MOX,2M} \); essentially with \(J_b = J_b + J_{MOX,2M} \); and 3) the occurrence of \(J_b \) needs the alcohol to be present only before \(E_{MOX,2M} \) during the cathodic scan, where it is impossible to generate CO. Thus, opposite to the conventional criterion, a higher ratio of \(J_b/J_f \) is believed to index higher reactivation efficiency, which could actually be more desirable for an electrocatalyst. Additionally, we also propose two other performance indicators to index the activity of a given catalyst, that is, the intensive activity and the extensive activity.

Fig. 1. Typical cyclic voltammograms to study the origin of \(J_b \) by adding alcohol during the potential window indicated.

2. Experimental Section

Chemicals: Pd wire (4N, 0.5 mm in diameter), Au wire (4N, 0.5 mm in diameter), and Pt wire (4N, 0.5 mm in diameter) were purchased from ESP Metals. Sodium hydroxide (NaOH, 99%, Mallinckrodt), methanol (CH\(_3\)OH, Pharmco-AAPER, ACS reagent), ethanol (CH\(_3\)CH\(_2\)OH, Pharmco-AAPER, ACS reagent), and perchloric acid (HClO\(_4\), 70%) were purchased from Fisher. Pure water (18.2 M\(\Omega \) cm\(^{-2}\)) was from a Barnstead water purification system.

Data Collection: All electrochemical data were collected by using a conventional three-electrode cell controlled by a Reference 600 electrochemical workstation (Gamry Instruments, Inc., USA). The working electrode was a Pd (Au, or Pt) wire with only 5 mm in length exposed in the electrolyte solution; the counter electrode was a Pt wire; and the reference electrode was a saturated calomel electrode (SCE), relying on which the potential versus standard hydrogen electrode (SHE) was calculated. Before being presented in figures, all potentials in the Pd system were further corrected by the IR drop compensation, where \(R \) (the solution resistance) was determined via electrochemical impedance spectroscopy (EIS). The EIS was conducted at -0.34 V vs SHE, by applying an alternating voltage of 5 mV in the frequency range of 100 kHz to 10 mHz. As indicated respectively in the manuscript, the electrolyte solution was 0.5 M NaOH, 0.5 M NaOH + 1.0 M CH\(_3\)OH, 0.5 M NaOH + 1.0 M CH\(_3\)CH\(_2\)OH, or 0.1 M HClO\(_4\) + 1.0 M CH\(_3\)OH. Before the measurement, the electrolyte solution was deaerated by argon for 15-20 mins and maintained with a slight overpressure afterwards. All cyclic voltammograms (CVs) were collected at the potential scan rate of 20 mV/s.

3. Results and Discussion

The Origin of the Referred Oxidation Peak: We initiated our study from observing methanol oxidation on a polycrystalline Pd electrode in alkaline solutions. Fig. 2A shows a typical CV of methanol oxidation on Pd in 0.5 M NaOH + 1.0 M CH\(_3\)OH, featured with a large \(J_f \) and a small \(J_b \). Compared with the CV taken from 0.5 M NaOH without CH\(_3\)OH (Fig. 2B), two interesting features can be noticed: 1) the anodic current at the potential beyond \(J_f \) decreases to virtually zero, which can be assigned to the loss of activity induced by the oxidation of Pd; 2) the onset (peak) potential of \(J_f \) in Fig. 2A nicely matches the onset (peak) potential of \(J_{PdOx,4Pd} \) in Fig. 2B. From this observation, we hypothesize that the oxidation peak \(J_f \) originates from but not merely the oxidation of fresh methanol, and that the trigger is the reactivation of the previously deactivated electrode surface via reduction of PdO\(_x\).

To prove the hypothesis, we conducted two experiments to monitor their CVs before and after the addition of methanol into the electrolyte solution. In the first case (Fig. 2C), one cycle of CV was first collected in 0.5 M NaOH to confirm the normal behavior of Pd as in Fig. 2B. Then, after the second anodic scan (line 1), the solution was quickly converted to 0.5 M NaOH + 1.0 M CH\(_3\)OH by adding an equal volume of 0.5 M NaOH + 2.0 M CH\(_3\)OH into the electrochemical cell. During the potential window of adding methanol (line 2, as indicated), there is no generation of CO from the oxidation of methanol within the instrument sensitivity, because the corresponding current is actually zero. Once the potential reached the onset of \(J_{PdOx,4Pd} \) (~0.03 V), an oxidation wave burst and peaked at ~0.10 V (line 2), exactly as in Fig. 2A. In the subsequent cycles (lines 3 and 4) the J - E profiles are virtually identical and both are well consistent with that in Fig. 2A. The complete scenario of the CVs before and after the methanol addition is shown in ESI-Fig. 1. In the second case (Fig. 2D), methanol was not added until the \(J_{PdOx,4Pd} \) peak emerged half way; the cathodic current was immediately reversed into an anodic current.

Fig. 2. Study on the origin of the oxidation peak (\(J_f \)) in the cathodic scan of CV of methanol oxidation on Pd, by preparing the electrolyte solutions with the origin of the oxidation peak (\(J_f \)) in the cathodic scan of CV of methanol oxidation on Pd, by preparing the electrolyte solutions
in different ways. (A) The premade solution of 0.5 M NaOH + 1.0 M CH₃OH; (B) the premade solution of 0.5 M NaOH; (C) the online made solution of 0.5 M NaOH + 1.0 M CH₃OH by adding 10.0 mL of 2.0 M CH₃OH/0.5M NaOH into 10.0 mL of 0.5M NaOH solution during the indicated potential window; and (D) the online made solution of 0.5 M NaOH + 1.0 M CH₃OH by adding 10.0 mL of 2.0 M CH₃OH/0.5M NaOH into 10.0 mL of 0.5M NaOH solution at the indicated potential.

These results clearly suggest that: 1) J_pdox_pdl triggers the occurrence of J_b; 2) the oxidation of CH₃OH but not of CO is responsible for J_b; 3) the pure oxidation current of fresh CH₃OH (J_p in ESI-Fig. 2A) is larger than the apparent current J_b, essentially J_b = J_p + J_pdox_pdl; 4) the J_pdox_pdl process is not actually suppressed by the J_p process, but just concealed in the CV; and 5) the oxidized surface is not capable of oxidizing CH₃OH, as supported by the zero anodic current beyond 0.36 V in the anodic scan and between 0.66 V and 0.0 V in the cathodic scan. The last point is also further supported by the fact that there is no oxidation current in the anodic scan even if switching the cathodic potential before the occurrence of J_pdox_pdl (ESI-Fig. 3). Further evidence to support the first four points would be to study the direct electrooxidation of CO. Coincidently, Mata-Lima et al. have reported recently that the J_pdox_pdl profile during the repeated CV scans showed no change when the solution was saturated with CO, which suggested no oxidation of CO in the cathodic scan and its irrelevance to J_b in the presence of CH₃OH. This supports our conclusions above. While some correlation between J_pdox_pdl and J_b was proposed by several researchers before explicit evidence and quantitative analysis of the trigger-consequence relationship were not provided. When studying the oxidation of formic acid in acidic solutions, Conway et al. proposed that the observed J_b resulted from an autocatalytic reduction of Pd oxide by formic acid or CO. Thus, the evidence we have presented is convincing and original to prove our hypothesis and elucidate the origin of J_b. Nevertheless, please note that our conclusions here do not conflict with the generation and tolerance of CO during the forward scan, as demonstrated many times in the literature. Also, we do not mean that there is absolutely no component of CO oxidation in J_b during the repeated CV scans in the presence of CH₃OH, but rather we believe that the CO contribution (if any at all) would be below the instrumental detection limit. The CO generated during the forward scan must have been essentially desorbed from the oxidized electrode surface before the potential reaches E_pdox_pdl. Evidently, a large J_b may not be a bad indication. It would be desirable to establish new criteria associated with J_b for searching high-performance electrocatalysts.

Performance Indicators Associated with the Referred Peak: Next, we would like to understand what more information this peak can disclose for understanding a catalyst’s performance. Three interesting questions could be asked: 1) How does this peak (in terms of peak potential and intensity) respond to the oxidation extent of Pd? 2) Is there any correlation between peak J_b (or J_p) and peak J_p to indicate the catalytic performance of Pd? 3) Can the trigger-consequence relationship be generalized to other alcohols, other catalysts, and acidic solutions?

To answer the first two questions, two series of CV experiments in both the CH₃OH-containing solution and the NaOH-only solution were conducted, by changing the switching potentials in anodic (Fig. 3) and cathodic (ESI-Fig. 4) scans, respectively. The first glance on Fig. 3A (the CH₃OH-containing solution) and Fig. 3B (the NaOH-only solution), which study the anodic switching potential (E_a), could come to the following summary: with increasing E_a (that is, the oxidation extent), E_b and E_pdox_pdl both shifted towards more negative, J_b became smaller, J_pdox_pdl grew larger; E_f stayed no shift at 0.03 V and J_f grew larger; and the hydrogen adsorption/desorption current due to water-decomposition (below -0.3 V) shrank in the presence of CH₃OH and grew larger in the absence of CH₃OH. As shown in ESI-Fig. 4 with changing the cathodic switching potential (E_c), none of the three peaks showed appreciable changes; the only change was the expected diminishing of the hydrogen adsorption/desorption current. We note that the dependence of J_b and J_pdox_pdl on E_a is not new in the literature; however, all explanations are in the context of CO-tolerance but not of J_b. A further quantitative analysis of the effect of E_c, herein is desired.

Fig. 3. Study on the effect of oxidation extent of the Pd electrode on J_b and J_f by tuning the switching potential in anodic scans (E_a = 0.66 V, 0.56 V, 0.46 V, 0.36 V, and 0.26 V). (A) CVs in 0.5 M NaOH + 1.0 M CH₃OH and (B) CVs in 0.5 M NaOH;

Fig. 4 displays the dependence of various factors on E_c. As shown in Fig. 4A, less (or more) positive E_c induces less (or more) negative E_pdox_pdl and E_b as well as larger (or smaller) potential gaps between them. Referring to the literature, the hysteresis for E_pdox_pdl can be assigned to the activation energy involved in the place exchange between Pd, OH, and O during both the oxidation and reduction processes. Fig. 4B shows that the error of using the apparent peak current J_b instead of the actual methanol oxidation current J_c might be significant for large E_c. Likewise, the difference between J_c/J_b and J_c/J_f is also obvious (Fig. 4C). The results in Figs. 4A-4C show that J_c could be more proper than J_b to index a catalyst’s performance and that fair comparisons between different catalysts (particularly across different research groups) require the same experimental conditions, such as the potential window. Since J_b is induced by and synchronizes with the E_c-dependent J_pdox_pdl, we term J_c/J_b as the reactivation efficiency to index how efficient the PdOx-derived Pd surface is, when compared with the pristine Pd surface. As reported in the literature, J_c/J_b could be bigger than one. The underlying reason is unclear at this moment and also beyond the scope of this work, it might be associated with the formation of advantageous grain boundaries; which have been observed to account for the much superior activity of the oxide-derived copper catalysts to their pristine counterparts in CO reduction. Thus, among different catalysts whose other properties are comparable, the one with higher J_c/J_b might actually be more desirable.

With the elucidation of J_b to also result from MOR, J_b needs to be included for indexing the catalytic activity. Different from the conventional style of using only J_b, we
propose using $J_b = J'_b + J_1$ and name it as the intensive activity, since current density is an intensive variable. While current density is used for calculating the power density of a fuel cell, charge density (Q) is required for calculating the energy density. Because J_b could not differentiate catalysts that have comparable peak intensities but different peak potentials, we propose a new term — extensive activity ($Q_b = Q'_b + Q_1$), to index a catalyst’s activity from a different angle than J_b. As shown in Fig. 4D, both J_b and Q_b are strongly dependent on E_1, but in opposite trends. According to J_b, the best E_1 is 0.56 V; according to Q_b, the best E_1 is 0.36 V. This means that both J_b and Q_b are needed to index the activity of a catalyst. The desirable E_1 could then be assigned to a balanced range of [0.36 V, 0.56 V], as indicated by the shadow. In addition, it is noteworthy that the peak potentials in CVs do not describe steady states but dynamic states. Thus, further studies on other properties of the J_1 and J'_b peaks are worthwhile.

![Fig. 4. The dependence of various factors on E_1. (A) E_a and E_{PdOx}. (B) J_1 and J'_b. (C) J_1 / J_b and J'/J'_b; and (D) $J_b = J'_b + J_1$ (red) and $Q_b = Q'_b + Q_1$ (blue).](image)

Then, we calculated the Tafel slopes (S_T) for J_1 and J'_b and employed the technique of differential pulse voltammetry (DPV, ESI-Scheme 1).79,98 ESI-Fig. 2 shows the J'_b profiles and the corresponding Tafel plots by fitting the linear ranges with $E = E'' = S_T \log(J/J_b)$, where E'' is the formal potential, and J_b is the exchange current density.99 ESI-Fig. 5 shows the J_1 profiles and the corresponding Tafel plots. The calculated S_T values are graphed against E_1 in Fig. 5A. In the range of 0.26 V to 0.36 V, S_T is 115 mV/dec for both J_1 and J'_b. With increasing E_1, S_T for J_1 increases gradually to 130 mV/dec, consistent with the literature value.99,100 In contrast, S_T for J'_b decreases to 89 mV/dec. The change of S_T with E_1 reflects the E_1 dependent surface properties.91,99 E'' for J_1 and J'_b are -0.22 V and -0.34V (ESI-Fig. 6A), respectively. The corresponding J_b for J'_b increases slightly in the range of 10^{-2} A/m2 to $10^{-1.5}$ A/m2 with increasing E_1, and the J_b for J'_b is around $10^{-1.72}$ A/m2 (ESI-Fig. 6B). Different values of E'' and J_b for J'_b and J_1 are due to the E_1 dependent oxidation/reduction hysteresis.91 Now we understand that a larger J'_b associated with a smaller E_1 is essentially due to a larger overpotential $\eta = E_1 - E''$ in addition to a smaller $J_{PdOx + PdP}$; despite a larger $S_T.$97 Fig. 5B shows the plot of current density versus potential measured by DPV, a technique to measure steady states and minimize the capacitive background currents.97,98 E_1 and E_0 are observed at 0.03 V and -0.11 V, respectively, which are consistent with those (0.03 V and -0.10 V) in typical CVs. In contrast, the corresponding S_T for J_1 has different values in two potential regions (ESI-Fig. 7A), that is, 170 mV/dec for [-0.15 V, -0.04 V] and 73 mV/dec for [-0.04 V, -0.01 V]. The corresponding S_T for J'_b is 67 mV/dec (ESI-Fig. 7B). The different S_T values indicate different rate determining steps involved in the MOR.101,102 Overall, this implies that CV seems less sensitive than DPV to determine S_T for multi-electron reactions. Smaller S_T and more negative E'' for J'_b, than for J_1 indicate that the oxide-derived surface generated during the cathodic scan is more active than the pristine surface in the anodic scan. On the other hand, however, smaller J'_b than J_1 could mean that the oxide-derived surface is less stable, as their overpotentials of 0.24 V ($\eta = -0.10 V - (-0.34) V$) for J'_b, and 0.25 V ($\eta = -0.03 V - (-0.22) V$) for J_1 are comparable.

![Fig. 5. (A) Tafel slopes for the J_1 and J'_b peaks in Fig. 2A; and (B) differential pulse voltammogram to determine the relationship of current density versus potential under steady states for Pd in 0.5 M NaOH + 1.0 M CH₃OH.](image)

Generalization of Our Understanding to Other Systems: Furthermore, we would like to test the generality of the trigger-consequence relationship between $J_{PdOx+PdP}$ and J_b for other systems. In the case of electrooxidation of ethanol (CH₃(CH₂)OH) on Pd in an alkaline solution (Fig. 6A), we observed the same behavior as for methanol oxidation, except that J_b occurred at a more negative potential (-0.18 V) and J_b was much larger (0.80), illustrating the high activity of Pd for ethanol oxidation as reported in the literature.13 Similar phenomenon was also observed for the electrooxidation of CH₃CH₂OH on Au (ESI-Fig. 8). In the case of electrooxidation of methanol on Pt in an acidic solution (Fig. 6B and ESI-Fig. 9)14 the trigger-consequence relationship between $J_{PdOx+PdP}$ and J_b was clearly observed as well. Moreover, as expected, J_b was observed at a more negative potential (0.65 V) than that of $J_{PdOx+PdP}$ (0.78 V). The sharp rise of the oxidation current at the methanol addition moment was due to the methanol oxidation on PtOₓ surface.22

![Fig. 6. CVs for electrooxidation of ethanol on Pd electrode in 0.5 M NaOH solution (A) and electrooxidation of methanol on Pt electrode in 0.1 M HClO₄ (B). (A) During the first cycle (lines 1 and 2) the solution is 10.0 mL of 0.5 M NaOH. In the second cycle (lines 3 and 4) 10.0 mL of 2.0 M CH₃OH/0.5 M NaOH is added during the cathodic scan as indicated. Afterwards, another anodic scan (line 5) is conducted. (B) During the first cycle (lines 1 and 2) the solution is 10.0 mL of 0.1 M HClO₄. In the second cycle (lines 3 and 4) 10.0 mL of 1.0 M CH₃OH/0.1 M HClO₄ is added during the cathodic scan as indicated. Afterwards, another cycle (lines 5 and 6) is conducted.](image)
Last, the scanning electron microscope (SEM) images in Fig. 7 show the morphologies of the polycrystalline Pd and Pt electrodes used in this work. It is noteworthy that, when using monometallic electrodes, whether the J_b peak occurs or not does not depend on the electrode morphology and feature scale, but its intensity does.1,4,14

![SEM images of polycrystalline Pd and Pt electrodes](image)

Fig. 7. SEM images of polycrystalline Pd and Pt electrodes used in this study.

3. Conclusions

In summary, we have reported clear-cut and convincing evidence to elucidate the origin of the oxidation peak (J_b) observed in the cathodic scan of cyclic voltammogram of alcohol oxidation on noble metal electrodes. This work corrects a long-held misapprehension of J_b as the oxidation of carbon monoxide and J_b (J_f is the peak current in the anodic scan) as the indicator of carbon monoxide tolerance, critically amending the previous work by Tong et al.22 In fact, the peak originates from the oxidation of fresh alcohols (J_b'), being triggered and counteracted by the reduction of electrode oxides (J_{MOx}) formed in the proceeding anodic scan. J_b essentially synchronizes with J_{MOx}-J_b does involve the oxidation of the anodically produced CO. During our preparation of this manuscript, Tong et al. further demonstrated that the CO-tolerance is totally irrelevant to the CH$_3$OH oxidation even in the forward CV scan for a PtRu electrocatalyst.103 The peak intensity ratio J_b'/J_f, which is strongly dependent on the anodic switching potential (E_s), can indicate the reactivation efficiency of a given electrocatalyst. Two other E_s dependent performance indicators are also proposed, that is, the intensive activity $J_b = J_b' + J_f$ and the extensive activity $Q_b = Q_b' + Q_f$. Thus, the same experimental conditions, particularly the potential window, are imperative for comparing different catalysts. Smaller Tafel slope (S_T), more negative formal potential (E^{∞}) and lower current intensity for J_b than for J_f indicate that the oxide-derived surface has higher activity but lower stability than the pristine surface. This work suggests new criteria and directions for searching high-performance electrocatalysts used in direct alcohol fuel cells. Intriguing questions for future studies include how the electrode morphology and interface species evolve during the CV scan and how to improve the stability of oxide-derived surfaces.

Acknowledgements

This material is based upon work supported by the Start-up Fund for YY from the Colorado School of Mines.

Notes and references

*Corresponding Author: (Researcher ID: C-2688-2011), Email: vonyang@mines.edu

† Electronic Supplementary Information (ESI) available: [More experimental details, cyclic voltammograms, Tafel plots, graphs of formal potentials and exchange currents against the switching potential in anodic scans, and cyclic voltammograms for an Au electrode]. See DOI: 10.1039/b000000x/

References