

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Catalytic Oxidation of Nitric Oxide (NO) with Carbonaceous Materials
2	Yafei Shen ^a *, Xinlei Ge ^a , Mindong Chen ^a
3 4 5 6 7	^a Jiangsu Engineering and Technology Research Center of Environmental Cleaning Materials (ECM), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
8	recimology, Nunjing 210044, China
9	*Corresponding Author
10	Email: <u>yafeisjtu@gmail.com</u> ; <u>376754097@qq.com</u> (Y. Shen);
11	
12	
13	
14	
15	
16	
17 18	
18	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29 20	
30 31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	

1 Abstract

2 The catalytic oxidation of NO to NO₂ at ambient temperatures has been a promising 3 route for controlling NO emissions, since NO_2 is subsequently removed as nitric acid 4 in the presence of water. Because of their large surface area, high porosity, and 5 relative chemical inertness, the carbon-based materials are very attractive in 6 de-nitrification ($De-NO_x$) as catalysts or catalyst supports. This paper reviewed the 7 catalytic oxidation of NO to NO_2 over the common-used carbon materials including 8 activated carbons (ACs), activated carbon fibers (ACFs) and carbon xerogels (CXs). 9 The NO conversion is often influenced by the surface characteristics of carbon 10 materials (e.g., pore structure, surface areas, functional groups, and morphology), O_2 11 concentration, and reaction temperature. With the addition of metal actives, the 12 catalytic performance could be significantly improved. Catalytic reaction and 13 adsorption are two key points. Further, the strong dependence of NO conversion on 14 the O_2 concentration concludes that O_2 is first adsorbed on the carbon surface, and 15 then it reacts with NO to form adsorbed NO_2 , which desorbs to the gas phase. 16 Considering the economic efficiency, carbon precursor from biomasses could be 17 fabricated into the desired carbonaceous materials by means of functionalization. In 18 addition, the integrated strategy of desulfurization ($De-SO_x$) and $De-NO_x$ could be 19 developed by carbon materials with the proper modification methods.

20

34

21	Keywords: NO oxidation; carbon catalysts; adsorption; nanofiber; activated char
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	

1

2 1. Introduction

3 Atmospheric contamination is one of the most significant environmental problems 4 caused by the progressive industrialization of the planet [1]. Nitrogen oxides (NO_x) 5 commonly derived from the combustion of fossil fuels or solid wastes are considered primary atmospheric pollutants, being responsible for a wide range of environmental 6 problems such as photochemical smog, acid rain, tropospheric ozone and ozone layer 7 8 depletion [2]. Furthermore, they cause serious health problems in humans [3]. Hence, 9 many great efforts have been made to develop technologies for flue gas purification. 10 As for NO_x removal, advanced flue gas treatment technologies are adopted, including 11 dry and wet techniques. The dry techniques could be classified as selective catalytic reduction (SCR) by NH₃ at 300-500 °C [4], selective non-catalytic reduction (SNCR) [5], 12 adsorption [6] and electron beam irradiation [7]. The wet techniques use scrubber 13 columns in which NO_x is absorbed by absorbent. 14

15

The most popular NO_x abatement technology is SCR with ammonia (NH₃), but this 16 17 process has several obvious drawbacks, such as high reaction temperatures (>300°C) 18 and un-reacted reducing agents [8]. Besides, typical NO_x emissions from combustion processes contain significantly more NO than NO₂, and the inclusion of NO oxidation 19 20 step prior to the SCR process is useful for increasing SCR rates of reaction [9]. Thus, the catalytic oxidation of NO to NO_2 at ambient temperatures has been a promising 21 22 route for controlling NO emissions, since NO₂ is subsequently removed as nitric acid 23 in the presence of water [10-13]. The NO_2 absorption efficiencies can reach as high as 24 100% in water or basic solutions [14-17]. Consequently, oxidation of NO into NO₂ at 25 lower temperatures (e.g., room temperature) has been a prospective high-efficiency 26 step for the removal of NO. In particular, it is practicable to remove NO at ambient 27 temperature in the presence of water vapor, thus much attention has been paid to the oxidation of NO into NO_2 [18-20]. 28

29

30 NO oxidation is thermodynamically favorable below 200 °C, but kinetically limited

RSC Advances Accepted Manuscript

1 [21]. Oxidation strategies consist of homogeneous catalysis with oxidizing additives, 2 and heterogeneous catalysis with unsupported metal oxides or supported catalysts 3 [21-23]. Homogeneous gas-phase NO oxidation is unusual in that the reaction rate increases with the decrease of temperature from 273 to 600 K, resulting in a small 4 5 but negative activation energy [24]. These techniques are generally effective, but the costs resulting from the use and potential release of hazardous chemicals, catalyst 6 deactivation due to SO₂ poisoning, and thermodynamic limitations associated with 7 8 necessarily high temperatures inhibit their application. Low temperature oxidation of 9 NO coupled with absorption of NO₂ is an alternative NO_x abatement strategy. Such a 10 strategy could avoid expenses associated with SCR (e.g., catalysts, gas reheating) and 11 the threat of ammonia slip.

12

13 **2. Carbon-catalyzed Oxidation**

Carbon materials have been regarded as good catalysts for NO oxidation to NO₂ [25].
The surface chemistry of carbon materials often influences their adsorption, catalytic,
acid-base and redox properties, as well as their hydrophilic or hydrophobic character.
Hydrogen, oxygen, sulfur, nitrogen, and other elements could also be found on the
activated carbon surface.

19

Catalytic oxidation of NO (2NO + $O_2 \rightarrow 2NO_2$) over microporous activated carbons 20 combined with subsequent absorption process of NO_2 as a more soluble NO_x specie 21 is an alternative to SCR. Compared with SCR, carbon catalyzed NO oxidation operates 22 at low temperatures (<100 $^{\circ}$ C) and could potentially be used for simultaneous control 23 24 of multiple pollutants [26]. While combination of NO oxidation with NO₂ absorption, 25 a thorough understanding of the carbon-catalyzed NO oxidation is also important for 26 improving NO reduction via fast SCR reactions [27, 28]. Since Mochida's initial studies 27 introducing the carbon-catalyzed NO oxidation, extensive efforts have been taken on 28 understanding the reaction mechanism. After twenty years, however, the mechanism continues to be debated [29-32]. The complexity of activated carbon (i.e., variability 29 in the physical and chemical properties of activated carbon) and NO auto-oxidation 30

[33] make characterizing the NO oxidation mechanism challenging. The investigation
 of chemical functionalities on NO oxidation showed that oxygen functional groups
 can impact NO₂ adsorption capacity and transient oxidation kinetics [34-36].

4

The kinetics of heterogeneous catalysis mainly depends on: (1) reactant adsorption, 5 6 (2) catalytic reaction at active sites, and (3) product desorption. The reaction rate, 7 therefore, is influenced by the physical and chemical properties of the catalysts [37]. 8 Proposed mechanisms for carbon-catalyzed NO oxidation are summarized as follows. 9 Mochida [29-31] first investigated the influence of physical and chemical properties 10 of carbon, as well as processing parameters (e.g., NO and O_2 concentrations, reaction 11 temperature, and gas hourly space velocity), on steady-state NO oxidation kinetics. Mochida et al. [30] suggested that [NO-O-NO₂]_{ad} is a crucial intermediate for NO₂ 12 formation/desorption and that NO adsorption is the rate-determining step due to 13 competition with desorbed NO₂ and intermediates. This mechanism, consistent with 14 observed kinetic profiles, suggests that $(NO)_2$, NO_2 , and $(NO_2)_2$ are not necessary as 15 reaction intermediates [38]. Then, Adapa et al. [32] proposed Langmuir-Hinshelwood 16 17 (L-H) and Eley-Rideal (E-R) mechanisms for catalyzed NO oxidation. Herein, in the L-H 18 mechanism, dissociated oxygen activated by carbon reacts with adsorbed NO. In the E-R mechanism, gaseous O_2 can directly react with NO adsorbed in micropores. Both 19 20 mechanisms rely on the evolution of similar reactive intermediates, including C*-NO, C*-NO₂, C*-NO₃, and C*-NO-NO₃. 21

22

23 The mechanism of catalytic NO oxidation over carbonaceous materials is a complex process, since it involves multiple steps, including carbon gasification, oxidation of 24 25 NO and the release of NO_2 . Some reaction pathways have been proposed to explain the oxidation of NO into NO2. Ahmed et al. [39] suggested that NO is oxidized by 26 oxygen to NO_2 in the gas phase and then NO_2 is adsorbed on the carbon surface. 27 However, the homogeneous oxidation of NO in the gas phase is too slow to account 28 29 for the conversions observed with the activated carbon. Mochida et al. [40] proposed that NO is adsorbed, oxidized into adsorbed NO₂, which desorbs as NO₂. Since NO is 30

1 a supercritical gas at ambient temperature, very little NO can be physically adsorbed. 2 Zhang et al. [41] proposed that NO oxidation on the activated carbon is a micropore 3 filling process with NO as the adsorbed species. Namely, the narrow micropores in 4 activated carbon act as catalytic nanoreactors for NO oxidation. It is well known that 5 narrow micropores are very important for gas adsorption [42-44]. Rathore et al. [45] defended that the gaseous NO and O₂ adsorb on the active sites of activated carbon 6 fibers, followed by NO oxidation into adsorbed NO₂. The adsorbed NO₂ further reacts 7 8 and forms various intermediates in the adsorbed phase, such as NO_3 and $NO-NO_3$. 9 Finally, the NO-NO₃ adsorbed intermediate is desorbed into NO₂. It has also been 10 proposed that NO reacts with the surface oxygen atoms present on activated carbons 11 [46, 47]. However, this argument is difficult to reconcile with the literature, which 12 refers that pre-adsorption of O₂ on carbon materials inhibits the removal of NO [39, 13 48, 49]. It is suggested that NO from the gas phase reacts with chemisorbed oxygen, forming the chemisorbed NO₂ [48]. The improvement of the catalytic performance of 14 nitrogen-containing carbons in NO oxidation can be explained from the point of view 15 16 of the electronic theory of catalysis. The extra π -electrons of nitrogen groups could 17 facilitate the formation of NO_2 caused by molecular oxygen activation [50]. Activated 18 carbons treated with nitric acid as well as with melamine are the most active for NO 19 oxidation [51]. The catalyst bed is saturated with NO₂ resulting in a large increase in 20 the NO outlet concentration. Meanwhile, breakthrough of NO_2 occurs, which results in vacant sites. Adsorption of O_2 on the new vacant sites may proceed only when NO_2 21 is desorbed to release these sites. Therefore, NO_2 desorption is the rate-limiting step 22 23 [32].

24

In addition, Zhang [34, 52] proposed that NO₂ formed via the NO catalytic oxidation, decomposes and causes rapid oxidation of the carbon surface with subsequent NO₂ chemisorption. Furthermore, this proposed concept was extended by identifying and quantifying these generated oxygen groups, highlighting their contribution toward the acidity of carbon-based catalyst and describing their impact on transient NO oxidation kinetics [36]. In theory, all proposed NO oxidation mechanisms stress the

1 significance of catalytic sites of carbon, the number of which should be proportional 2 to accessible surface area of carbon. However, steady-state NO oxidation kinetics are 3 independent of the accessible surface area of carbon [31]. Steady-state NO 4 conversion efficiency increases with the increase of the NO concentration (i.e., [NO]). 5 This Langmuir-type dependence on [NO] supports that the reaction is not limited by the availability of active sites. This is the opposite of SCR systems [53] and metal 6 oxide catalyzed NO oxidation, where the steady-state NO conversion efficiency is 7 inversely proportional to [NO] [54]. Further investigation into the carbon-catalyzed 8 9 NO oxidation is necessary to address the role of the physical and chemical properties 10 of carbon on transient and steady-state oxidation kinetics.

11

12 Recently, Zhang et al. [55] studied an updated mechanism of NO oxidation catalyzed by microporous activated carbon fiber cloth. The updated NO oxidation mechanism 13 14 mainly consists of two consecutive steps: $(1) NO_2$ is rapidly formed through gas phase reactions between NO and O_2 in carbon micropores; formation and decomposition of 15 C^{*}–NO_x species [40], does not take place, and (2) newly formed NO₂ adsorbs to the 16 17 carbon surface is associated with NO_2 reduction and development of C^{*}– NO_x and 18 C*–O functionalities. The physical properties of activated carbon control steady-state 19 NO oxidation kinetics with chemical properties of carbon having no apparent impact. 20 Additionally, carbon's adsorption and surface reaction tendencies impact transient conversions by allowing for destruction of the NO₂ product and regeneration of the 21 22 NO reactant. The second mechanistic step diminishes as the carbon surface saturates 23 with adsorbed NO_x species and oxygen functionalities. At steady-state, the carbon 24 surface is saturated, preventing the further NO_2 reduction. In summary, the first step 25 of the mechanism (NO oxidation in micropores) controls steady state NO oxidation 26 kinetics, while the second step (NO/carbon surface reactions) controls transient NO 27 oxidation kinetics.

28

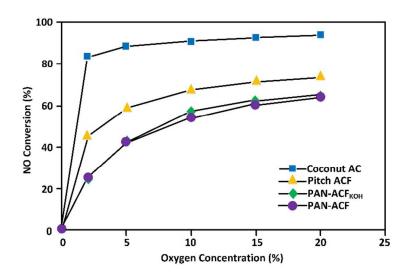
29 **3. Carbon-based Catalysts**

RSC Advances Accepted Manuscript

Carbon-based materials including activated carbons, activated carbon fibers are very
 attractive in de-nitrification (De-NO_x) as catalysts or catalyst supports [56, 57]. Most
 researches involved in the De-NOx over carbon-based materials primarily focused on
 the removal or conversion of high concentration NO in flue gas [58, 59], and carbon
 materials were used as catalyst supports.

6

7 Porous materials of carbon molecular sieves are disordered forms of graphitic carbon produced from the pyrolysis and activation of organic materials at high temperatures 8 [60]. These carbon materials have important applications in gas adsorption, catalysis, 9 10 and phase separation [61]. Their porous structures typically contain combinations of micropores (<20 Å), mesopores (20-500 Å), and macropores (>500 Å) [60]. And these 11 materials exhibit adsorption volumes and specific surface areas up to 0.5-0.8 cm^3/g 12 and 700-1800 m²/g, respectively [62]. Loiland et al. [63] studied the porous carbon 13 molecular sieves for the NO oxidation based on the results of Artioli et al. [18], which 14 suggested that many microporous solids could provide increased reactivity compared 15 16 to the homogeneous phase reaction.


17

18 **3.1. Activated Carbon (AC)**

ACs have been widely used as adsorbents of gases and vapors, catalyst supports, and 19 20 separation media [65, 66]. Their features for pollutant removal are large surface area, rich microporosity [67], and rapid adsorption velocity [68-71]. AC desulfurizer can be 21 used for gas cleaning and H₂S removal by sorption enhanced catalytic oxidation at 22 23 low temperatures [72]. Guo [25] studied the NO oxidation by the commercialized ACs, 24 such as coconut-AC, pitch-ACF, polyacrylonitriale-ACF (i.e., PAN-ACF and PAN-ACF_{KOH}) using the dry gas of NO-O₂-N₂ at 30 $^{\circ}$ C. The steady-state conversion of NO to NO₂ 25 mainly depends on the O_2 concentration, the temperature and the properties of AC. 26

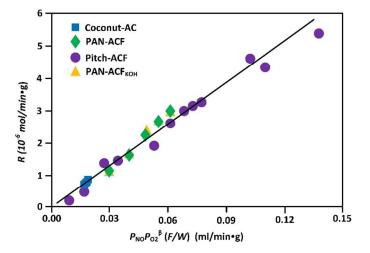
27

NO conversion with various ACs versus the O_2 concentration is shown in Fig. 1. The oxidation of NO to NO_2 obviously increased with the increase of O_2 concentration with ACF. However, the dependence is not obvious with the coconut-AC. Even in the presence of 2% O₂, the NO conversion can reach 83% by AC. The pitch-ACF showed the higher activity than the PAN-ACF for the oxidative removal of NO. In the same gas space flow rate of 1500 h⁻¹, the order of activity is PAN-ACF < pitch-ACF < coconut-AC. Interestingly, the coconut-AC shows very high activity for the oxidation of NO to NO₂ even with the low concentration of O₂. This suggests that oxidative removal of NO by ACs could be a compatible process for industry. In addition, ACs have higher strength and lower cost than ACFs [25].

8

Figure 1. NO conversion in steady state versus O₂ concentration by different ACs at 30
 ^oC for the dry gas with 400 ppm NO and space flow rate 1500 h⁻¹. (Reproduced from
 Ref. 25 with permission from Elsevier)

The overall oxidation reaction of NO to NO₂ in a dry gas is expressed as: NO + $1/2O_2 =$ NO₂. And the oxidation reaction rate of NO in a dry gas can be given by the following kinetic equation: $r = kP_{NO}{}^{\alpha}P_{O2}{}^{\beta}$.


16

where *k* is a reaction rate constant, α and β are the apparent reaction orders. By fitting the data in Fig.1, the reaction rates were determined to be 0.042, 0.16 and 0.31 with the order of the O₂ concentration for the coconut-AC, the pitch-ACF and the PAN-ACF, respectively. The conversion rate R (mmol/min \cdot g) of NO to NO₂ in dry gas on AC at 30 °C can also be given by the following equation:

22
$$R = k_c P_{NO} P_{O2}^{\ \beta} (F/W)$$

RSC Advances Accepted Manuscrip

- 1 where k_c is the apparent rate constant, being 0.94, which is calculated by the slope in
- 2 Fig.2. P_{NO} and P_{O2} are the partial pressure (atm) of NO and O_2 in dry gas, respectively.
- 3 The values of β are 0.042, 0.31 and 0.16 for the coconut-AC, the pitch-ACF and the
- 4 PAN-ACF (including PAN-ACF_{KOH}), respectively. F is gas flow rate (ml/min) and W is the
- 5 weight of AC (g).

6

Figure 2. Apparent reaction rate versus $P_{NO}P^{\beta}_{O2}$ (F/W) of NO oxidation in dry gas on ACs at 30 °C. (Reproduced from Ref. 25 with permission from Elsevier)

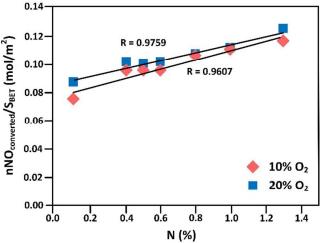
9

10 Recently, there has been an increasing interest for N-doped carbon materials [73-78]. 11 The presence of nitrogen atoms in the carbon matrice could enhance the catalytic 12 activity of carbon materials in oxidation reactions and increase the ability to adsorb 13 acidic gases [79, 80]. The effect of nitrogen doping of carbons on catalytic properties could be attributed to two overlapping effects, catalysis by basic surface sites and by 14 15 electron donation [81]. Nitrogen containing functionalities confer basic properties to 16 the surface of AC, which enhance the interaction with acid molecules [77]; moreover, 17 the extra electrons can be transferred to adsorbed species [82].

18

The nature and concentration of functional groups present on the surface of AC mainly depend on the activation method in the synthesis, but they can be modified by thermochemical treatments [83]. Nitrogen groups can be often introduced to the structure of AC by treatments with urea in the liquid phase or with ammonia in the gas phase at high temperatures [84, 85]. Sousa et al. [18, 51] modified the AC with a

1 high density of surface nitrogen Lewis basic sites for NO oxidation. The incorporation 2 of nitrogen can significantly improve the catalytic activity of the modified AC. The NO 3 conversion increased with the nitrogen content is associated with electron transfer 4 from the carbon surface to the NO molecules. Stöhr et al. [84] found that ammonia 5 treatment of the carbon surface can facilitate the chemisorption of molecular oxygen. According to them, when carbon atoms are substituted by nitrogen atoms within the 6 7 graphene layers, the extra electrons can be easily transferred to the adsorbed species, 8 forming reactive surface intermediates. The highest amount of NO oxidized at room 9 temperature was achieved with the highest amount of nitrogen containing groups 10 [86].


11

 O_2 concentration can strongly influence the NO oxidation over carbon materials. O_2 is 12 first chemisorbed on the surface (Eq. 1) and then NO reacts with surface O_2 to form 13 NO₂ adsorbed on the carbon surface (Eq. 2). O₂ favours the formation of new active 14 sites on the surface of carbon material for NO adsorption. Formation of a NO dimer 15 $(NO)_2$ has been proposed as a possible mechanism to explain the reduction of NO to 16 17 N_2 at low temperatures (Eq. 3). The formation of (NO)₂ occurs as the concentration of 18 strongly adsorbed NO is high and there is a higher probability that two NO molecules could be located adjacently to form a $(NO)_2$ dimer. 19

(1)

- $2C_{\rm f} + O_2 \rightarrow 2C-O$
- 21 $C-O + NO \rightarrow C-NO_2$ (2)
- 22 $(NO)_2 + 2C_f \rightarrow N_2 + C_{f} O$ (3)
- 23

The formation of N-N and C-O bonds, followed by splitting of N-O bonds to produce a N₂ molecule. These reactions are exothermal, which means that they are favored at lower temperatures. To assess the influence of the nitrogen groups, the amount of NO converted, normalized by the surface area, was plotted against the nitrogen content of the AC as shown in Fig. 3. It can be indicated that the presence of nitrogen groups enhances the oxidation of NO to NO₂. The extra electrons resulting from the substitution of C for N in the aromatic ring are delocalized and can be transferred to

absorbing species to form reactive surface intermediates [87]. 1

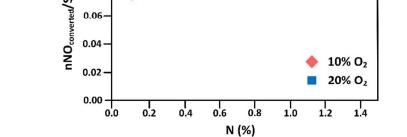


Figure 3. Amount of NO converted per unit surface area versus nitrogen content of 3 the AC. (Reproduced from Ref. 18 with permission from Elsevier) 4

5

3.2. Activated Carbon Fiber (ACF) 6

7 ACFs have been widely used as adsorbents and catalysts supports due to their micro 8 porous texture having large surface area, significant adsorption characteristics for a 9 number of air pollutant species, and ability of regeneration with ease. Besides, ACFs have flexibility to be applied in reactors, where they can be wrapped or rolled easily 10 11 [32]. Two possible states of O_2 can be considered, either dissociately adsorbed on the 12 surface or molecular in the gaseous phase, in the mechanism for the oxidation of NO 13 by ACF. Table 1 presents the two possible mechanisms of NO oxidation over carbon 14 catalysts. As for the Langmuir-Hinshelwood model (mechanism 1), gaseous NO and O₂ are assumed to adsorb on the vacant active sites of ACF, followed by oxidation of 15 16 NO into adsorbed NO₂. Subsequently, the adsorbed NO₂ reacts and forms various 17 intermediates such as, NO₃ and NO-NO₃ in the adsorbed phase. Finally, the adsorbed 18 intermediate NO-NO₃ is desorbed into NO₂ from the surface, thereby releasing the 19 vacant sites for adsorption of successive molecules of adsorbates. In accordance with 20 the Eley-Rideal model (mechanism 2), adsorbed NO could be assumed to react with the gaseous O_2 (instead of adsorbed O_2) and yield the adsorbed NO_2 . The subsequent 21 reactions of adsorbed NO₂ are proposed to proceed similar to those outlined for 22

- 1 mechanism 1.
- 2

3 Table 1. Possible mechanisms of NO oxidation to NO₂ over carbon catalysts

Mechanism 1	Mechanism 2
$NO + C_f \leftrightarrow C-NO$ (a)	$NO + C_f \leftrightarrow C-NO$ (a)
$O_2 + 2C_f \leftrightarrow 2C-0$ (b)	$2C-NO + O_2 \leftrightarrow 2C-NO_2$ (b)
$\text{C-NO} + \text{C-O} \leftrightarrow \text{C-NO}_2 + \text{C}_{\text{f}} \text{(c)}$	$C-NO_2 + C-NO_2 \leftrightarrow C-NO_3 + NO + C_f$ (c)
$C-NO_2 + C-NO_2 \leftrightarrow C-NO_3 + NO + C_f (d)$	$\text{C-NO}_3 + \text{C-NO} \leftrightarrow \text{C-NO-NO}_3 + \text{C}_{\text{f}} (\text{d})$
$C-NO_3 + C-NO \leftrightarrow C-NO-NO_3 + C_f$ (e)	$C-NO-NO_3 \rightarrow 2NO_2 + C_f$ (e)
$C-NO-NO_3 \rightarrow 2NO_2 + C_f$ (f)	

4

Zhang et al. [36, 55] studied the mechanism and kinetic of NO oxidation by ACF cloth. 5 6 To date, most carbon-catalyzed NO oxidation studies aim to maximize steady-state 7 NO conversion rates. There has been limited emphasis on accelerating the path to achieving steady-state conversions, which involves at least co-adsorption of NO and 8 O_2 , catalytic reaction, and subsequent desorption of formed NO_2 [40]. To improve 9 this facet of the carbon catalysts, studies describing the interfacial catalytic reactions 10 between NO_x and carbon are required. The impact of surface functional groups (e.g., 11 nitrogen, oxygen) on AC has been studied the interactions between NO_x and carbon 12 [18, 48, 88]. Oxygen functionalities are retained on carbon due to the decomposition 13 14 of formed NO_2 intermediates over the reducing carbon surface [79]. The formation of oxygen groups can impact NO/NO₂ adsorption/desorption kinetics, accelerating the 15 16 release of NO_2 from the carbon surface. In Atkinson's work [36], the acidic oxygen functional groups on ACF cloth are developed for NO oxidation. Carbon catalysts with 17 acidic oxygen functionalities has been considered as promising NO oxidation catalysts, 18 19 as confirmed with NO₂ and nitric acid treatments. In general, chemical properties of 20 carbon materials impact NO oxidation kinetics, while physical properties impact the 21 steady-state NO oxidation rate.

1 Wang et al. [89] verified that NO can be catalytically oxidized into NO₂ over activated 2 carbon nanofibers (ACNFs). After further graphitized at high temperature, graphitized 3 porous carbon nanofibers (GPNF) is formed. The catalytic efficiency of NO oxidation could be enhanced remarkably at ambient temperature [90]. The morphology of the 4 ACNFs is shown in Fig. 4. The average fiber diameter of ACNF without graphitization 5 is in the range of 200-300 nm, and the surface is clean and smooth (Fig. 4A). After 6 graphitization, the fiber diameter shrank visibly due to the burn-off and ordering of 7 graphite layers at higher temperatures of 1900 °C and 2400 °C (Fig. 4, B and C). 8 Moreover, the surface of GPNFs became rough with some wrinkle and small holes. 9

10

11 TEM analysis can provide more insights into the stacking of graphite layers, and the 12 crystallographic changes in ACNFs can be directly acquired. As shown in Fig. 4, D-F, compared with the non-graphitized ACNF, great changes occurred in the inner layer 13 where the graphite sheets became stiff and amorphous carbon layer in outer-layer 14 became thinner. With the increase of graphitization temperature, the graphite sheets 15 in inner layer were arranged in order and more continuous, and the orientation of 16 17 disorganized hexagonal surface of crystallite became ordered. Interestingly, some 18 new defects appeared in the surface and end of the graphite sheets. The defects in ACNFs are derived from the dangling bonds, which are saturated with oxygen 19 20 functionalities. However, graphitization can remove those functionalities to form new defects at the surface of fibers. Due to the high degree of graphitization and defects, 21 22 GPNFs can provide more active sites for the catalytic oxidation of NO transformation 23 into NO₂. In particular, the NO oxidation ratio for ACNFs, GPNF-1900 and GPNF-2400 24 was 11%, 38%, 45%, respectively, revealing that the GPNFs could be used as 25 promising catalysts in catalytic oxidation of NO at room temperature.

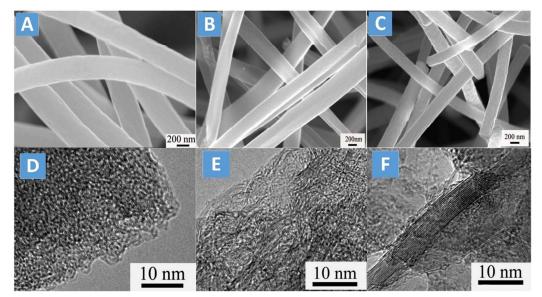


Figure 4. SEM images of ACNF (A), GPNF-1900 (B) and GPNF-2400 (C); TEM images of
 ACNF (D), GPNF-1900 (E) and GPNF-2400 (F). (Reproduced from Ref. 90 with
 permission from Elsevier)

5

1

The graphitic CNFs (pyrolytically stripped) were found to be the most active in the 6 catalytic process followed by heat treatment from 1500 to 3000 °C [91]. For example, 7 it was proved that activated polyacrylonitrile carbon nanofibers (PCNFs) to determine 8 9 effect of high temperature treatment on their catalytic activity during the oxidation 10 of NO to NO₂ [90]. The oxidation conversion could be significantly improved by using graphitized PCNFs, but this method always requires higher temperatures [92, 93] that 11 12 is not economical due to energy consumption; therefore it is necessary to prepare CNFs with similar structure that can be formed at low temperatures. 13

14

15 Graphene is a commercially attractive material that possesses a large theoretical specific surface area [94-98], a high Young's modulus, good thermal conductivity and 16 17 good electrical conductivity that could be used for a variety of potential applications including in transparent conductive electrodes [99, 100]. More recently, Guo et al. 18 [101] prepared microdomain-graphitized polyacrylonitrile (PAN) nanofibers by adding 19 20 the graphene oxide (GO) into the precursor via the electrospinning method. These electrospun nanofibers were stabilized in ambient atmosphere, carbonized in N_2 and 21 treated in NH_3 atmosphere for NO oxidation with a low concentration (50 ppm) at 22

room temperature. The GO nanosheets can be embedded in the electrospun fibers 1 2 and converted to reduced graphene oxide (rGO) by heat treatment (namely PGCNFs 3 as illustrated in Fig. 5J). A series of rGO content was embedded in the PCNFs forming 4 a carbon-carbon hybrid material that showed a microdomain-graphitized and porous 5 structure. SEM images of the PCNF and PGCNF samples are shown in Fig. 5, A-F. The samples experienced instantaneous cyclization, dehydrogenation and cross-linking 6 reactions in the presence of O_2 , thereby creating nanofibers that are infusible at 7 8 higher temperatures [102, 103]. The PCNFs are homogeneous, and smooth with average diameters of approximately 200 nm. With the addition of GO, the surface of 9 10 the PGCNFs becomes coarser. Furthermore, large amounts of tiny rGO fragments are 11 embedded inside the PCNFs and are not externally visible. However, the large-scale 12 GO sheets with lateral dimensions of $0.5-1.0 \ \mu m$ cannot be enclosed completely by the PCNFs resulting in the presence of some "rose-like" nodes on the surfaces of the 13 14 materials. The rGO sheets provide catalytic active sites embedded inside the PCNFs. In addition, the nitrogen-containing functional groups can play important roles on 15 the enhancement of the catalytic oxidation of NO to NO₂. As shown in Fig. 5, G-I, the 16 17 samples with 5 wt.% GO exhibit the most catalytic oxidation of NO into NO₂.

18

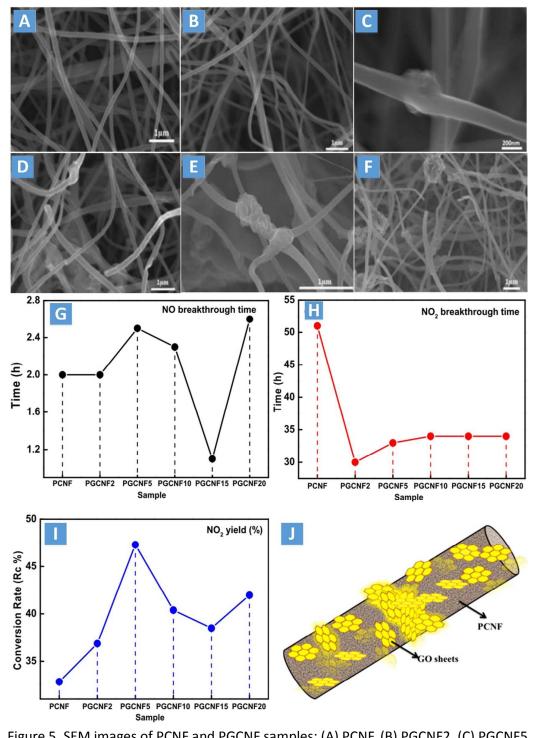


Figure 5. SEM images of PCNF and PGCNF samples: (A) PCNF, (B) PGCNF2, (C) PGCNF5, 2 (D) PGCNF10, (E) PGCNF15, and (F) PGCNF20. Variations in (G) NO breakthrough time, 3 (H) NO₂ breakthrough time and (I) NO to NO₂ conversion rate of the PCNF and PGCNF 4 samples. The numerals following PGCNF reflect the wt.% of GO incorportation. (J) 5 6 Schematic of a microdomain-graphitized PCNF. (Reproduced from Ref. 101 with permission from Elsevier) 7 8

RSC Advances Accepted Manuscript

1 The superiority of CNFs over ACFs in catalytic and adsorption applications lies in the 2 higher stability of CNFs in acidic/basic media and chemical activity [104-107]. ACF- or 3 CNF-supported metal catalysts can be also used in the abatement of NO emissions by oxidation or reduction [89, 90, 108]. Talukdar et al. [109] developed the CeO₂ and Cu 4 nanoparticles dispersed in CNFs/ACFs for the removal of NO by catalytic oxidation at 5 room temperature. The CNFs/ACFs were prepared by means of growing CNFs on an 6 ACF substrate via catalytic chemical vapor deposition (CVD). Subsequently, CeO₂ and 7 8 Cu nanoparticles could be in situ incorporated into the ACFs prior to CVD. The Cu 9 nanoparticles can therefore play dual roles: (1) catalyzing the growth of CNFs and (2) 10 catalyzing the oxidation of NO to NO₂. CeO₂ had a promotional effect on the catalytic 11 activity of Cu through the release of nascent oxygen during the redox cycle and a 12 synergistic interaction with the Cu nanoparticles.

13

14 Oxygen is dissociatively adsorbed on the vacant sites of ACFs. It reacts with the NO adsorbed on the adjacent sites to produce NO_2 . Then, the adsorbed NO undergoes 15 transformations to produce intermediate surface complex and NO₂, leaving behind 16 17 the active sites for successive adsorption. The redox reaction involving the synergistic interaction between Ce^{3+} and Cu^{2+} produces lattice oxygen and restores the oxidation 18 state (4+) of Ce in CeO₂. Fig. 6 schematically illustrates adsorption/desorption of the 19 20 reacting species and the synergistic interaction between CeO_2 and Cu nanoparticles. The proposed mechanism for the reaction, $2NO + O_2 \rightarrow 2NO_2$ is as follows. 21

22

The catalytic oxidation of NO over CeO_2 -Cu-CNFs/ACFs consists of two simultaneous steps. Step A involves the adsorption-desorption of NO and O_2 on the CNFs/ACFs and catalytic oxidation of NO to NO₂.

- $NO + X \rightleftharpoons NO X \tag{4}$
- $O_2 + 2X \rightleftharpoons 20-X \tag{5}$
- $NO-X + O-X \rightleftharpoons NO_2 X + X$ (6)
- 29 $2NO_2-X \rightleftharpoons NO_3-X + NO + X$ (7)
- $NO_3-X + NO-X \rightleftharpoons NO_3-NO-X + X$ (8)

1

2

3

4

5

6

7

RSC Advances

NO₃-NO-X
$$\rightarrow$$
 2NO₂ + X (9)
Step B involves the release of nascent oxygen and synergistic interaction between CeO₂ and Cu nanoparticles.

$$2CeO_2 \rightarrow Ce_2O_3 + O_{(lattice)} (10)$$

$$Ce^{3+} + Cu^{2+} \rightarrow Ce^{4+} + Cu^{+} (11)$$

$$Cu^{+} + 1/2O_2 \rightarrow Cu^{2+} + O_{(adsorbed)} (12)$$

$$NO + O_2$$

$$Cu NPs$$

$$NO_2 + O_2$$

$$NO + O_2$$

$$Cu NPs$$

$$NO_2 + O_2$$

$$NO + O_2$$

$$Cu' + 1/2O_2 + Cu^{2+} + O_{ads}$$

$$CeO_2 - Ce_2O_3 + O_{(lattice)}$$

$$Cu' + 1/2O_2 - Cu^{2+} + O_{ads}$$

$$CeO_2 - Ce_2O_3 + O_{(lattice)}$$

8

Figure 6. Schematic diagram of the adsorption – desorption reaction and synergistic
 interaction between CeO₂ and Cu. (Reproduced from Ref. 109 with permission from
 the American Chemistry Society)

12

Fig. 7 presents the comparative performances of the ACFs/CNFs based materials for 13 the NO oxidation. The catalytic performances were found to be in the following order: 14 15 CeO_2 -Cu-CNFs/ACFs > Cu-CNFs/ACFs > Cu-ACFs > CeO_2-ACFs > ACFs. The synergistic 16 interaction between the Cu nanoparticles and CeO_2 enhanced the oxidation rate. The 17 maximum NO conversion using the CeO₂-Cu-CNFs/ACFs developed was 80% for a 500 ppm NO concentration at room temperature (30 °C). Generally, loading some specific 18 19 metal actives could enhance the catalytic performance for NO conversion. However, the synergistic interaction is considerable for the preparation of metal loaded carbon 20 21 catalysts.



Figure 7. Comparative performance of the prepared materials in the oxidation of NO $(T = 30 \degree C, P = 1 \text{ bar}, W = 1 \text{ g}, \text{NO} = 1000 \text{ ppm}, Q = 37.5 \text{ sccm}, O_2 = 20\%)$. (Reproduced from Ref. 109 with permission from the American Chemistry Society)

5

6 3.3. Carbon Xerogel (CX)

7 CXs have been considered as novel porous carbon materials that can be obtained 8 from carbonization of organic xerogels prepared by sol-gel polycondensation of some specific monomers, such as resorcinol and formaldehyde, following Pekala's method 9 10 [110]. A polycondensation reaction can occur between resorcinol and formaldehyde, 11 yielding a three-dimensional polymer matrix, the RF hydrogel. After solvent exchange 12 and drying, followed by carbonization, CX is obtained. Subsequent activation can be 13 used for modification of the surface properties of the material [111]. In addition, CXs 14 can be prepared with other monomer combinations, such as 15 melamine/formaldehyde/resorcinol, phenol/furfural, urea/formaldehyde/resorcinol 16 or polyurethane [112]. If nitrogen containing precursors (i.e., melamine and urea) are 17 used, CXs enriched with non-reactive nitrogen located in the graphene sheets can be obtained as well [113, 114]. 18

Page 21 of 34

RSC Advances

1 Sousa et al. [48, 115] studied the CXs with or without nitrogen-doped treatment for 2 the catalytic oxidation of NO. The strong dependence of NO conversion on the O_2 3 concentration results in the conclusion that O_2 is first adsorbed on the surface of CXs, 4 and then it reacts with NO to form adsorbed NO_2 . Finally, NO_2 can desorb to the gas phase (as illustrated in Fig. 8A). Fig. 8B shows the effect of O2 concentration on NO 5 conversion at 25 °C. In the presence of O₂, the carbon materials catalytically oxidize 6 7 NO with rates larger than those of the homogeneous oxidation $(36\% \text{ for } 20\% \text{ O}_2)$. The 8 oxidation of NO to NO_2 increases with the increase of O_2 concentration from 2% to 10%. Further increase of O_2 concentration from 10% to 20% does not affect so much 9 10 the conversion. Even in the presence of $2\% O_2$, the NO conversion can reach 86%with sample CX-5.3-900 °C. The maximum NO conversion can be obtained when 10% 11 of O₂ was used. Above the optimum O₂ concentration, the NO conversion levels off 12 13 ascribed to saturation of the adsorption sites with atomic oxygen. The highest NO conversion was obtained on CX-5.3-900 $^{\circ}$ C with 10% of O₂ (98%). The CXs showed a 14 high stability for the NO oxidation. With 1000 ppm of NO and 10% of O₂ over the 15 most efficient catalyst (namely CX-5.3-900 °C), a steady-state conversion is reached 16 17 after 26 h of reaction (98%), and does not change thereafter (Fig. 8C) [115]. The 18 removal of NO by the catalytic oxidation of NO to NO_2 on CXs is feasible at relatively low temperatures. Generally, NO conversion increases with the O_2 concentration in 19 20 the gas phase. The highest NO conversions were obtained by the samples with the highest specific surface areas. In a steady state, the micropores are occupied with 21 22 NO₂ adsorbed, so only the mesopore surface area is available for reaction.

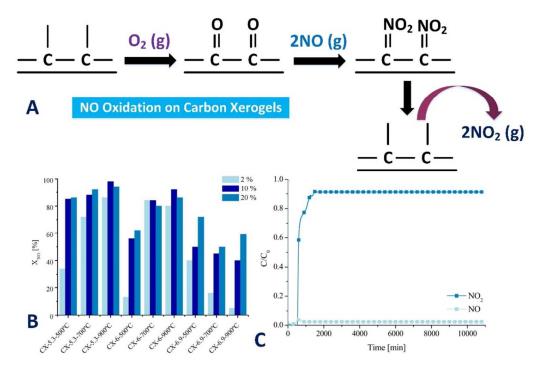


Figure 8. (A) Simplified scheme of NO oxidation on CXs; (B) Effect of O_2 concentration on NO conversion at 25 °C; (C) Evolution of profiles of NO and NO₂ during one week of reaction with sample CX-5.3-900 °C. (Reproduced from Ref. 115 with permission from the MDPI)

6

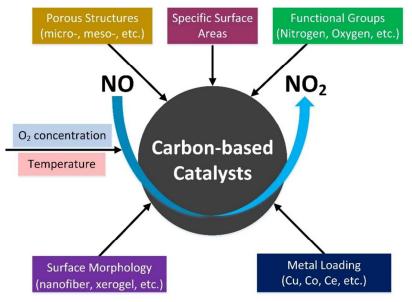
7 3.4. Other Carbon Materials

8 Carbon plays a dual role as a catalyst or a catalyst support due to its large specific surface area, high porosity, and relative chemical inertness. Advantageously, carbon 9 materials can be prepared from biomass, an attractive property for decreasing the 10 so-called "carbon-footprint" of a biomass transformation process. Carbon could be 11 chemically functionalized and/or decorated with metallic nanoparticles and enzymes 12 to impart or improve novel catalytic activity [116]. Furthermore, the development of 13 multifunctional catalysts, possibly originated from more emerging carbon materials 14 15 such as graphene, carbon nanotubes, and carbon monoliths is also required for deep theoretical study of NO oxidation. However, a relative economical carbon catalyst is 16 urgently developed for industrialization. In addition, carbon precursors derived from 17 residual biomasses could be fabricated into the desired carbonaceous materials by 18 functionalization [117]. 19

1 Biochar is a by-product from thermal processing of biomass, such as hydrothermal 2 carbonization, pyrolysis, and gasification [118]. Additionally, biochar is considered as 3 a sustainable carbon material, which could be employed as a sorbent or a catalyst for 4 environment and energy applications, including gas cleaning [119]. To date, several 5 works have been conducted for the NO_x reduction with char [120-124]. Most of them 6 focused on the NO reduction over the char materials at higher temperatures. NO can 7 react with carbon atoms in char to produce N_2 and CO. A few work has been done for the NO oxidation by char-based materials. As mentioned above, Guo et al. [25] used 8 9 the commercialized AC prepared from coconut char (namely coconut-AC) for the NO 10 oxidation. Moreover, the coconut-AC shows very high activity for the oxidation of NO 11 to NO_2 even with the low concentration of O_2 . In common, biochars possess many nitrogen or oxygen groups such as $-NH_2/-OH$, C–O, C=O, possibly contribute a lot on 12 13 the adsorption performance and catalytic activity. Besides, inherent minerals in the 14 char matrice show a certain specific catalytic effects [119]. However, the property of char is often unstable, mainly depending on biomass types, processing methods, etc. 15 16 Chemical activation is one of the most effective ways to modify the characteristics of 17 char. Chen et al. [125] used KOH and $ZnCl_2$ as activation agents to produce activated 18 char, which can be used for $De-NO_x$ process. Sewage sludge were impregnated with the activation agent before the pyrolysis step. In this study, SO₂, NO, N₂O and HCl are 19 20 main emissions from sewage sludge pyrolysis volatile combustion, in accordance with coals combustion. SO₂ emission can be avoided by impregnation of KOH and ZnCl₂. 21 22 Activated char derived from the KOH-impregnated sewage sludge exhibited the best 23 De-NO_x performance. In the previous studies, the pitch-based ACFs showed higher 24 De-SO_x activity than other ACFs derived from different precursors. De-SO_x activity can 25 be further modified by the heat-treatment, continuous and complete removal of SO_x. 26 ACF is also effective for removing NO_x in the presence of NH_4 [58]. Furthermore, 27 De-SO_x and De-NO_x could be achieved by using microwave irradiation over AC-based 28 catalysts. It showed that adsorption capacities and removal efficiencies of Cu-based 29 AC catalyst were higher than Mn-based or Zn-based AC catalyst [126]. Nanoporous molecular basket sorbent was developed for NO₂ and SO₂ capture and separation 30

from gas streams at room temperature based on polyethylene glycol (PEG)-loaded
 mesoporous molecular sieve SBA-15 [127]. Consequently, the integrated strategy of
 De-SO_x and De-NO_x could be achieved by porous carbon materials including activated

- 4 char with the proper modification.
- 5


6 4. Concluding Remarks

7 The catalytic oxidation of NO to NO_2 at ambient temperatures has been a promising 8 route for controlling NO emissions, since NO₂ is subsequently removed as nitric acid 9 in the presence of water. Because of their large specific surface area, high porosity, 10 and relative chemical inertness, the carbon-based materials including ACs, ACFs are very attractive in $De-NO_x$ as catalysts or catalyst supports. However, the catalytic 11 12 oxidation of NO to NO₂ is still in its early stage of development and therefore there are many aspects that require additional research. The catalytic oxidation of NO to 13 14 NO₂ over these carbonaceous materials is mainly determined by the influence 15 parameters of surface characteristics of carbon materials (e.g., pore structure, specific surface area, functional groups, and morphology), O_2 concentration, and 16 reaction temperature as described in Fig. 9. Additionally, in addition of specific metal 17 actives, the catalytic performance could be significantly improved. Adsorption and 18 catalytic reaction are two key points of NO oxidation over carbon-based materials. 19 20 Furthermore, the strong dependence of NO conversion on the O₂ concentration 21 concludes that O_2 is first adsorbed on the carbon surface, and then it reacts with NO 22 to form the adsorbed NO_2 , desorbing to the gas phase thereafter.

23

Consideration of the economic efficiency, carbon precursor derived from sustainable biomass can be fabricated into the desired carbon materials through functionalization. For example, biochar is considered as a sustainable carbon material that can be used as a sorbent or a catalyst support for gas cleaning. To date, only a few works have been conducted for the NO_x reduction by char. In the future, more research works should be done for NO oxidation over char-based materials with

- and/or without activation. In addition, the integrated strategy of $De-SO_x$ and $De-NO_x$
- 2 could be developed by carbon materials with the proper modification methods.

- 4 Figure 9 Influence parameters on oxidation of NO to NO₂ over carbon-based catalysts
- 5

3

6 Acknowledgements

- 7 This work is supported by the *Startup Fund for Talents* at NUIST under Grant No.
- 8 2243141501046. The authors are grateful to the financial supports by the National
- 9 Science Foundation of China (21407079, 21577065, 91543115 and 91544220).

10

11 References

- [1] J. Zawadzki, M. Wisniewski, K. Skowronska, Heterogeneous reactions of NO₂ and NO-O₂ on the
 surface of carbons. *Carbon* 2003, 41, 235-246.
- [2] M. Wojciechowska, S. Lomnicki, Nitrogen oxides removal by catalytic methods, *Clean Products and Processes* 1999, 1, 237-242.
- [3] A. Fritz, V. Pitchon, The current state of research on automotive lean NO_x catalysis. *Appl. Catal. B: Environ.* 1997, 13, 1-25.
- [4] N.Y. Topsoe, H. Topsoe, J.A. Dumesic, Vanadia/Titania catalysts for selective catalytic reduction
 (SCR) of nitric-oxide by ammonia: I. Combined temperature-programmed in situ FTIR and on-line
 mass-spectroscopy studies. *J. Catal.* 1995, 151, 226-240.
- [5] B. Leckner, M. Karisson, K. Dam-Johansen, C.E. Weinell, P. Kilpinen, M. Hupa, Influence of
 additives on selective noncatalytic reduction of NO with NH₃ in circulating fluidized bed boilers.
 Ind. Eng. Chem. Res. 1991, 30, 2396-2404.
- 24 [6] H.Y. Huang, R.T. Yang, Removal of NO by reversible adsorption on Fe-Mn based transition

- 1 metal oxides. *Langmuir* 2001, 17, 4997-5003.
- 2 [7] D. Ighigeanu, D. Martin, E. Zissulescu, R. Macarie, C. Oproiu, E. Cirstea, H. Iovu, I. Calinescu, N.
- Iacob, SO₂ and NO_x removal by electron beam and electrical discharge induced non-thermal
 plasmas. *Vaccum* 2005, 77, 493-500.
- 5 [8] J. Muñiz, G. Marbán, A.B. Fuertes, Low temperature seletive catalytic reduction of NO over 6 modified activated carbon fibres. *Appl. Catal. B: Environ*.1999, 23, 25-35.
- [9] M.F. Irfan, J.H. Goo, S.D. Kim, Co₃O₄ based catalysts for NO oxidation and NO_x reduction in fast
 SCR process. *Appl. Catal. B: Environ.* 2008, 78, 267.
- 9 [10] A.A. Verma, S.A. Bates, T. Anggara, C. Paolucci, A.A. Parekh, K. Kamasamudram, A. Yezerets,
- 10 J.T. Miller, W.N. Delgass, W.F. Schneider, F.H. Ribeiro, NO oxidation: A probe reaction on Cu-SSZ-13.
- 11 J. Catal. 2014, 312, 179-190.
- [11] I. Ellmers, R.P. Velez, U. Bentrup, A. Brückner, W. Grünert, Oxidation and selective reduction
 of NO over Fe-ZSM-5 How related are these reactions? *J. Catal.* 2014, 311, 199-211.
- [12] Y. Kong, C.Y. Cha, Reduction of NO_x adsorbed on char with microwave energy. *Carbon* 1996,
 34, 1027-1033.
- [13] A. Claudino, J.L. Soares, R.F.P.M. Moreira, H.J. José, Adsorption equilibrium and breakthrough
 analysis for NO adsorption on activated carbons at low temperatures. *Carbon* 2004, 42,
 1483-1490.
- [14] J. Choi, K.S. Lee, D.Y. Choi, Y.J. Kim, S.S. Kim, Dry De-NO_x process via gas-phase photochemical
 oxidation using an ultraviolet and aerosolized H₂O/H₂O₂ hybrid system. *Energy Fuels* 2014, 28,
 5270-5276.
- [15] L. Chen, J. Lin, C. Yang, Absorption of NO₂ in a packed tower with Na₂SO₃ aqueous solution.
 Environ Prog 2002, 21, 225-230.
- [16] G.A. Chappell, Aqueous scrubbing of nitrogen oxides from stack gases. In: Jimeson R et al.,
 editors. Pollution Control and Energy Needs-Advances in Chemistry. Washington DC: American
 Chemical Society; 1974.
- [17] G. Ruitang, X. Gao, *Simultaneous removal of SO₂ and NO₂ by wet scrubbing using aqueous limestone slurry.* Extended abstracts, 11th international conference on electrostatic precipitation.
 2008; p. 602-605.
- [18] J.P.S. Sousa, M.F.R. Pereira, J.L. Figueiredo, Catalytic oxidation of NO to NO₂ on N-doped
 activated carbons. *Catalysis Today* 2011, 176, 383-387.
- [19] N. Tang, Y. Liu, H. Wang, Z. Wu, Mechanism study of NO catalytic oxidation over MnO_x/TiO₂
 catalysts. *J. Phys. Chem. C* 2011, 115, 8214-8220.
- [20] L. Li, Q. Shen, J. Cheng, Z. Hao, Catalytic oxidation of NO over TiO₂ supported platinum
 clusters I: Preparation, characterization and catalytic properties. *Appl. Catal. B: Environ.* 2010, 93,
 259-266.
- 37 [21] J. Despres, M. Elsener, M. Koebel, O. Krocher, B. Schnyder, A. Wokaun, Catalytic oxidation of

1 nitrogen monoxide over Pt/SiO₂. *Appl Catal B: Environ* 2004, 50, 73-82.

2 [22] V.M. Zamansky, H. Loc, P.M. Maly, W.R. Seeker, Oxidation of NO to NO₂ by hydrogen peroxide

- 3 and its mixtures with methanol in natural gas and coal combustion gases. Combust Sci Technol
- 4 1996, 120, 255-272.
- 5 [23] B. Weidenhof, M. Reiser, K. Stowe, W.F. Maier, M. Kim, J. Azurdia, et al. High-throughput
- 6 screening of nanoparticle catalysts made by flame spray pyrolysis as hydrocarbon/NO oxidation
- 7 catalysts. J. Am. Chem. Soc. 2009, 131, 9207-9219.
- 8 [24] H. Tsukahara, T. Ishida, M. Mayumi, Nitric Oxide- Biol. Ch. 1999, 3, 191.
- [25] Z. Guo, Y. Xie, I. Hong, J. Kim, Catalytic oxidation of NO to NO₂ on activated carbon. *Energy Conversion and Management* 2001, 42, 2005-2018.
- [26] J.H. Pavlish, E.A. Sondreal, M.D. Mann, E.S. Olson, K.C. Galbreath, D.L. Laudal, S.A. Benson,
 State review of mercury control options for coal-fired power plants. *Fuel Process. Technol.* 2003,
- 13 82, 89-165.

[27] X. Gao, S. Liu, Y. Zhang, X. Du, Z. Luo, K. Cen, Low temperature selective catalytic reduction of
 NO and NO₂ with NH₃ over activated carbon-supported vanadium oxide catalyst. *Catalysis Today* 2011, 175, 164-170.

- [28] Z. Wang, Y. Wang, D. Long, I. Mochida, W. Qiao, L. Zhan, X. Liu, S.-H. Yoon, L. Ling, Kinetics
 and mechanism study of low-temperature selective catalytic reduction of NO with urea
 supported on pitch-based spherical activated carbon. *Ind. Eng. Chem. Res.* 2011, 50, 6017-6027.
- [29] I. Mochida, Y. Kawabuchi, S. Kawano, Y. Matsumura, M. Yoshikawa, High catalytic activity of
 pitch-based activated carbon fibers of moderate surface area for oxidation of NO to NO₂ at room
 temperature. *Fuel* 1997, 76, 543-548.
- [30] I. Mochida, N. Shirahama, S. Kawano, Y. Korai, A. Yasutake, M. Tanoura, S. Fujii, M. Yoshikawa,
 NO oxidation over activated carbon fiber (ACF). Part 1. Extended kinetics over a pitch based ACF
 of very large surface area. *Fuel* 2000, 79, 1713-1723.
- [31] I. Mochida, S. Kisamori, M. Hironaka, S. Kawano, Y. Matsumura, M. Yoshikawa, *Oxidation of* NO into NO₂ over active carbon fibers. *Energy Fuels* 1994, 8, 1341-1344.
- [32] S. Adapa, V. Gaur, N. Verma, Catalytic oxidation of NO by activated carbon fiber (ACF). *Chem. Eng. J.* 2006, 116, 25-37.
- 30 [33] B. Galliker, R. Kissner, T. Nauser, W.H. Koppenol, Intermediates in the autoxidation of 31 nitrogen monooxide. *Chemistry-A European Journal* 2009, 15, 6161-6168.
- 32 [34] W.J. Zhang, S. Rabiei, A. Bagreev, M.S. Zhuang, F. Rasouli, Study of NO adsorption on 33 activated carbons. *Appl. Catal. B: Environ.* 2008, 83, 63-71.
- [35] J.D. Atkinson, Z. Zhang, M.J. Rood, 105th Annual Meeting of the Air & Waste Management
 Association, San Antonio, 2012, Paper 2012-A-2058-AWMA.
- [36] J.D. Atkinson, Z. Zhang, Z. Yan, M.J. Rood, Evolution and impact of acidic oxygen functional
 groups on activated carbon fiber cloth during NO oxidation. *Carbon* 2013, 54, 444-453.

- 1 [37] Z. Yan, Introduction to Catalysis, Press of Chemical Industry, Beijing, 2005.
- [38] J.A. Loiland, R.F. Lobo, Oxidation of zeolite acid sites in NO/O₂ mixtures and the catalytic
 properties of the new site in NO oxidation. *J. Catal.* 2015, 325, 68-78.
- [39] S.N. Ahmed, R. Baldwin, F. Derbyshire, B. McEnaney, J. Stencel, Catalytic reduction of nitric
 oxide over activated carbons. *Fuel* 1993, 72, 287-292.
- [40] P. Nikolov, M. Khristova, D. Mehandjiev, Low-temperature NO removal over
 copper-containing activated carbon. *Colloids & Surfaces A Physicochemical & Engineering Aspects*2007, 295, 239-245.
- 9 [41] A. Claudino, J.L. Soares, R.F.P.M. Moreira, H.J. Jose, Adsorption equilibrium and breakthrough
 analysis for NO adsorption on activated carbons at low temperatures. *Carbon* 2004, 42,
 11 1483-1490.
- [42] D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, D.F. Quinn, Influence of pore size
 distribution on methane storage at relatively low pressure: preparation of activated carbon with
 optimum pore size. *Carbon* 2000, 40, 989-1002.
- [43] E. Raymundo-Piñero, D. Cazorla-Amorós, C. Salinas-Martínez de Lecea, A. Linares-Solano,
 Factors controling the SO₂ removal by porous carbons: relevance of the SO₂ oxidation step.
 Carbon 2000, 38, 335-344.
- [44] M.A. Lillo-Ródenas, D. Cazorla-Amorós, A. Linares-Solano, Behaviour of activated carbons
 with different pore size distributions and surface oxygen groups for benzene and toluene
 adsorption at low concentrations. *Carbon* 2005, 43, 1758-1767.
- [45] R.S. Rathore, D.K. Srivastava, A.K. Agarwal, N. Verma, Development of surface functionalized
 activated carbon fiber for control of NO and particulate matter. *J. Hazard. Mater.* 2010, 173,
 211-222.
- [46] A.M. Rubel, M.L. Stewart, J.M. Stencel, Activated carbon for control of nitrogen oxide
 emissions. J. Mater. Res. 1995, 10, 562-567.
- [47] E. Richter, H.-J. Schmidt, H.-G. Schecker, Adsorption and catalytic reactions of NO and NH₃ on
 activated carbon. *Chem. Eng. Technol.* 1990, 13, 332-340.
- [48] J.P.S. Sousa, M.F.R. Pereira, J.L. Figueiredo, NO oxidation over nitrogen doped carbon
 xerogels. *Appl. Catal. B: Environ.* 2012, 125, 398-408.
- [49] H. Teng, Y.-F. Hsu, Y.-T. Tu, Reduction of NO with NH₃ over carbon catalysts the influence of
 carbon surface structures and the global kinetics. *Appl. Catal. B: Environ.* 1999, 20, 145-154.
- [50] X. Wan, H. Shi, X. Zou, G.E. Peng, D. Wang, Effect of nitrogen doping on the reduction of
 nitric oxide with activated carbon in the presence of oxygen. *Journal of Zhejiang University Science A* 2008, 9, 113-117.
- [51] J.P.S. Sousa, M.F.R. Pereira, J.L. Figueiredo, Modified activated carbon as catalyst for NO
 oxidation. *Fuel Process. Technol.* 2013, 106, 727-733.
- 37 [52] W.-J. Zhang, A. Bagreev, F. Rasouli, Reaction of NO₂ with activated carbon at ambient

- 1 temperature. Ind. Eng. Chem. Res. 2008, 47, 4358-4362.
- 2 [53] S. Yang, J. Li, C. Wang, J. Chen, L. Ma, H. Chang, L. Chen, Y. Peng, N. Yan, Fe-Ti spinel for the
- selective catalytic reduction of NO with NH₃: Mechanism and structure-activity relationship. *Appl.*
- 4 *Catal. B: Environ.* 2012, 117-118, 73-80.
- [54] J. Després, M. Elsener, M. Koebel, O. Kröcher, B. Schnyder, A. Wokaun, Catalytic oxidation of
 nitrogen monooxide over Pt/SiO₂. *Appl. Catal. B: Environ.* 2004, 50, 73-82.
- [55] Z. Zhang, J.D. Atkinson, B. Jiang, M.J. Rood, Z. Yan, Nitric oxide oxidation catalyzed by
 microporous activated carbon fiber cloth: An updated reaction mechanism. *Appl. Catal. B: Environ.* 2014, 148-149, 573-581.
- [56] J. Miyawaki, T. Shimohara, N. Shirahama, A. Yasutake, M. Yoshikawa, I. Mochida, S.-H. Yoon,
 Removal of NO_x from air through cooperation of the TiO₂ photocatalyst and urea on activated
 carbon fiber at room temperature. *Appl. Catal. B: Environ.* 2011, 110, 273-278.
- [57] W. Wang, G. McCool, N. Kapur, G. Yuan, B. Shan, M. Nguyen, U.M. Graham, B.H. Davis, G.
 Jacobs, K. Cho, X. Hao, Mixed-phase oxide catalyst based on Mn-mullite (Sm, Gd)Mn₂O₅ for NO
 oxidation in diesel exhaust. *Science* 2012, 337, 832-835.
- [58] I. Mochida, Y. Korai, M. Shirahama, S. Kawano, T. Hada, Y. Seo, M. Yoshikawa, A. Yasutake,
 Removal of SO_x and NO_x over activated carbon fibers. *Carbon* 2000, 38, 227-239.
- [59] J. Ding, Q. Zhong, S. Zhang, F. Song, Y. Bu, Simultaneous removal of NO_x and SO₂ from
 coal-fired flue gas by catalytic oxidation-removal process with H₂O₂. *Chem. Eng. J.* 2014, 243,
 176-182.
- [60] W. Shen, W. Fan, Nitrogen-containing porous carbons: synthesis and application. J. Mater.
 Chem. A 2013, 1, 999-1013.
- [61] B. Cosane, C. Alba-Simionesco, F. Audonnet, G. Dosseh, K.E. Gubbins, Adsorption, structure
 and dynamics of benzene in ordered and disordered porous carbons. *Phys. Chem. Chem. Phys.*2011, 13, 3748-3757.
- 26 [62] S.M. Manocha, Porous carbons. *Sadhana* 2003, 28, 335.
- [63] J.A. Loiland, R.F. Lobo, Low temperature catalytic NO oxidation over microporous materials. *J. Catal.* 2014, 311, 412-423.
- [64] N. Artioli, R.F. Lobo, E. Iglesia, Catalysis by confinement: Enthalpic stabilization of NO
 oxidation transition states by microporous and mesoporous siliceous materials. *J. Phys. Chem. C* 2013, 117, 20666-20674.
- [65] R. Yan, T. Chin, Y.L. Ng, H.Q. Duan, D.T. Liang, J.H. Tay, Influence of surface properties on the
 mechanism of H₂S removal by alkaline activated carbons. *Environ. Sci. Technol.* 2004, 38, 316-323.
- [66] T.J. Bandosz, On the adsorption/oxidation of hydrogen sulfide on activated carbons at
 ambient temperature. *J. Colloid Interface Sci.* 2002, 246, 1-20.
- [67] T.J. Bandosz, Effect of pore structure and surface chemistry of virgin activated carbons on
 removal of hydrogen sulfide. *Carbon* 1999, 37, 483-491.

[68] S.V. Mikhalovsky, Y.P. Zaitsev, Catalytic properties of activated carbons I. Gas-phase oxidation
 of hydrogen sulphide. *Carbon* 1997, 35, 1367-1374.

- [69] F. Adib, A. Bagreev, T.J. Bandosz, Effect of surface characteristics of wood-based activated
 carbons on adsorption of hydrogen sulfide. *J. Colloid Interface Sci.* 1999, 214, 407-415.
- 5 [70] F. Adib, A. Bagreev, T.J. Bandosz, Effect of pH and surface chemistry on the mechanism of
- 6 H2S removal by activated carbons. J. Colloid Interface Sci. 1999, 216, 360-369.
- [71] A. Bagreev, F. Adib, T.J. Bandosz, pH of activated carbon surface as an indication of its
 suitability for H2S removal from moist air streams. *Carbon* 2001, 39, 1897-1905.
- 9 [72] T. Sun, Y. Shen, J. Jia, Gas cleaning and hydrogen sulfide removal for COREX coal gas by
 sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer. *Environ. Sci. Technol.* 2014, 48, 2263-2272.

[73] A. Bagreev, J.A. Menendez, I. Dukhno, Y. Tarasenko, T.J. Bandosz, Bituminous coal-based
 activated carbons modified with nitrogen as adsorbent of hydrogen sulfide. *Carbon* 2004, 42,
 469-476.

- [74] A.D. Budaeva, E.V. Zoltoev, Porous structure and sorption properties of nitrogen-containing
 activated carbon. *Fuel* 2010, 89, 2623-2627.
- [75] H.F. Gorgulho, F. Gonçalves, M.F.R. Pereira, J.L. Figueiredo, Synthesis and characterization of
 nitrogen-doped carbon xerogels. *Carbon* 2009, 47, 2032-2039.
- [76] K. Jurewicz, R. Pietrzak, P. Nowicki, H. Wachowska, Capacitance behaviour of brown coal
 based active carbon modified through chemical reaction with urea. *Electrochimica Acta* 2008, 53,
 5469-5475.
- [77] R. Pietrzak, XPS study and physico-chemical properties of nitrogen-enriched microporous
 activated carbon from high volatile bituminous coal. *Fuel* 2009, 88, 1871-1877.
- [78] W. Shen, Z. Li, Y. Liu, Surface chemical functional groups modification of porous carbon.
 Recent Patents on Chemical Engineering 2008, 1, 27-40.
- [79] J. Alcañiz-Monge, A. Bueno-López, M.A. Lillo-Rodenas, M.J. Illán-Gómez, NO adsorption on
 activated carbon fibers from iron-containing pitch. *Mircoporous and Mesoporous Materials* 2008,
 108, 294-302.
- [80] K. Li, L. Ling, C. Lu, W. Qiao, Z. Liu, L. Liu, I. Mochida, Catalytic removal of SO₂ over
 ammonia-activated carbon fibers. *Carbon* 2001, 39, 1803-1808.
- 31 [81] H.-P. Boehm, Catalytic properties of nitrogen-containing carbons, in: P. Serp, J.L. Figueiredo
- 32 (Eds.), Carbon Materials for Catalysis, Wiley, Hoboken, New Jersey, 2009, pp. 219-265.
- [82] S. Matzner, H.P. Boehm, Influence of nitrogen doping on the adsorption and reduction of
 nitric oxide by activated carbons. *Carbon* 1998, 36, 1697-1703.
- [83] J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Órfão, Modification of the surface
 chemistry of activated carbons. *Carbon* 1999, 37, 1379-1389.

28

RSC Advances

1 [84] B. Stöhr, H.P. Boehm, R. Schlögl, Enhancement of the catalytic activity of activated carbons in 2 oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of 3 a superoxide species as a possible intermediate. Carbon 1991, 29, 707-720. 4 [85] B.J. Ku, J.K. Lee, D. Park, H.-K. Rhee, Treatment of activated carbon to enhance catalytic 5 activity for reduction of nitric oxide with ammonia. Ind. Eng. Chem. Res. 1994, 33, 2868-2874. 6 [86] R.S. Rathore, D.K. Srivastava, A.K. Agarwal, N. Verma, Development of surface functionalized 7 activated carbon fiber for control of NO and particulate matter. J. Hazard. Mater. 2010, 173, 8 211-222. 9 [87] S. Matzner, H.P. Boehm, Influence of nitrogen doping on the adsorption and reduction of 10 nitric oxide by activated carbons. Carbon 1998, 36, 1697-1709. 11 [88] X. Gao, S. Liu, Y. Zhang, Z. Luo, K. Cen, Physicochemical properties of metal-loaded activated 12 carbons and relationship with their performance in the removal of SO₂ and NO. J. Hazard. Mater. 13 2011, 188, 58-66. 14 [89] M. Wang, Z. Huang, T. Shimohara, F. Kang, K. Liang, NO removal by electrospun porous 15 carbon nanofibers at room temperature. Chem. Eng. J. 2011, 170, 505-511. 16 [90] M. Wang, Z. Huang, K. Shen, F. Kang, K. Liang, Catalytically oxidation of NO into NO₂ at room 17 temperature by graphitized porous nanofibers. Catal. Today 2013, 201, 109-114. 18 [91] A. Ramos, I. Cameán, A.B. García, Graphitization thermal treatment of carbon nanofibers. 19 Carbon 2013, 59, 2-32. 20 [92] M. Endo, Y.A. Kim, T. Hayashi, T. Yanagisawa, H. Muramatsu, M. Ezaka, et al. Microstructural 21 changes induced in "stacked cup" carbon nanofibers by heat treatment. Carbon 2003, 41, 22 1941-1947. 23 [93] S. Lim, S.H. Yoon, I. Mochida, J.H. Chi, Surface modification of carbon nanofiber with high 24 degree of graphitization. J. Phys. Chem. B 2004, 108, 1533-1536. 25 [94] X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, et al. N-doping of graphene through 26 electrothermal reactions with ammonia. Science 2009, 324, 768-771. [95] N.O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, et al. Graphene: an emerging electronic 27 material. Adv. Mater. 2012, 24, 5782-5825. 29 [96] S.Y. Pan, I.A. Aksay, Factors controlling the size of graphene oxide sheets produced via the 30 graphite oxide route. ACS Nano 2011, 5, 4073-4083. 31 [97] D. Li, R.B. Kaner, Materials science. Graphene-based materials. Science 2008, 320, 32 1170-1171. 33 [98] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 34 1339. 35 [99] A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 2007, 6, 183-191. 36 [100] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, et al. Graphene and graphene oxide:

- 1 synthesis, properties, and applications. *Adv. Mater.* 2010, 22, 3906-3924.
- 2 [101] Z. Guo, M. Wang, Z. Huang, F. Kang, Preparation of graphene/carbon hybrid nanofibers and
- 3 their performance for NO oxidation. *Carbon* 2015, 87, 282-291.
- 4 [102] J. Zhou, Z. Sui, J. Zhu, P. Li, D. Chen, Y. Dai, et al. Characterization of surface oxygen 5 complexes on carbon nanofibers by TPD, XPS and FT-IR. *Carbon* 2007, 45, 785-796.
- [103] Y.-W. Ju, S.-H. Park, H.-R. Jung, W.-J. Lee, Electrospun activated carbon nanofibers
 electrodes based on polymer blends. *J Electrochem Soc* 2009, 156, A489-A494.
- 8 [104] M. Bikshapathi, G.N. Mathur, A. Sharma, N. Verma, Surfactant-enhanced multiscale carbon
 9 webs including nanofibers and Ni-nanoparticles for the removal of gaseous persistent organic
 10 pollutants. *Ind. Eng. Chem. Res.* 2012, 51, 2104.
- [105] A. Chakraborty, D. Deva, A. Sharma, N. Verma, Adsorbents based on carbon microfibers and
 carbon nanofibers for the removal of phenol and lead from water. *J. Colloid Interface Sci.* 2011,
 359, 228.
- [106] S. Lim, S.H. Yoon, Y. Shimizu, H. Jung, I. Mochida, Surface control of activated carbon fiber
 by growth of carbon nanofiber. *Langmuir* 2004, 20, 5559.
- [107] H. Katepalli, M. Bikshapathi, C.S. Sharma, N. Verma, A. Sharma, Synthesis of hierarchical
 fabrics by electrospinning of PAN nanofibers on activated carbon microfibers for environmental
 remediation applications. *Chem. Eng. J.* 2011, 171, 1194.
- [108] R.M. Singhal, A. Sharma, N. Verma, Micro-nano hierarchal web of activated carbon fibers
 for catalytic gas adsorption and reaction. *Ind. Eng. Chem. Res.* 2008, 47, 3700.
- [109] P. Talukdar, B. Bhaduri, N. Verma, Catalytic oxidation of NO over CNF/ACF-supported CeO₂
 and Cu nanoparticles at room temperature. *Ind. Eng. Chem. Res.* 2014, 53, 12537-12547.
- [110] R.W. Pekala,Organic aerogels from the polycondensation of resorcinol with formaldehyde. *J. Mater. Sci.* 1989, 24, 3221-3227.
- [111] P.V. Samant, F. Gonçalves, M.M.A. Freitas, M.F.R. Pereira, J.L. Figueiredo, Surface activation
 of a polymer based carbon. *Carbon* 2004, 42, 1321-1325.
- [112] H.F. Gorgulho, F. Gonçalves, M.F.R. Pereira, J.L. Figueiredo, Synthesis and characterization of
 nitrogen-doped carbon xerogels. *Carbon* 2009, 47, 2032-2039.
- [113] K. Jurewicz, R. Pietrzak, P. Nowicki, H. Wachowska, Capacitance behaviour of brown coal
 based active carbon modified through chemical reaction with urea. *Electrochimica Acta* 2008, 53,
 5469-5475.
- [114] M. Pérez-Cadenas, C. Moreno-Castilla, F. Carrasco-Marín, A.F. Pérez-Cadenas, Surface
 chemistry, porous texture, and morphology of N-doped carbon xerogels. *Langmuir* 2008, 25,
 466-470.
- [115] J.P.S Sousa, M.F.R. Pereira, J.L. Figueiredo, Carbon xerogel catalyst for NO oxidation.
 Catalysts 2012, 2, 447-465.

- 1 [116] E. Lam, J.H.T. Luong, Carbon materials as catalyst supports and catalysts in the 2 transformation of biomass to fuels and chemicals. *ACS Catal.* 2014, 4, 3393-3410.
- [117] Y. Shen, Carbothermal synthesis of metal-functionalized nanostructures for energy and
 environmental applications. J. Mater. Chem. A 2015, 3, 13114-13188.
- 5 [118] H.S. Kambo, A. Dutta, A comparative review of biochar and hydrochar in terms of 6 production, physico-chemical properties and applications. *Renew. Sust. Energ. Rev.* 2015, 45, 7 359-378.
- 8 [119] Y. Shen, Biochars as promising carbonaceous adsorbents or catalysts for tar elimination
 9 during biomass gasification. *Renew. Sust. Energ. Rev.* 2015, 43, 281-295.
- [120] L. Dong, S. Gao, W. Song, G. Xu, Experimental study of NO reduction over biomass char. *Fuel Process. Technol.* 2007, 88, 707-715.
- [121] M. Guerrero, A. Millera, M.U. Alzueta, R. Bilbao, Experimental and kinetic study at high
 temperatures of the NO reduction over Eucalyptus char produced at different heating rates.
 Energy Fuels 2011, 25, 1024-1033.
- [122] W. Fan, Y. Lu, M. Xiao, Effect of peroxidation O₂ concentration on the reduction reaction of
 NO by char at high temperature. *Ind. Eng. Chem. Res.* 2013, 52, 6101-6111.
- [123] X. Wu, Q. Song, H. Zhao, Z. Zhang, Q. Yao, Kinetic modeling of inherent mineral catalyzed
 NO reduction by biomass char. *Environ. Sci. Technol.* 2014, 48, 4184-4190.
- 19 [124] X. Wang, J. Si, H. Tan, Q. Zhao, T. Xu, Kinetics investigation on the reduction of NO using 20 straw char based on physicochemical characterization. *Bioresour. Technol.* 2011, 102, 7401-7406.
- [125] H. Chen, D. Chen, L. Hong, Influences of activation agent impregnated sewage sludge
 pyrolysis on emission characteristics of volatile combustion and De-NO_x performance of activated
 char. *Appl. Energy* 2015, 156, 767-775.
- [126] S.C. Ma, J. Yao, X. Ma, L. Cao, M. Guo, Removal of SO₂ and NO_x using microwave swing
 adsorption over activated carbon carried catalyst. *Chem. Eng. Technol.* 2013, 36, 1217-1224.
- [127] X. Wang, X. Ma, S. Zhao, B. Wang, C. Song, Nanoporous molecular basket sorbent for NO₂
 and SO₂ capture based on a polyethylene glycol-loaded mesoporous molecular sieve. *Energy Environ. Sci.* 2009. 2, 878-882.
- 29
- 30
- 31
- 32
- 33
- 34
- 35

RSC Advances Accepted Manuscript

 1

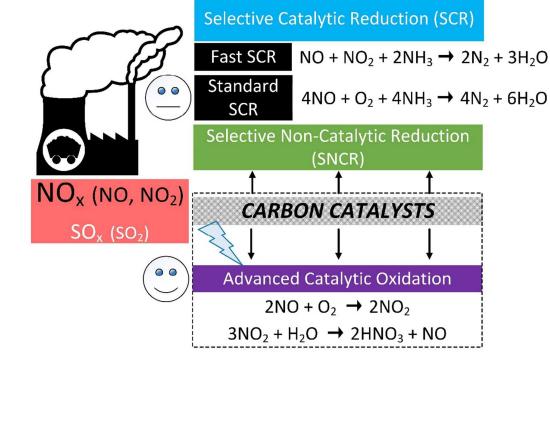
 2

 3

 4

 5

 6


 7

 8

 Graphical Abstract

 9

 This paper reviewed recent progress in catalytic oxidation of nitric oxide (NO) over various carbonaceous materials, such as activated carbon, carbon nanofibers with the aim of NO abatement.

14 15

12