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Biopsy based diagnosis of oral precancers like leukoplakia (OLK) and submucous fibrosis (OSF) as well as squamous cell 

carcinoma (OSCC) suffers from observer specific variability. Present work explored the utility of intensity and textural 

features from optical coherence tomography (OCT) images after specific feature subset selection for precise classification 

of oral lesions using variants of support vector machine. Concomitant application of Fourier transform infrared (FTIR) 

spectroscopy for endorsing global biochemical signatures, and histochemistry was performed further for value addition of 

the OCT findings. Immunohistochemical findings for characterization of specific local molecular alteration were also 

included in this. Result suggested that, OCT features could differentiate the lesions with high sensitivity and specificity. The 

FTIR result showed glycogen, keratin and carbohydrate related alteration in OSCC, decrease in collagen specific amino 

acids and skeletal muscle related proteins in OSF and distinct variation in tissue hydration status in diseases. There was 

also increase in keratin layer thickness in OLK due to overexpression of Cytokeratin10 in superficial layer; while in OSF, 

skeletal muscle was found to be replaced with dense collagen I. These disease specific alterations were assumed to be the 

underlying phenomenon associated with intensity and textural variations in OCT images, using which specific quantitative 

imaging biomarkers were proposed.  

Introduction 

Optical diagnostic systems like optical coherence tomography 

(OCT), Fourier transform infrared spectroscopy (FTIR), Raman 

spectroscopy, microendoscopy, and fluorescence spectroscopy 

are effectively emerging for non-invasive studies of pathologies, 

especially for characterization of pre-cancer and cancer. These 

techniques also help in value addition to the existing 

histopathological diagnostic gold standard as well as molecular 

pathology towards exploration of newer information.
1
  

OCT, a non-invasive imaging technique, provides real-time, high-

resolution, micro-architectural sub-surface images of nearly up 

to 2mm tissue depth.
 2

 Previous studies correlated healing 

progression and maturation of epithelial and sub-epithelial 

components considering OCT image attributes and 

histopathological features.
3
 ‘Lucidity’ is the optical intensity 

descriptor used for interpreting OCT images. It tends to vary in 

different regions of layered body structure like oral mucosa, skin 

wounds etc. Since the operating principle of OCT imaging is 

governed by backscattering of light and exploiting a ‘biological 

window’ with minimal absorption, the changes in tissue 

refractive index modulate intensity characteristics.
4 

 Such 

scattering also depends upon tissue structural components, 

surface roughness
5
, hydration cum maturation status, nuclei 

size, presence of collagen fibres, keratin content
6
, tissue type

7
 

and membrane lipid density of cells
8
.
 
In skin

9
, cervix

10
 and oral 

mucosa
11

 transition zones and architectural changes during 

disease progression can be identified by OCT. Such 

demarcations are possible due to differential thickness and 

composition of epithelial or sub-epithelial layers.
12, 13 

In this 

context, Ughi et. al utilized intravascular coronary OCT for 

differentiating normal and abnormal pathologic condition by 

textural image analysis.
14

 A recent study also implemented 

automated classification of oral malignancy in hamster buccal 

pouch model using OCT textural features.
15

 However, further 

scopes are there to enhance the diagnostic efficiency of such 

OCT images for oral mucosal lesions, by corroborating chemical 

and molecular signatures of tissues documented by FTIR, 

histochemistry (HC) and immunohistochemistry (IHC). The 

present study therefore primarily delved to classify oral lesions 
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on the basis of intensity and textural features of OCT images, 

besides providing tissue architectural information, and also to 

amalgamate information obtained from other modalities like 

FTIR and HC/IHC towards better characterization of oral lesions. 

The FT-IR and HC / IHC are considered for global assessment of 

biochemical variation and local composition/gene expressional 

changes respectively.  

FTIR is a widely used low cost tool for chemical portrayal of 

materials, yet underexplored diagnostic modality for spectral 

characterization of biopsied tissues.
6
 In this perspective, FTIR in 

transmission mode was used for functional group analysis and 

disease specific chemical characterization of oral lesions from 

global dimension. HC and IHC findings also provided local 

specific compositional alteration. Periodic acid–Schiff (PAS) 

depicted information on polysaccharides as well as keratins and 

Van Gieson's (VG) staining illustrated differential staining of 

collagen and other connective tissue components
16

. The IHC 

study of collagen I (COL-I) and cytokeratin 10 (CK 10) expressions 

endorsed the vital compositional
17

 and maturational
18

 

information respectively and corroborated with the tissue 

architecture.  

After analyzing the same tissues under different modalities, viz. 

OCT, FTIR, HC and IHC, two propositions were considered. 

Firstly, oral lesions can be segregated on the basis of a specific 

subset of intensity and textural features extracted from OCT 

images which could be further proposed for optimum disease 

segregation. Recently quantitative imaging biomarkers (QIBs) 

are defined as “an imaged characteristic that is objectively 

measured and evaluated as an indicator of normal biological 

processes, pathogenic processes or a response to a therapeutic 

intervention”.
17

 The concepts of QIBs further helped to assume 

that, if biochemical characterization of the same tissue sections 

can be performed, then selected OCT features could be 

rechristened to QIBs. Therefore support vector machine (SVM) 

was used here for disease classification, since it can classify the 

diseases with high predictive accuracy, medium fitting speed, 

and good prediction speed along with memory as shown in 

previous studies.
18, 19 

Quadratic and cubic kernels were also used 

here to manipulate the efficiency of the learners, since they are 

commonly used non-linear kernel beside linear one.
20

  After 

feature reduction using minimum Redundancy Maximum 

Relevance (mRMR) algorithm
21

 for feature subset identification 

followed by the classification task and biochemical 

characterization of the tissues using specified modalities, QIBs 

were thus proposed. 

Secondly, it was assumed that disease specific difference in 

the textural feature was due to disease specific changes in 

biochemical component at tissue level. The uniqueness in the 

present work is not only providing structural information but to 

treat OCT as a measurement modality which cannot be 

interpreted by a human observer. This may overcome the 

limitation of need of expert based disease diagnosis. It was also 

assumed that multimodal approach may provide 

complementary information, where disease specific difference 

in the intensity and textural features of OCT can also be logically 

correlated with characteristic molecular pathology attributes. 

Therefore underlying chemical alterations were also sought to 

validate the notion that difference in the global chemical 

signatures in different disease condition may be associated with 

changes in the intensity and textural features. In previous 

studies, amalgamation of the morphological information of OCT 

and biochemical information for diagnosis of diseases resulted 

in increased specificity and sensitivity,
22

 whereas this study was 

performed in fragmented manner to highlight utility of each 

modality.  

Two pre-cancers (viz. oral leukoplakia (OLK) and oral 

submucous fibrosis (OSF)), beside oral squamous cell carcinoma 

(OSCC) were chosen in this study. OLK is presented by white 

plaques of questionable risk having excluded from other known 

diseases or disorders that carry no increased risk for cancer,
23

  

whereas  OSF, defined as a chronic, premalignant condition is 

characterized by progressive sub-epithelial fibrosis.
24

  The 

reasons behind selection of the two lesions are, their high 

malignant potentiality and despite having differences in their 

origin, they both culminate into OSCC.
19

 OSCC is defined as “a 

malignant epithelial neoplasm exhibiting squamous 

differentiation as characterized by the formation of keratin 

and/or the presence of intercellular bridges”.
25

 It may also be 

emphasized that, consumption of tobacco (smoked or 

smokeless) and areca nut are the major risk factors associated 

with OLK and OSF respectively.
23

   

Finally on the basis of textural and intensity attribute 

selection in OCT images, molecular characterization of tissues 

with the OLK, OSF and OSCC as well as logical integration of the 

results, QIBs could be proposed, which is the main aim of this 

study. Multimodal diagnostic evaluation of oral lesions in turn 

thus not only addressed diagnostic ambiguity, but also 

emphasized role of value addition in translational research 

towards better disease characterization.  

Materials and Method  

Sample collection, OCT imaging and Tissue processing: In vivo 

OCT images were acquired from selected 57 patients (Age 18-

65). Clinical diagnostic criteria of the diseases were provided in 

Supplementary Table 1. Biopsy samples (7 Normal (NOM), 11 

OSF, 16 OLK and 23 OSCC) were also collected by the 

oncopathologists from the same area of oral cavity of the 

patients in GNIDSR, Kolkata under ethical clearance of 

institution ethical committee (GNIDSR/IEC/ECC/2015/010 dt. 

08/01/2015). Informed consent was obtained from all the 

subjects (both normal and diseased) recruited in the study. 

During NOM patient selection, only age and sex matched 

subjects were considered for this study. The tissue biopsies were 
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fixed in 10% formaldehyde solution in phosphate buffered 

saline.  

OCT imaging and tissue processing: In vitro preserved biopsy 

samples were subjected to SS-OCT imaging (Model: OCS1300SS, 

Thorlabs-Inc., Newton, NJ, USA having scanning pulsed laser 

with center wavelength of 1,325 nm, half-power spectral 

bandwidth < 100 nm, axial scan rate of 16 kHz, coherence length 

of 6.0 mm, and average output power of 10 mW) using the 

method of Sheet et al.
11

 3D image volumes of the whole tissue 

were acquired and subsequently 2D images with presence of 

disease area as suggested by onco-pathologists were used in this 

study. Image resolution of each 2D transverse OCT scans were 

512 × 512 pixels corresponding to 3 mm×3 mm physical size of 

the imaged section. 16 NOM, 41 OLK, 51 OSF and 64 OSCC OCT 

images were considered in the study. 

After OCT imaging of fixed tissues, they were paraffin 

embedded. 4 µm thick sections were mounted on six albumin 

coated glass slides and two poly-L-Lysine coated glass slides. All 

the sections were de-paraffinized using xylene. Albumin coated 

slides were used for FTIR data acquisition, H&E (Haematoxyline 

and Eosine) staining based histology, and HC, while the poly-L-

Lysine coated slides were used for IHC staining. 

Histological, histochemical and immunohistochemical staining: 

The tissue sections were placed on albumin coated glass slides. 

During H&E staining, the sections were stained with Harris' 

hematoxyline and counter stained with eosin. PAS staining was 

performed for glycogen and VG for collagen
16

. Briefly, in PAS 

staining deparaffinized tissue sections were first oxidized with 

0.5% Periodic acid for 10 minute, stained with Schiff reagent for 

5 minute and counter stained with Harris' hematoxyline. During 

VG staining, the deparaffinized samples were stained with 

Harris' hematoxyline and counterstained with picric acid and 

acid fuschin (9:1) mixture. Tissue sections were baked for 30 

minutes at 60°C followed by deparaffinization, gradual alcohol 

hydration for IHC staining, and then subjected to antigen 

retrieval (EZ-Retriever System V.2; BioGenex, USA) in 10 mM 

tris-ethylenediaminetetraacetic acid buffer (pH 9.0). 

Chromogenic methods were used to immunostain the sections. 

Staining for CK10 and COL-I was performed. Immuno-detection 

was performed with Horseradish Peroxidase conjugated 

secondary antibody with chromogen 3, 3'-diaminobenzidine and 

counterstained with Harris’ Hematoxyline using Super Sensitive 

Polymer-HRP IHC Detection System kit. The images were 

grabbed digitally under 20× objectives using a bright field 

inverted microscope (Zeiss Observer. Z1, Carl Zeiss, Germany). 

Feature extraction from OCT image: OCT images were 

segmented using ‘Image Segmenter’ app of MATLAB 2015a 

version. Initialization of the area was manually performed, on 

which edge based active contour segmentation was 

implemented and evolved with 100 iterations. Then eight 

intensity and 14 textural features were extracted from the semi-

automatically segmented area of both epithelium and sub-

epithelium of the OCT images (presented in Table 1 and 

described in details in supplementary Table 2 and 3). The 

primary features were selected for image based disease 

classification following Ughi et al.
14

  

Disease classification by statistical analysis of OCT image 

features: The NOM and disease classes based on the features 

were then classified using ‘Classification Learner’ app of MATLAB 

2015a version. Students’ two tailed t-test with 95% confidence 

interval was also performed between each of the disease classes 

and the NOM to identify disease specific important features 

separately. Firstly principal component analysis (PCA) followed 

by linear discriminant analysis (LDA) using 20 principal 

components were performed utilizing OCT intensity and textural 

feature towards global classification of oral tissues. Since there 

were significant overlapping in oral PMDs and normal condition 

(Fig. 1), SVM classification followed by sequential feature 

selection technique using mRMR for feature subset selection 

was also performed
21

. The insignificant features which were not 

utilized further have been presented in Table 2, while the 

significant ones were proposed as QIB. Linear, quadratic and 

cubic kernels variants of SVM were used during classification 

following 10 fold cross-validation.  

OCT-Histology image correlation: Structural correlation 

between the in vivo OCT images and corresponding H&E image 

were also performed (Fig. 1). Inter-rater agreement to assess 

the strength of agreement for disease class identification from 

histology images were shown using Kappa scoring and 

presented, as detected by two expert onco-pathologist in blind 

manner (Table 3). 

Table 1.  Features considered during OCT image analysis 

Feature Type Features Considered Reference 

Intensity  1.  Mean Gray 

2. Median Gray 

3. Standard Deviation Gray 

4. Entropy Gray 

5. Coefficient of variance Gray 

6. Skewness Gray 

7. Kurtosis Gray 

8. Variance Gray 

 

26
 

Texture  9.Contrast of Gray level co-

occurrence matrix (GLCM) 

10. Correlation of GLCM 

11. Energy of GLCM 

12. Entropy of GLCM 

13. Homogeneity of GLCM 

14. Cluster shade 

15. Cluster prominence 

16.Information measures of 

correlation 

17. Max Probability 

18. Sum of entropy 

19. Sum of variance 

20. Difference entropy 

21. Local binary pattern (LBP), 

mean  

22. LBP, standard deviation 

14, 26
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Table 2. Irrelevant features identified for oral lesion 

classification after mRMR sequential feature selection 

technique during oral lesion classification 

 

Diseases Classified Feature not used (Feature 

Number used in Table 1) 

NOM vs. OSF 2, 3, 4, 8, 14,  

NOM vs. OLK 14 

NOM vs. OSCC 0 

OLK vs. OSCC 10, 13 

OSF vs. OSCC 8, 19, 20 

OLK vs. OSF 1, 8, 19, 20 

NOM vs. OSF vs. OSCC 1, 4, 8, 18,19,  20 

NOM vs. OLK vs. OSCC 8, 9, 20 

NOM vs. OLK vs. OSF vs. OSCC 4,9 

 

Table 3: Strength of agreement for disease identification from 

histology images to address inter-observer variability 

Disease Kappa 

Score 

(κ) 

standard 

error of 

kappa (SEκ) 

95% 

Confidence 

Interval 

The 

strength of 

Agreement 

NOM 0.857 0.136 0.59-1.00 Very Good 

OLK 1.000 0.000 1.00-1.00 Perfect 

OSF 0.941 0.058 0.83-1.00 Very Good 

OSCC 1.000 0.000 1.00-1.00 Perfect 

 

 

 

FTIR data acquisition: The study was performed using Nicolet 

6700 spectrometer (Thermo Fisher, USA). Spectral data was 

acquired in transmission mode using acetone treated dried 

deparaffinized unstained sections. The tissues were dried using 

5 minute of acetone treatment, removed from slides and made 

into powder form. KBr (Potassium Bromide) pellet of the dried 

tissues were prepared using 0.02 mg of sample and 2 mg of KBr 
27

. One spectrum per sample was taken for each tissue section in 

KBr pellet. Minimization of tissue specific spectral variation was 

achieved using mean spectra of three tissue sections for each 

sample. Hence for 57 surgical samples, 171 spectra were taken. 

All the FTIR spectra were obtained for the range of 400–4000 

cm
-1

 at a resolution of 4 cm
-1

 with 32 scans. An 8-mm aperture 

diameter and DTGS detector was used during data acquisition. 

 

 

Statistical analysis of FTIR data: During spectral pre-processing, 

primary feature selection was performed for the spectral band 

between ‘fingerprint’ region, 1800 – 900 cm
-1

.
6
 Then 1st Savitzki-

Golay differentiation was applied for spectral smoothing (in first 

order differentiated spectra, differentiation order was 1, 

polynomial order was 2 and number of filter coefficients was 9). 

Further, spectrum-wise vector normalization as well as variable-

wise maximum normalization was performed. Then PCA was 

performed using 50 principal components followed by LDA. 

Tissue hydration status even after tissue processing and 

complete drying of the tissue was evaluated by feature selection 

of the spectra between (a) 1600-1800 cm
-1

, (b) 2400-2000 cm
-1

 

and (c) 3700 – 3000 cm
-1

 after rubberband like baseline 

correction (RBBC). The analyses were executed using 

‘IRootLab’
28

, MATLAB toolbox used for vibrational spectroscopy 

in MATLAB R2015a (MathWorks, USA). Second derivative of 

average spectra of each condition was plotted using the OMNIC 

9 software. 

 
 
Result and Discussion 
 

Biopsy based histopathological classification for oral pre-

cancers needs value addition due to lack of precise disease 

specific marker
19

 and high inter-observer variability
19, 29

. In this 

regard multimodal information generation and their logical 

corroboration may be effective as performed in this study by 

using OCT imaging along with relevant HC, IHC and FTIR studies.  

 

Present study utilized OCT imaging for specifying structural 

information, which was then correlated with histological 

findings (Fig 1). In Fig 1a and Fig1e architectural features like 

distinct keratin layers above supra-basal layer and prominent 

grooves of rete pegs were evident in NOM condition, while in Fig 

1b and Fig 1f increase in keratin thickness and hyperplasia were 

clearly visible, which were characteristic histological features of 

OLK. In OSF cases (Fig 1c and Fig 1g), atrophic rete-pegs and 

increased collagen deposition was noticed in sub-epithelial 

region. In cases of OSCC (Fig 1d and Fig 1h), increased numbers 

of blood vessels were clearly seen, which might be due to neo-

angiogenesis. 

 

Although this study correlated OCT with histology, but still 

expert based interpretation was needed for diagnosis. The 

intensity and textural features of OCT were therefore analyzed 

towards value addition to the process of oral pre-cancer and 

cancer differential diagnosis as well as to boost computer aided 

diagnostic (CAD) technique. The texture and intensity features 

based classification of OCT images (Table 1) using PCA-LDA score 

plots (Fig 2), depicted significant overlapping in between NOM 

and PMD conditions. Therefore, SVM based two class disease 

classification was further performed. The results suggested 

that selected OCT features could differentiate the lesions 

with high sensitivity and specificity, mostly with 90% overall 

accuracy. Table 4 presents the classification performance of 

SVM with different kernels, with 10 fold cross validation. 

Cubic and quadratic kernels were found to be more 

efficient than linear kernel during classification. All the 

lesions could be classified using quadratic SVM with 82.6%  
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Fig 1. In vivo OCT images of (a) NOM (b) OLK, (c) OSF (d) OSCC and 

corresponding H&E images (at 5x magnification) (e) NOM) (f) OLK (g) 

OSF and (h) OSCC depicting structural correlation 

 

 

 
Fig 2. LDA score plot of OCT intensity and textural feature using 20 

principle components after PCA-LDA with confidence ellipse 

representing confidence interval at 80% 

 

accuracy after optimization of classifiers, when four 

class classifications was performed. The confusion matrix 

has been presented in Fig 4. Further, sequential feature 

reduction based attribute selection was then performed 

towards optimal classification of OCT features. Specific feature 

subsets, not selected during two class disease classification 

(provided in Table 2), were not used further, and therefore 

the rest (not mentioned in Table 1) were considered as 

optimum selected features from OCT images. 

When two tailed ‘t’ test with 95% confidence interval 

was performed between the disease conditions with the 

OCT features, the information measure was significant to 

differentiate NOM vs. OSCC and NOM vs. OSF. Skewness of 

gray value was important for NOM vs. OSCC and NOM vs. 

OLK. Other statistically significant parameters (p<0.05) to 

delineate NOM and OSCC were mean and median of gray 

values, entropy of GLCM, cluster shade, cluster prominence 

and sum of variance. Correlation and homogeneity of 

GLCM, difference entropy as well as mean and standard 

deviation of LBP were found to be important to distinguish 

NOM and OSF. Lower entropy, mean of gray value in OSCC 

indicated increased homogeneity in OCT images, while low 

 

Table 4: Classification performance of variants of SVM 

based on intensity and texture features extracted from 

OCT images 

 

 

Classification 

conditions 

Classifier 

Used 

Sensitivity 

(%)  

Specificity 

(%) 

Accuracy 

(%) 

NOM vs. OLK Linear 

SVM 

37.5  85.4 71.9 

Quadratic 

SVM 

81.3 92.7 89.5 

Cubic SVM 87.5 97.6  94.7 

NOM vs. OSF Linear 

SVM 

56.3 98 88 

Quadratic 

SVM 

50 98 86.6 

Cubic SVM 75  98 92.5 

NOM vs. 

OSCC 

Linear 

SVM 

81.3 93.8 91.3 

Quadratic 

SVM 

68.8 95.3 90 

Cubic SVM 81.3 96.6 93.8 

OLK vs. OSCC Linear 

SVM 

58.5 85.9 75.2 

Quadratic 

SVM 

80.5 87.5 84.8 

Cubic SVM 80.5 92.2 87.6 

OSF vs. OSCC Linear 

SVM 

90.2 92.2 91.3 

Quadratic 

SVM 

88.2.2 95.3 92.2 

Cubic SVM 88.2 92.2 90.4 

OLK vs. OSF Linear 

SVM 

78 80.4 79.3 

Quadratic 

SVM 

92.7 86.3 90.2 

Cubic SVM 87.8 86.3 87 
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cluster prominence indicated small variation in gray 

scale too, as validated from H&E images (Fig 2)
30

.  

Since biochemical alteration could only be validated by 

multimodal characterization of oral lesions
 

and selected 

feature subset obtained from OCT images can only be 

rechristened to QIBs if significant alterations are present in 

disease conditions
17

, HC and IHC studies were performed and   

logically corroborated with OCT images towards better disease 

characterization. The HC and IHC (Fig 3) were effective to 

elucidate specific local molecular signatures, corroborative with 

structural information from OCT.  

 

As per HC and IHC observation, increased PAS positivity 

was obtained (Fig 3b) in OLK than NOM (Fig 3a) and it was 

in synergy with a previous result, since hyperkeratosis was 

a signature in OLK.
23 

This result is also reflected in OCT (Fig 

1b) and histology (Fig 1f).  Further the observation on 

expression of keratin producing cells, sought by CK 10 

expression, a marker of early terminal differentiation-cum-

maturation was indicative for differential diagnosis.
31

 Result 

showed moderate expression of CK10 in NOM (Fig 3e) and 

OSF (Fig 3g) while increased expression of this molecule 

throughout epithelium in OLK (Fig 3f) indicated the 

presence of immature keratin producing epithelial cells. 

However, CK10 expression was not evident in OSCC (Fig 

3h). 

Fig 3. Representative images of each study conditions of PAS stained tissue section of (a) NOM) (b) OLK (c) OSF and (d) OSCC; CK-10 stained 

tissue section of (e) NOM) (f) OLK (g) OSF and (h) OSCC; VG stained tissue section of (i) NOM) (j) OLK (k) OSF and (l) OSCC; Collagen I stained 

tissue section of (m) NOM) (n) OLK (o) OSF and (p) OSCC; Microscopic images provided at 20X magnification 
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Fig 4. Confusion matrix of multiclass oral lesion classification 

using intensity and textural features extracted from OCT images 

by quadratic SVM at 10 fold cross validation (TPR – True Positive 

Ratio, FNR – False Negative Ratio) 

 

 

 

When VG stained sections of OSF were compared to NOM 

and other conditions, significant increase in collagen 

deposition was found in lamina propria (Fig 3i-l), as 

literature suggests that in OSF muscle fibres are replaced by 

collagen.
32

  

Since the epithelium of all OLK cases were found to be 

immunopositive for CK10, in synergy with the previous 

studies,
33

 it can be deduced that increased lucidity of OLK  

in OCT image (Fig 1b) was perhaps due to increase in 

epithelial keratinized cells (Fig 3j) as well as more increased 

nuclei size than NOM (Fig 3a-b).
8
 Again in OSF, distinct 

lucidity of sub-epithelium (Fig 1c) could be due to increased 

COL-I expression (Fig 3o). In OSCC, OCT image (Fig 1d) was 

homogeneous in nature, as distinctness between 

epithelium and sub-epithelium was minimal. Same 

observation was also supported by H&E staining (Fig 1h).  

Fig 5. (a1) Mean FTIR spectra of whole region (400-4000
-1 

cm) (a2) Mean spectra of whole region (400-4000
-1

 cm) after rubberband like base 

like correction (RBBC) (a3) Mean spectra of fingerprint region after RBBC, maximum vector normalization followed by Savitzki-Golay 

differentiation of 1st Derivative spectra of NOM, OLK, OSF and OSCC (a4) LDA scores plot of pre-processed spectra after mean centering and 

PCA-LDA with confidence ellipse representing confidence interval at 95% (a.u – arbitrary unit),(b) Second derivative of average FTIR spectra of 

NOM, OLK, OSF and OSCC 
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Fig 6. Mean spectra after RBBC of the area between (a) 1600-1800 

cm
-1

 (b) 2400-2000 cm
-1

 and (c) 3700 – 3000 cm
-1

 for depicting 

tissue hydration status of NOM, OLK, OSF and OSCC 

 

As HC and IHC could provide only local information 

related to some specific molecules of epithelium and sub-

epithelium, in addition to these, FTIR (Fig 5 and 6) was 

performed on these oral pathosis  to check whether 

discriminating signature could be noted for the presence of 

unique disease specific global chemical alteration. The lesions 

were therefore tried to be segregated on the basis of global 

chemical signatures obtained in ‘fingerprint’ region of FTIR 

after spectral pre-processing by optimized PCA-LDA. Result 

presented in Fig 5a suggested that the lesions could be 

completely segregated when LDA scores plot with 

confidence ellipse representing confidence interval at 95% 

were plotted. It suggested significant variations in chemical 

composition between oral lesions, and thus the notion of 

disease specific chemical signature was validated. Since a 

recent review suggested degradation of collagen cores in 

OSF
34

, the cause of disappearance of peaks in OSF area 

between 1400-1700 cm
-1 

(Fig. 5b) was found possibly due 

to decrease in skeletal muscle phospholipid and proteins. 

Although collagen fibres are rich in proline and/or 

hydroxyproline
35

, amount of these amino acids along with 

glycine was found to be decreased in OSF
36

. The peak 

picking from second derivative spectra of the same region 

‘1800 - 900 cm
-1

’ for understanding minute chemical 

changes in each disease condition, Fig 5 depicted only 

minute alteration existed between  NOM and OLK, but it 

was noted that these two could be classified from OCT 

images with highest accuracy (Table 4). 

This result may be attributed to alteration in tissue 

hydration status that affects the scattering in OCT, as 

evident from Fig 6. When mean spectra after RBBC of areas 

between 1600-1800 cm
-1

, 2000-2400 cm
-1

 and 3700–3000 

cm
-1

 were considered, it was observed that OSCC possess 

higher content of bound water than normal condition, 

which was also in synergy with a recent study
7
. It was also 

evident from Fig 5 that bound water content in OLK was 

lesser than OSCC, but higher than NOM. Among all these 

oral lesions, bound water content was found to be least in 

OSF, which was not found to be reported in any previous 

studies. It was evident from Fig 5b that, in OSCC many 

peaks were found to be dissolved in the area of 

carbohydrates including glycogen (1200 – 900 cm
-1

). This 

finding was in synergy with a previous study
6
 and also 

validated with PAS positivity of the tissue sections (Fig 3 a-

d). Depletion of glycogen and associated proteins were 

found to be the major chemical attributes of OSCC, which 

also might be the underlying cause of homogeneity in pre-

processed FTIR peak in the area of 900-1500 cm
-1

 (Fig 4b). 

 

 

 

 

 

 

 

 

 

 

Page 8 of 11RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



RSC Advances  ARTICLE 

This journal is © The Royal Society of Chemistry 2015 RSC Advances, 2015, 00, 1-3 | 9 

Please do not adjust margins 

Please do not adjust margins 

 

Fig 7. Representing multimodal characterization of oral lesions with plausible informational convergence endorsing complementarity of 

methods 

 

Since biochemical alteration could be validated by 

multimodal characterization of oral lesions,
17

 the optimum 

selected features from OCT images therefore can be finally 

proposed as QIBs. Results thus also helped to prove both 

the proposed hypotheses that, oral lesions can be 

subjectively distinguished and characterized from the 

multimodal information obtained from OCT- histology-HC-

IHC and objectively classified with the aid of intensity and 

texture features of OCT images. It can also be substantiated 

that, difference in the disease specific epithelial and sub-

epithelial intensity and texture were due to chemical 

alteration of epithelium and sub-epithelium in different 

lesions. Hence it may be concluded that OCT information can be 

logically corroborated with FTIR, HC and IHC. The presumptions 

used to devise the study, the approach for addressing the 

research questions and a crisp outcome from meaningful  

 

integration of quantitative as well as qualitative knowledge 

obtained in this study has been depicted in Fig 7.  

 

Conclusion: 

 

This study convolved multimodal evaluation and 

classification of oral lesions, through integration of 

complementary information obtained from non-invasive 

techniques like OCT and invasive techniques like FTIR, HC 

and IHC of biopsied tissues. OCT provided morphological as 

well as optical features, FTIR documented global chemical 

signatures while HC and IHC showed local expression of 

specific biochemical components in epithelial and sub-

epithelial compartment. This proof-of-concept study also 

showed efficacy of intensity and textural features extracted 

from OCT images towards optimal painless diagnostic 

segregation of oral diseases with high sensitivity and specificity, 

which may mitigate challenges associated with inter - observer 
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variability in histopathological interpretation. Lesion specific 

biochemical changes highlighted few alterations in epithelial and 

sub-epithelial characteristics, on the basis of which OCT 

attributes could be re-christened to QIBs for oral lesion 

differentiation. Keratin associated epithelial and collagen 

associated sub-epithelial changes were found to be most 

significant in oral lesion pathogenesis through this multimodal 

tissue characterization study. This study therefore can be 

considered as a new hope to understand and differentiate oral 

lesions from multimodal imaging and analysis as well as system 

pathology approach
37

.  
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