

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

An Electrochemical sensor for determination of Tryptophan

2	in the presence of DA based on poly(L-Methionine)/
3	Graphene modified electrode
4	Yingzi Wang, Xiaoqian Ouyang, Yaping Ding [*] , Bingdi Liu, Duo Xu, Lanfeng Liao
5	Department of Chemistry, Shanghai University, Shanghai 200444, P R China
6	Abstract: A glassy carbon electrode modified with poly(L-Methionine) and graphene
7	composite film(PLME/GR/GCE) was fabricated by electropolymerization for
8	determination of L-tryptophan (L-Trp) in the presence of dopamine(DA). The
9	morphology and structure of the composite film were investigated by scanning
10	electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR), raman
11	spectroscopy and electrochemical impedance spectroscopy (EIS). Differential pulse
12	voltammetry (DPV) was utilized to investigate the electrocatalytical oxidation of
13	L-Trp from the potentially interfering species on the PLME/GR/GCE. Under optimum
14	conditions, the proposed method exhibited wide linear dynamic range 0.2–150 μ M,
15	with a detection limit (S/N=3), and good reproducibility and high selectivity.
16	Moreover, the proposed modified electrode has been successfully applied to
17	determine L-Trp in milk and human serum samples.
18 19 20	Keywords: Tryptophan; Poly(L-Methionine); Graphene

21

Address: Department of Chemistry, Shanghai University, Shanghai 200444, PR China.

^{*} Corresponding author. Tel.: +86 21 66134734; Fax: +86 21 66132797.

E-mail address: wdingyp@sina.com (Y.P. Ding)

22 1. Introduction

23 L-Tryptophan (Trp) is one of the most important essential amino acids having biochemical, nutritional and clinical significance in humans and herbivores.¹ It is a 24 derivative of alanine with an indole substituent on the β carbon.² The substituted 25 indole rings are widely used in biochemistry. Trp is one of the indispensable amino 26 acids since our body cannot synthesize it from other compounds through chemical 27 28 reactions. It is commonly synthesized in plants and microorganisms from shikimic acid.³ Trp is abundantly present in oats, milk, chocolates, bananas, yogurt, dried dates, 29 etc. as component of dietary protein while it is scarcely present in vegetables. Apart 30 31 from playing a pivotal role in the production of nervous system messengers, it acts as a precursor for many neurotransmitters and neurochemicals, including serotonin and 32 melatonin.⁴⁻⁵ Melatonin is known to help improve sleep, and serotonin is needed to 33 improve mood and mental health.⁶ Dopamine (DA) is also a kind of neurotransmitters, 34 which is found in whole human body and brain the same with Trp. The connection of 35 those two is an important part in psychiatry. Simultaneous determination of Trp and 36 DA is important, since both occur together in biological systems. The Trp 37 supplements have been used for some time as antidepressants, sleep aids and 38 39 weigh-loss aids. Improper metabolism of Trp accumulates toxic products in brain which causes hallucinations, delusions and schizophrenia.⁷ An overdose of Trp creates 40 drowsiness, nausea, dizziness and loss of appetite.⁸ Meanwhile, DA system plays a 41 central role in important medical conditions including Parkinson's disease, attention 42 deficit hyperactivity disorder, schizophrenia, and drug addiction. Therefore, it is 43 relevant to develop a simple, fast, inexpensive and accurate method for the 44

determination of Trp in food products, pharmaceuticals and biological fluids in the
presence of DA and is likely to have great significance in life science research and
drug analysis.

Some methods have been developed for the determination of Trp and DA 48 methods,⁹ chemiluminescence,¹⁰ chromatographic including. capillary 49 electrophoresis¹¹ and electrochemical methods¹². Among these methods, owing to Trp 50 and DA taking part in complex biochemical reactions are electroactive, 51 electrochemical techniques, with high sensitivity, high accuracy and simple operation, 52 have been paid much more attention in recent years. However, the electrochemical 53 detection of Trp faces some problems. At traditional working electrodes, Trp 54 oxidation suffers from high overpotential and sluggish kinetics.¹³ Chemically 55 modified electrodes have been constructed to overcome the problem, such as 56 Au-NPs/GCE,¹⁴ MCPE/MWCNTs,¹⁵ GNP/CILE,⁶ MWCNT-LDH-CPE² 57 Poly(4-aminobenzoic acid)/GCE,¹⁶ poly-sulfosalicylic acid/GCE¹⁷. Among these 58 electrodes, polymer film modified electrodes have been paid great attention due to 59 their good stability, biocompatibility, homogeneity, strong adherence to electrode 60 surface.^{18,19} Studies have indicated that polymer film modified electrodes show an 61 62 enhanced response for the determination of various important biological and clinical species²⁰⁻²² owing to the ability to provide a platform to selective recognition.²³ The 63 thickness, permeation and charge transport characteristics of the polymeric films can 64 be controlled by the potential and current applied. 65

66

As we know, graphene (GR) has attracted intense attention since its discovery in

2004.²⁴ The graphene has perfect conductivity which can amplify electrochemical
signal,²³ because of its fascinating two-dimensional structure, unusual electrochemical
properties, large accessible surface area, as well as good biocompatibility.^{25,26}

In short, the synergy of graphene and polymer leads to successful and effective recognition tryptophan. Those two materials can be modified compactly and homogeneously on the surface GCE owing to the electrostatic interactions. Thus, the composite film is applied to the electrochemical tryptophan, and the graphene combined polymer modified on GCE can be evaluated by electrochemical methods revealed a higher L-Trp affinity.²⁷

In this paper, L-Methionine (LME) was chosen as a monomer to form a polymer 76 modified film. It is one of the sulfur-containing proteinogenic amino acids and 77 governs the main supply of sulfur in the diet, and also prevents disorders in hair and 78 skin. Thus, we have fabricated a PLME/GR/GCE modified electrode by 79 electro-polymerization. The modified electrode was characterized by electrochemical 80 81 impedance spectroscopy and scanning electron microscopy, and it was applied to the 82 electrocatalytic oxidation of L -tryptophan (L-Trp) by differential pulse voltammetry (DPV). The process was simple and fast. Moreover, the modified electrode showed 83 84 excellent electrocatalytic properties in determination of L-Trp, making it suitable for the analytical purpose. 85

86

87 **2. Experimental**

88 2.1 Reagents and apparatus

89 L-Trp, L-Methionine and DA were supplied from obtained from Sinopharm

90	Chemical Reagent Co., Ltd. (Shanghai, China). Graphene was purchased from
91	XFNANO, INC (Nanjing, China). Phosphate buffer solutions (PBS, 0.1 M) with
92	different pH values were prepared by mixing stock solution of 0.1 M K ₂ HPO ₄ , 0.1 M
93	KH ₂ PO ₄ and 0.1 M H ₃ PO ₄ (Shanghai Chemical Reagent Co., Ltd., China). All
94	chemicals were of analytical grade and used without further purification.

electrochemical experiments were carried out on a CHI 95 All 660C electrochemical workstation (Shanghai Chenhua Co., Ltd., China) with a conventional 96 three-electrode system consisting of a PLME modified glassy carbon electrode, a 97 saturated calomel reference electrode and a Pt foil counter electrode. The pH value 98 was determined with a pHS-3C acidity meter. Scanning electron micrographs (SEM) 99 were carried out using a scanning electron microscope (JSM-6700F, 15.0 kV). Fourier 100 101 transform infrared (FTIR) spectra were carried out on a Fourier transform infrared 102 spectrometer (AVATAR 370, America). Raman scattering was performed on an INVIA (England) Raman Microscope using a 545.5 nm laser source. 103

104

105 2.2 Preparation of PLME/GR/GCEC

Prior to modification, the GCE was polished on chamois leather with 0.05 μ m a-alumina powder, thoroughly rinsed with water and sonicated in 1:1 (v/v) HNO₃, absolute alcohol and doubly distilled water in turn. The GR/GCE was gained via electro-deposition by applying a potentiostatic potential of +1.8 V in 0.1 M KCl containing 200 mL 1 mg mL⁻¹ GR.^{28,29} Electropolymerization of L-Methionine on the GR/GCE was carried out by 5 circles in 0.1 M PBS (pH 6.0) containing 1mM

RSC Advances Accepted Manuscript

112	L-Methionine. The parameters of this method were set as follows: potential range,
113	-0.8-2.1 V; scan rate, 100 mV/s; sample interval, 1 mV; sweep segment, 10; quiet
114	time, 2s.All experimental procedures were performed at room temperature. Then
115	PLME/GR/GCE was fabricated. Electrochemical response of L-Trp at bare GCE,
116	GCE modified with L-Methionine alone (PLME/GCE) and GR/GCE were also
117	followed for comparison.
118	
119	3. Results and discussion
120	3.1 Characterization of modified electrode
121	3.1.1 SEM, FTIR and Raman spectroscopy
122	Fig. 1A shows the SEM image of graphene and 1B illustrates poly L-Methionine
123	on the surface of GCE. It defines that each monomer granules uniformly dispersed in
124	the surface of GCE. In Fig. 1C, because of the different configuration, it shows the
125	composite film has been successfully modified on the surface of GCE.
126	<fig. 1="" here=""></fig.>
127	Fig. 2A illustrates the FTIR spectra of the monomer methionine (a) and
128	poly(methionine) (b). As show in curve a, it can be seen peaks of C-H stretching
129	vibration (2918 cm ⁻¹), N-H stretching vibration (3449 cm ⁻¹), O-H stretching vibration
130	(2609 cm ⁻¹), C-S stretching vibration (536 cm ⁻¹). These peaks are assigned to
131	characteristic absorption of methionine. As shown in curve b, it can be seen that the
132	peaks of 2111 cm^{-1} disappeared because the peaks of N-H became weak and the peaks
133	in fingerprint region become broader after polymerization. ³⁰ This was caused by the

134 poly-reaction of methionine, indicating that the PLME film has been formed.

135 Raman spectroscopy is a powerful nondestructive tool to distinguish ordered and 136 disordered crystal structures of carbon. The G-band, which originates from the first-order scattering from the doubly degenerate E_{2g} phonon modes of graphite in the 137 Brillouin zone center, is characteristic of all sp²-hybridized carbon networks, while 138 the prominent D peak is a breathing mode of k-point phonons of A_{1g} symmetry, 139 140 assigned to structural imperfections created by the attachment of oxygenated groups on the carbon basal plane.³¹⁻³³ Thus, the intensity ratio of the D and G bands (ID/IG) 141 offers not only clues to the oxidation degree and the size of sp^2 ring clusters in a 142 network of sp³ and sp² bonded carbon,³⁴ but also the degree of defects and disorder 143 of the graphitized structures.^{35,36} Fig. 2B presents the Raman spectra of bare GCE. 144 145 GR/GCE and PLME/GR/GCE with a distinguished changing of D/G intensity ratio. Specifically, the intensity ratio decrease from 1.815 of bare GCE to 1.093 of GR/GCE. 146 After the modification of PLME onto GR, the intensity ratio was 1.052 and a weak 147 peak appeared at 1753 cm⁻¹. The two prominent peaks of the D and G bands also 148 shifted from 1328.3 and 1600.9 cm⁻¹ of bare GCE to 1323.0 and 1601.9 cm⁻¹ of 149 GR/GCE, and 1340.4 and 1605.4 cm⁻¹ of PLME/GR/GCE. 150

151

<Fig. 2 here>

152

153 3.1.2 Electrochemical study of PLME/GR/GCE

Electrochemical impedance spectroscopy (EIS) was used as an efficient tool to characterize the interface properties of the electrode surfaces. The electron-transfer

156	resistance (R_{et}) at the electrode surface corresponds to the semicircle diameter of the
157	Nyquist plots. ³⁷ As shown in Fig. 3A, the diameter of the semicircular part of
158	PLME/GR/GCE was smaller than PLME/GCE and GR/GCE. This indicated that the
159	PLME/GR film greatly improves the conductivity and the electron transfer process.
160	Fig. 3B shows cyclic voltammograms in 0.1 M KCl containing 5.0 mM
161	[Fe(CN) ₆] ^{3-/4-} at bare GCE, GR/GCE, PLME/GCE and PLME/GR/GCE. For
162	PLME/GR/GCE, the peak current became larger than PLME/GCE and GR/GCE. This
163	may be attributed to the combination of GR and PLME increased the surface area and
164	conductivity of film. The peak current of PLME/GR/GCE was smaller than bare GCE,
165	may be caused by the thickness of the modified film.
166	<fig. 3="" here=""></fig.>
167	
168	3.2 Electrochemical behavior of modified electrode
169	The electrochemical behavior of modified electrode in the presence of L-Trp was
170	investigated by differential pulse voltammograms (DPV). The parameters of this
171	method were set as follows: potential range, 0.4-1.1 V; Potential increments, 0.004 V;
172	pulse period, 0.5 s; sample width, 0.0167 s; quiet time, 20 s. All experimental

procedures were performed at room temperature. Fig. 4 displays the DPV of the
electrochemical oxidation of 10 µM L-Trp in 0.1 M PBS (pH 2.5) at bare GCE (a),
PLME/GCE (b), GR/GCE (c) and PLME/GR/GCE (d). As for the bare GCE, the
oxidation peak of L-Trp was weak, and the oxidation peak of L-Trp appeared at 0.82 V.
At the PLME/GCE, the oxidation current of L-Trp was larger, and the oxidation peak

178	appeared shifted negatively to 0.80 V. After compositing the PLME and GR film, the
179	oxidation current of L-Trp became larger and the oxidation peak appeared at 0.76 V,
180	demonstrating that the combination of the PLME and GR helps enhance the kinetics
181	of the electrochemical process as an efficient promoter.
182	<fig. 4="" here=""></fig.>
183	
184	3.3 Effect of operational parameters
185	3.3.1 Effect of pH values
186	The relationship between pH and peak currents of L-Trp is illustrated in Fig. 5a.
187	It can be seen that the oxidation peak currents decreased gradually with the pH from
188	2.0 to 10.0. As shown in Fig. 5a, the maximum currents was achieved when the pH
189	increase to 2.5, and decreased when the pH was less than 2.5, we choose 2.5 for
190	further experiments.
191	The pH value of the supporting electrolyte is an important factor that affects the
192	electrochemical reactions of analytes. Fig. 5b represents the oxidation peak potential
193	(E _{pa}) of 10 μ M L-Trp at PLME/GR/GCE shifted negatively with the increase of pH
194	associated with a proton-transfer process. Linear dependence between potentials and
195	pH for L-Trp was obtained as follows:
196	$E_{\rm pa}$ (V) = 0.9134 – 0.0498 pH (R=0.9997).
197	The slope of the equation is -49.8mV/pH, which is in agreement with the ideal
198	state 59mV/pH(25 $^\circ C$). The result shows that the number of proton equals that of
199	electron in the reaction.

200	<fig. 5="" here=""></fig.>
201	
202	3.3.2 Effect of electro-polymerization cycles
203	The effect of the electro-polymerization cycles of PLME on the oxidation
204	currents of 10 μ M L-Trp was investigated by DPV. As shown in Fig. 6, the maximum
205	currents was achieved when the cycles are set to 5, and decreased when the cycles
206	was larger than 5. This may be associated with the thickness of the PLME film.
207	Therefore, the electro-polymerization cycles of 5 was selected.
208	<fig. 6="" here=""></fig.>
209	
210	3.3.3 Effect of scan rate
211	The cyclic voltammograms of 10 μ M L-Trp on the PLME/GR/GCE at various
212	scan rates (10–200 mV) are shown in Fig. 7. The insets demonstrate the relationship of
213	the oxidation peak currents (I_{pa}) with the scan rates. It can be seen that, the oxidation
214	currents of L-Trp was linearly proportional to the square roots of scan rates in the
215	range of 10–200 mV s ^{-1} , indicating that reactions of L-Trp on PLME/GR/GCE were
216	diffusion-controlled process. In addition, the oxidation peak potential (E_{pa}) shifts to
217	more positive values with the increase of scan rates, which suggests that the electron
218	transfer is quasi-reversible.
219	To further characterize the kinetic parameters, the influence of the scan rate on the
220	redox peak potential (E_{pa}) for L-Trp was also investigated by CV methods. This is
221	according to the Laviron method. ³⁸ The method predicts a linear relationship between

241

242

- 222 Epa and the logarithm of scan rate (log v). On the basis of Laviron's model, the
- 223 relationship between the potential and the scan rate can be expressed as follow.

$$E_{pa} = E^{0} + \frac{2.3RT}{(1-\alpha)nF}\log r$$

In Fig. 7B, it can be observed that the oxidation peak potential shifted positively with 224 the increase of scan rate, and the E_{pa} showed a linear dependence with log v. The 225 linear regression equation for L-Trp is as follow 226 E_{pa} (V) = 0.8089 + 0.0267 log v (V s⁻¹, R = 0.9987) 227 Generally, the electron-transfer coefficient (α) is around 0.4-0.6.³⁹ Assuming the 228 229 electron-transfer coefficient to be 0.6 for an irreversible electrode process. Accordingly, the electron-transfer number (n) can be calculated: for L-Trp is 1.85, 230 which is in agreement with previously reported result. 231 232 <Fig. 7 here> 233 Hence, the overall oxidation process of L-Trp involves two electrons and two protons 234 as shown in Scheme 1. Our results are consistent with the mechanism reported in the 235 literature. <Scheme. 1 here> 236 237 238 3.4 Calibration curve and interferences 239 Under the optimum conditions, the electrochemical behaviors of different concentrations of L-Trp were studied. As shown in Fig. 8, the change of DPVs

indicates that the oxidative peak current (Ipa) has linear relationship with the

concentration (c) of L-Trp. In the range from 4.0×10^{-8} to 1.0×10^{-5} M, a linear

243 regression equations:

245was obtained, with the detection limit (S/N = 3) and the sensitivity was246calculated to be 0.017μ M and 23.4μ A mM ⁻¹ cm ⁻² , respectively. Table 1 summarizes247the analytical results of the proposed method and comparison with other248electrochemical methods reported previously for detecting L-Trp. It can be seen that249the electrochemical performance of our method is comparable to the literature250methods.251 <fig. 8="" here="">252<table 1="">253In addition, DA is an important biological substance which often coexists with256L-Trp in biological samples. To evaluate the influence of DA on the determination of257displays the DPV of different concentration of L-Trp in 0.1 M PBS containing 5 μM258DA. The peak currents increased synchronously with concentrations of L-Trp,259implying that PLME/GR/GCE can be also applied for the simultaneous determination260of L-Trp in the presence of DA. A linear regression range was obtained:</table></fig.>	244	<i>I</i> _{pa} =0.1147+0.312 <i>c</i> (μM) (R=0.9953)	
 the analytical results of the proposed method and comparison with other electrochemical methods reported previously for detecting L-Trp. It can be seen that the electrochemical performance of our method is comparable to the literature methods. 	245	was obtained, with the detection limit (S/N = 3) and the sensitivity was	
 electrochemical methods reported previously for detecting L-Trp. It can be seen that the electrochemical performance of our method is comparable to the literature methods. 251 252 253 254 In addition, DA is an important biological substance which often coexists with L-Trp in biological samples. To evaluate the influence of DA on the determination of L-Trp, DA was added into 0.1 M PBS containing L-Trp for determination. Fig. 9 257 displays the DPV of different concentration of L-Trp in 0.1 M PBS containing 5 μM 258 DA. The peak currents increased synchronously with concentrations of L-Trp, 259 implying that PLME/GR/GCE can be also applied for the simultaneous determination 	246	calculated to be 0.017 μ M and 23.4 μ A mM ⁻¹ cm ⁻² , respectively. Table 1 summarizes	
 the electrochemical performance of our method is comparable to the literature methods. 251 Fig. 8 here> 252 Table 1> 253 254 In addition, DA is an important biological substance which often coexists with L-Trp in biological samples. To evaluate the influence of DA on the determination of L-Trp, DA was added into 0.1 M PBS containing L-Trp for determination. Fig. 9 displays the DPV of different concentration of L-Trp in 0.1 M PBS containing 5 μM 258 DA. The peak currents increased synchronously with concentrations of L-Trp, implying that PLME/GR/GCE can be also applied for the simultaneous determination 	247	the analytical results of the proposed method and comparison with other	
 methods. 250 methods. 251 Fig. 8 here> 252 Table 1> 253 254 In addition, DA is an important biological substance which often coexists with 255 L-Trp in biological samples. To evaluate the influence of DA on the determination of 256 L-Trp, DA was added into 0.1 M PBS containing L-Trp for determination. Fig. 9 257 displays the DPV of different concentration of L-Trp in 0.1 M PBS containing 5 μM 258 DA. The peak currents increased synchronously with concentrations of L-Trp, 259 implying that PLME/GR/GCE can be also applied for the simultaneous determination 	248	electrochemical methods reported previously for detecting L-Trp. It can be seen that	
 251 Since Series Series	249	the electrochemical performance of our method is comparable to the literature	
 252 253 254 In addition, DA is an important biological substance which often coexists with 255 L-Trp in biological samples. To evaluate the influence of DA on the determination of 256 L-Trp, DA was added into 0.1 M PBS containing L-Trp for determination. Fig. 9 257 displays the DPV of different concentration of L-Trp in 0.1 M PBS containing 5 μM 258 DA. The peak currents increased synchronously with concentrations of L-Trp, 259 implying that PLME/GR/GCE can be also applied for the simultaneous determination 	250	methods.	
 In addition, DA is an important biological substance which often coexists with L-Trp in biological samples. To evaluate the influence of DA on the determination of L-Trp, DA was added into 0.1 M PBS containing L-Trp for determination. Fig. 9 displays the DPV of different concentration of L-Trp in 0.1 M PBS containing 5 μM DA. The peak currents increased synchronously with concentrations of L-Trp, implying that PLME/GR/GCE can be also applied for the simultaneous determination 	251	<fig. 8="" here=""></fig.>	
In addition, DA is an important biological substance which often coexists with L-Trp in biological samples. To evaluate the influence of DA on the determination of L-Trp, DA was added into 0.1 M PBS containing L-Trp for determination. Fig. 9 displays the DPV of different concentration of L-Trp in 0.1 M PBS containing 5 μM DA. The peak currents increased synchronously with concentrations of L-Trp, implying that PLME/GR/GCE can be also applied for the simultaneous determination	252	<table 1=""></table>	
L-Trp in biological samples. To evaluate the influence of DA on the determination of L-Trp, DA was added into 0.1 M PBS containing L-Trp for determination. Fig. 9 displays the DPV of different concentration of L-Trp in 0.1 M PBS containing 5 μ M DA. The peak currents increased synchronously with concentrations of L-Trp, implying that PLME/GR/GCE can be also applied for the simultaneous determination	253		
L-Trp, DA was added into 0.1 M PBS containing L-Trp for determination. Fig. 9 displays the DPV of different concentration of L-Trp in 0.1 M PBS containing 5 μ M DA. The peak currents increased synchronously with concentrations of L-Trp, implying that PLME/GR/GCE can be also applied for the simultaneous determination	254	In addition, DA is an important biological substance which often coexists with	
displays the DPV of different concentration of L-Trp in 0.1 M PBS containing 5 μ M DA. The peak currents increased synchronously with concentrations of L-Trp, implying that PLME/GR/GCE can be also applied for the simultaneous determination	255	L-Trp in biological samples. To evaluate the influence of DA on the determination of	
 DA. The peak currents increased synchronously with concentrations of L-Trp, implying that PLME/GR/GCE can be also applied for the simultaneous determination 	256	L-Trp, DA was added into 0.1 M PBS containing L-Trp for determination. Fig. 9	
259 implying that PLME/GR/GCE can be also applied for the simultaneous determination	257	displays the DPV of different concentration of L-Trp in 0.1 M PBS containing 5 μM	
	258	DA. The peak currents increased synchronously with concentrations of L-Trp,	
of L-Trp in the presence of DA. A linear regression range was obtained:	259	implying that PLME/GR/GCE can be also applied for the simultaneous determination	
	260	of L-Trp in the presence of DA. A linear regression range was obtained:	
261 $I_{\text{pa}} = -0.0041 + 0.5095c (\mu\text{M}) (\text{R}=0.995) (0.2 - 10 \mu\text{M});$	261	$I_{\text{pa}} = -0.0041 + 0.5095c \ (\mu\text{M}) \ (\text{R}=0.995) \ (0.2-10 \ \mu\text{M});$	
262 $I_{\text{pa}} = 4.8955 \pm 0.0451 \ c \ (\mu\text{M}) \ (\text{R}=0.995) \ (10-150 \ \mu\text{M}).$	262	<i>I</i> _{pa} =4.8955+0.0451 <i>c</i> (μM) (R=0.995) (10–150 μM).	
263 <fig. 9="" here=""></fig.>	263	<fig. 9="" here=""></fig.>	
	264		

265	To investigate other possible interferences for the detection of L-Trp, various
266	foreign species were added into 0.1 M PBS (pH 2.5) containing 10 μ M L-Trp. Table 2
267	shows the signal change of different potential interferences for the determination of
268	10 μ M L-Trp. It was found that no significant interference (signal change <5%) for
269	these compounds: NaCl (500 μ M), KNO ₃ (500 μ M), ZnSO ₄ (500 μ M), NHCl ₄ (500 μ M),
270	L-Glucose(500 µM), L-Threonine (500 µM), L-Serine (500 µM), L-Alanine (500 µM),
271	L-Asparagic acid (500 μ M), L-Leucine (100 μ M), Ascorbic acid (250 μ M), dopamine
272	(100µM) and UA (100µM).
273	<table 2="" here=""></table>
274	
275	3.5 Reproducibility and stability
275 276	3.5 Reproducibility and stability In order to evaluate the precision of this method, a series of repetitive
276	In order to evaluate the precision of this method, a series of repetitive
276 277	In order to evaluate the precision of this method, a series of repetitive voltammetric measurements were carried out at the same PLME/GR/GCE. The
276 277 278	In order to evaluate the precision of this method, a series of repetitive voltammetric measurements were carried out at the same PLME/GR/GCE. The relative standard deviations (R.S.D.) for seven successive determinations of 10µM
276 277 278 279	In order to evaluate the precision of this method, a series of repetitive voltammetric measurements were carried out at the same PLME/GR/GCE. The relative standard deviations (R.S.D.) for seven successive determinations of 10µM L-Trp was 1.40%, indicating an excellent detecting reproducibility. The storage
276 277 278 279 280	In order to evaluate the precision of this method, a series of repetitive voltammetric measurements were carried out at the same PLME/GR/GCE. The relative standard deviations (R.S.D.) for seven successive determinations of 10µM L-Trp was 1.40%, indicating an excellent detecting reproducibility. The storage stability of PLME/GR/GCE was also investigated. After the modified electrode stored
276 277 278 279 280 281	In order to evaluate the precision of this method, a series of repetitive voltammetric measurements were carried out at the same PLME/GR/GCE. The relative standard deviations (R.S.D.) for seven successive determinations of 10µM L-Trp was 1.40%, indicating an excellent detecting reproducibility. The storage stability of PLME/GR/GCE was also investigated. After the modified electrode stored in the refrigerator for two weeks, the result shows that the catalytic current response

285 3.6 Real Samples analysis

Human serum samples and milk were selected as real samples for analysis by

287	the propose method. Both the serum samples and milk was diluted 5 times. The
288	diluted serum sample (20 $\mu L)$ was directly added into 10 mL of 0.1 PBS (pH 2.5). The
289	diluted milk (20 μ L) was injected into the same PBS solution. Both the solutions were
290	analyzed by the standard addition method for three times. The results were listed in
291	Table 3. The good recoveries of the samples indicate that the developed sensor is
292	applicable to the determination of L-Trp in real samples.
293	<table 3="" here=""></table>
294	
295	4. Conclusions
296	A convenient, rapid and stable biosensor for voltammetric determination of
297	L-tryptophan was developed by modifying the GCE with poly(L-Methionine) and
298	graphene composite film. The PLME/GR modified electrode is easy to prepare and
299	exhibited excellent electrocatalytic activity for L-Trp in the presence of DA. By this
300	simple method of fabrication, a much lower detection limit was achieved without
301	involving any pre-treatment or activation steps. Moreover, the analytical applicability
302	of the modified electrode has been evaluated by successfully employing it for the
303	determination of L-Trp in the blood serum and milk.
304	
305	5. Acknowledgements
306	This work is supported by the National Natural Science Foundation of China (No.
307	21271127, 61171033), the Nano-Foundation of Science and Techniques Commission
308	of Shanghai Municipality (No. 12nm0504200, 12dz1909403).
309	

310	References
311	[1] H. Wang, H. Cui, A. Zhang and R. Liu, Analytical Communications, 1996, 33,
312	275–277.
313	[2] O.J. D'Souza, R.J. Mascarenhas, T. Thomas, I.N.N. Namboothiri, M. Rajamathi, P.
314	Martis and J. Dalhalle, Journal of Electroanalytical Chemistry. 2013, 704, 220-
315	226.
316	[3] A.A. Ensafi, H.K. Maleh and S. Mallakpour, <i>Electroanalysis</i> , 2012, 24, 666–675.
317	[4] D. Ye, L. Luo, Y. Ding, B. Liu and X. Liu, Analyst, 2012, 137, 2840–2845.
318	[5] K. Palme, F. Nagy, Cell, 2008, 133, 31–32.
319	[6] A. Safavi, S. Momeni, <i>Electroanalysis</i> , 2010, 22, 2848 – 2855
320	[7] R.N. Goyal, S. Bishnoi, H. Chasta, M.A. Aziz, M. Oyama, Talanta, 2011, 85,
321	2626–2631.
322	[8] A. Ozcan, Y. Sahin, Biosensors and Bioelectronics, 2012, 31, 26-31.
323	[9] E. Kojima, M. Kai and Y. Ohkura, Journal of Chromatography A, 1993, 612, 90-
324	187.
325	[10] G.N. Chen, R.E. Lin, Z.F. Zhao, Analytica Chimica Acta, 1997, 341, 251–256.
326	[11] A. Zinellu, S. Sotgia and L. Deiana, Journal of Separation Science. 2012, 35,
327	1146–1151.
328	[12] G.P. Jin, X.Q. Lin, Electrochemistry Communications, 2004, 6, 60–454.
329	[13] Z. Zhang, S.Q. Gu, Y.P. Ding, J.D. Jin and F.F. Zhang, Analytical Methods, 2013,
330	5, 4859–4864.
331	[14] C.Y. Li, Y. Ya and G.Q. Zhan, Colloids and Surfaces B: Biointerfaces, 2010, 76,

- **332 340–345**.
- I. Thomas, R.J. Mascarenhas, O.J. D'Souza, P. Martis, J. Dalhalle and B.E.
 Kumara Swamy, *Journal of Colloid and Interface Science*, 2013, 402, 223–229.
- 335 [16] K.J. Huang, C.X. Xu, W.Z. Xie and W. Wang, Colloids and Surfaces B:
- *Biointerfaces*, 2009, **74**, 167–171.
- [17] X. Ba, L.Q. Luo, Y.P. Ding and X. Liu, *Sensors and Actuators B: Chemical*, 2013,
 187, 27–32.
- [18] F. Bedioui, J. Devynck and C. Bied-Charreton, *Accounts of Chemical Research*,
- **340** 1995, **28**, 30–36.
- [19] B.I. Podlovchenko, V.N. Andreev, *Russian Chemical Reviews*, 2002, 71, 837–
 851.
- 343 [20] M.E. Ghica, C.M.A. Brett, *Talanta*, 2014, **130**, 198–206.
- [21] M. Taei, G. Ramazani, Colloids and Surfaces B: Biointerfaces, 2014, 123, 23–32.
- 345 [22] H.M. Abdolhamid, G. Nasrin, A.K. Mohammad, G. Masoumeh and I.R. Somaieh,
- 346 *Electroanalysis*, 2014, **26**, 2491–2500.
- 347 [23] J. Ou, Y.X. Tao, J.J. Xue, Y. Kong, J.Y. Dai and L.H. Deng, Electrochemistry
- 348 *Communications*, 2015, **57**, 5-9.
- 349 [24] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos,
- 350 I.V. Grigorieva and A.A. Firsov, *Science*, 2004, **306**, 666–669.
- 351 [25] X. Wang, C. Wang, K. Qu, Y. Song, J. Ren, D. Miyoshi, N. Sugimoto and X. Qu,
- *Advanced Functional Materials*, 2010, **20**, 3967–3971.
- 353 [26] A.K. Geim, K.S. Novoselov, *Nature Materials*, 2007, **6**, 183–191.

354	[27] J. Ou, Y.H. Zhu, Y. Kong, J.F. Ma, <i>Electrochemistry Communications</i> , 2015, 60,
355	60-63.
356	[28] L. Jiang, S.Q. Gu, Y.P. Ding, F. Jiang and Z. Zhang, Nanoscale, 2014, 6,
357	207-214.
358	[29] X.Q. Ouyang, L.Q. Luo, Y.P. Ding, B.D. Liu and D. Xu, Journal of
359	Electroanalytical Chemistry, 2014, 735, 51–56.
360	[30] W.H. Qiao, L. Wang, B.X. Ye, G.P. Li and J.J. Li, Analyst, 2015, 140, 7974-
361	7983.

- 362 [31] D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S.
- 363 Stankovich, I. Jung, D. A. Field and C.A. Ventrice, *Carbon*, 2009, **47**, 145–152.
- [32] M. A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio and R.
 Saito, *Physical Chemistry Chemical Physics*, 2007, 9, 1276–1291.
- [33] M. S. Dresselhaus, G. Dresselhaus, M. Hoffmann and Philos, Philosophical,
 Transactions of The Royal Society A, 2008, 366, 231–236.
- 368 [34] C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D.
- Mastrogiovanni, G. Granozzi, E. Garfunkel and M. Chhowalla, *Advanced Functional Materials*, 2009, 19, 2577–2583.
- 371 [35] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold and L. Wirtz,
- *Nano Letters*, 2007, **7**, 238–242.
- 373 [36] F. Tuinstra, J. L. Koenig, *The Journal of Chemical Physics*, 1969, **53**, 1126–1130.
- [37] G. Pelossof, R. Tel-Vered, S. Shimron and I. Willner, *Chemical Science*, 2013, 4,
- 375 1137–1144.

- 376 [38] Y. H. Huang, J. H. Chen, L. J. Ling, Z. B. Su, X. Sun, S. R. Hu, W. Weng, Y.
- 377 Huang, W. B. Wu and Y. S. He, *Analyst*, 2015, **140**, 7939–7949.
- 378 [39] O. J. D'Souza, R. J. Mascarenhas, A. K. Satpati, I. N. N. Namboothiri, S.
- Detriche, Z. Mekhalif and J. Delhallee, RSC Advance, 2015, 5, 91472–91481.
- 380 [40] J.B. Raoof, R. Ojani, M. Baghayeri, Sensors and Actuators B: Chemical, 2009,
- **143**, 261–269.
- 382 [41] H.X. Li, Y. Wang, D.X. Ye, J. Luo, B.Q. Su, S. Zhang and J.L. Kong, Talanta,
- **383** 2014, **127**, 255–261.
- 384 [42] C. Wang, R. Yuan, Y.Q. Chai, S.H. Chen, F.X. Hu and M.H. Zhang, Analytica
- *Chimica Acta*, 2012, **741**, 15–20.
- 386 [43] A. Babaei, E. Ansari, M. Afrasiabi, *Analytical Methods*, 2014, 6, 8729–8737.

388	Figure Captions:
389	Fig. 1 SEM of GR/GCE (a), PLME/GCE (b) and PLME/GR/GCE (c)
390	Fig. 2 (A) Fourier transforms infrared spectra of L-Methionine (a) and
391	poly(L-Methionine) (b), (B) Raman spectra of bare GCE, GR/GCE and
392	PLME/GR/GCE
393	Fig. 3 Electrochemical impedance spectra (a) and cyclic voltammograms (b) of bare
394	GCE, GR/GCE, PLME/GCE and PLME/GR/GCE in 0.1 M KCl containing 5
395	mM [Fe (CN) ₆] ^{3-/4-} at the scan rate of 100 mV s ⁻¹
396	Fig. 4 DPVs for 10 μ M L-Trp in 0.1 M PBS (pH 2.5) at bare GCE (a), GR/GCE (b),
397	PLME/GCE (c), and PLME/GR/GCE (d)
398	Fig. 5 Influence of pH on the difference of the peak potentials (a) and the peak
399	currents (b) obtained from DPV for 10 μ M L-Trp at the PLME/GR/GCE
400	modified electrodes
401	Fig. 6 Effect of electro-polymerization cycles of L-Methionine on the oxidation
402	current response of 10 μ M L-Trp at PLME/GR/GCE in 0.1 PBS (pH 2.5)
403	Fig. 7 Cyclic voltammograms (CVs) of 10 μ M L-Trp in 0.1 M PBS (pH 2.5) at
404	PLME/GR/GCE at different scan rate (10-200 mV/s). Inset: plots of Ipa vs.
405	square root of scan rate (A) and the relationship between oxidation peak
406	potentials of L-Trp and scan rate (B)
407	Fig. 8 DPVs of determination of L-Trp (0.04-10 μ M) using PLME/GR/GCE in 0.1 M
408	PBS (pH 2.5). Inset: plots of Ip vs. concentrations of L-Trp
409	Fig. 9 DPVs of determination of L-Trp (0.2-150 μ M) in the presence of 10 μ M DA

- 410 using PLME/GR/GCE in 0.1 M PBS (pH 2.5). Inset: plots of Ip vs.
- 411 concentrations of L-Trp

413	Table	Captions:
-----	-------	------------------

- 414 Table 1 Comparison of analytical performance of L-Trp on PLME/GR/GCE with
- 415 other modified electrodes in the literature
- 416 Table 2 The influences of some organic ions and important biological substances on
- 417 the peak currents of $10 \,\mu\text{M}$ L-Trp in 0.1 M PBS (pH 2.5)
- 418 **Table 3** Determination of L-Trp in human serum and milk samples

- 420 Scheme Captions:
- 421 Scheme 1 Oxidation mechanism of L-Trp at PLME/GR/GCE

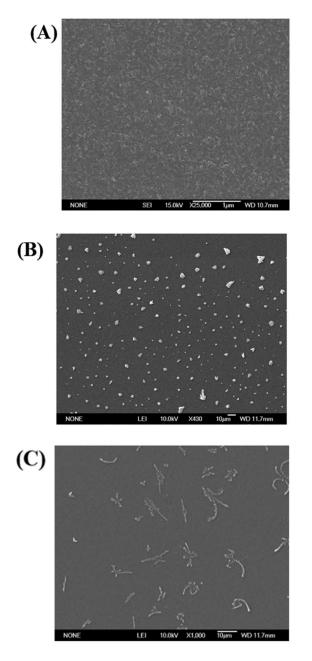


Fig. 1 (A) SEM of GR/GCE (a), PLME/GCE (b) and PLME/GR/GCE (c)

Fig. 2 (A) Fourier transforms infrared spectra of L-Methionine (a) and poly (L-Methionine) (b), (B) Raman spectra of bare GCE, GR/GCE and PLME/GR/GCE

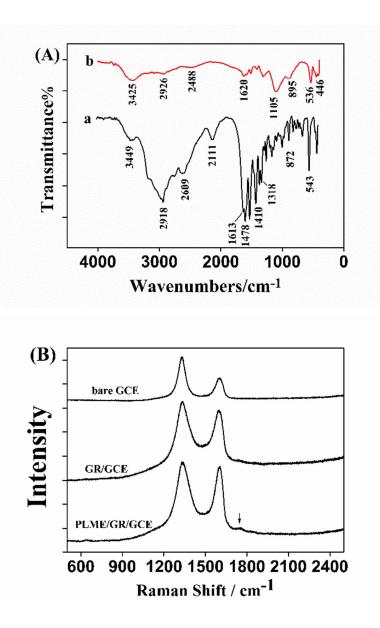


Fig. 3 Electrochemical impedance spectra (a) and cyclic voltammograms (b) of bare GCE, GR/GCE, PLME/GCE and PLME/GR/GCE in 0.1 M KCl containing 5 mM [Fe $(CN)_6$]^{3-/4-} at the scan rate of 100 mV s⁻¹

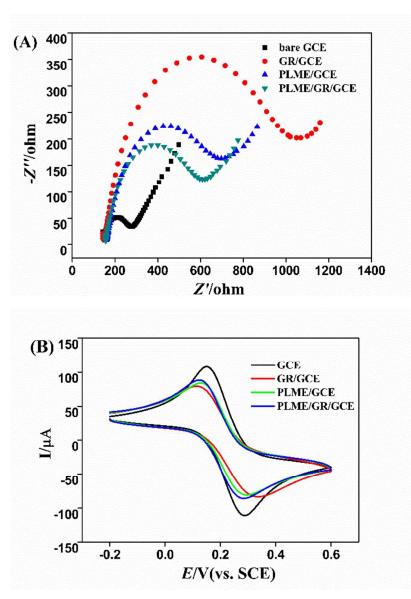
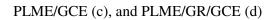



Fig. 4 DPVs for 10 μ M L-Trp in 0.1 M PBS (pH 2.5) at bare GCE (a), GR/GCE (b),

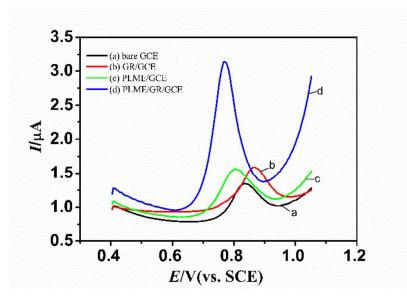


Fig. 5 Influence of pH on the difference of the peak currents (A) and the peak potentials (B) obtained from DPV for 10 Mm L-Trp at the PLME/GR/GCE modified electrodes

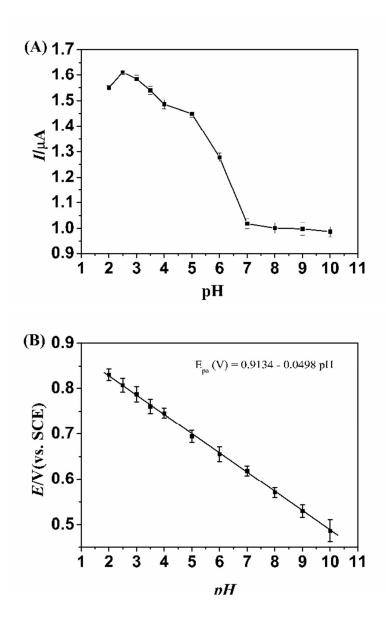


Fig. 6 Effect of electro-polymerization cycles of L-Methionine on the oxidation current response of 10 μ M L-Trp at PLME/GR/GCE in 0.1 PBS (pH 2.5)

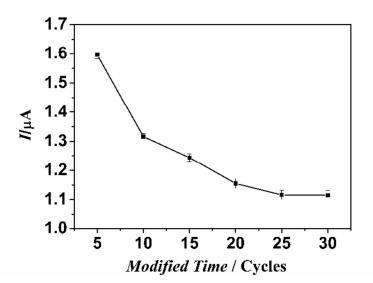


Fig. 7 Cyclic voltammograms (CVs) of 10 μ M L-Trp in 0.1 M PBS (pH 2.5) at PLME/GR/GCE at different scan rate (10-200 mV/s). Inset: plots of Ip_a vs. square root of scan rate (A) and the relationship between oxidation peak potentials of L-Trp and scan rate (B)

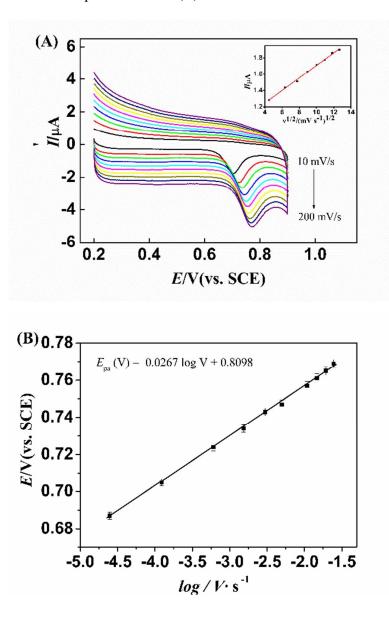
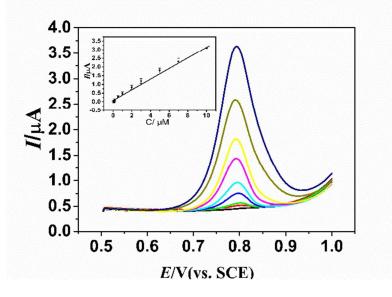
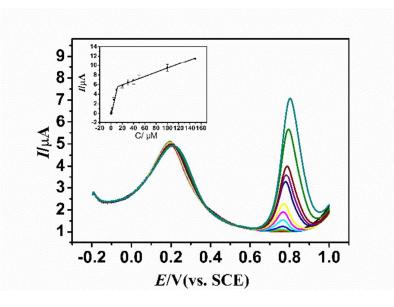




Fig. 8 DPVs of determination of L-Trp (0.04-10 μ M) using PLME/GR/GCE in 0.1 M

PBS (pH 2.5). Inset: plots of *I*p_a vs. concentrations of L-Trp

Fig. 9 DPVs of determination of L-Trp (0.2-150 μ M) in the presence of 10 μ M DA using PLME/GR/GCE in 0.1 M PBS (pH 2.5). Inset: plots of Ip_a vs. concentrations of L-Trp

Electrode	Dynamic ranges (µM)	Detection limits (µM)	References
poly(4-aminobenzoic acid) GCE	1.0-100	0.2	[16]
CILE/GNP	5.0-900	4.0	[6]
MWNTs/Mg-Al/CPE	3-9 9-1000	0.0068	[2]
nano-TiO ₂ /FCCa /CPE	0.4-14	0.124	[38]
MWNTs/GS/GCE	5-30 60-500	0.87	[39]
GNPs/PImox	3-464	0.70	[40]
MWCNTs-NHNPs-MCM-41/GCE	0.5-50	0.11	[41]
PLME/GR/GCE	0.05-10	0.017	This work

Table 1 Comparison of analytical performance of L-Trp on PLME/GR/GCE with			
other modified electrodes in the literature			

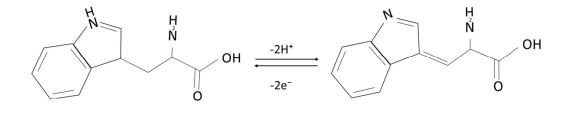
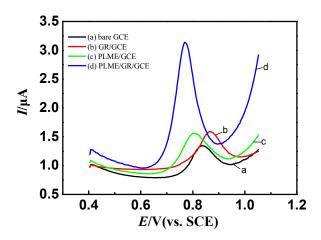

Interferences	Concentration(uM)	Signal change
Interferences	Concentration(µM)	L-Trp
Na ⁺	500	-4.80%
K^+	500	-3.34%
Zn^{2+}	500	-0.50%
Mg^{2+}	500	-4.13%
$\mathrm{NH_4}^+$	500	-4.90%
Cl	500	-4.80%
NO_3^-	500	-3.34%
$\mathrm{SO_4}^{2-}$	500	-0.50%
D-Glucose	500	-4.60%
L- Threonine	500	-4.90%
L- Serine	500	-4.80%
L- Alanine	500	-4.00%
Asparagic acid	500	-4.30%
Leucine	100	-3.38%
Ascorbic acid	250	2.90%
Dopamine	100	2.75%

Table 2 The influences of some organic ions and important biological substances on
the peak currents of 10 μM L-Trp in 0.1 M PBS (pH 2.5)

Samples	Detected (µM)	Added (µM)	Found (µM)	Recovery
Serum 1	-	0.50	0.48	96.7%
	-	1.00	1.04	103.9%
	-	1.50	1.54	103.1%
	-	3.00	3.14	104.7%
Milk		0.5	0.51	103.0%
		1.0	0.97	97.0%
	-	1.5	1.49	99.3%
	-	3.0	3.12	104.0%


	Table 3 Determination	of L-Trp	in human seru	m and milk samples
--	-----------------------	----------	---------------	--------------------

1 Scheme 1 Oxidation mechanism of L-Trp at PLME/GR/GCE

Graphical Abstract

Electrocatalytic oxidation of L-Trp at poly(L-Methionine)/graphene composite film modified glassy carbon electrode (PLME/GR/GCE) were investigaed by differential pulse voltammetry.

DPVs for 10 µM Trp in 0.1 M PBS (pH 2.5) at bare GCE (a), GR/GCE (b), PLME/GCE (c), and PLME/GR/GCE (d)