

# Advanced removal of toluene in aerosol by adsorption and photocatalytic degradation of silver doped TiO2/PU under visible light irradiation

| Journal:                      | RSC Advances                                                                                                                                        |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                 | RA-ART-11-2015-023786.R1                                                                                                                            |
| Article Type:                 | Paper                                                                                                                                               |
| Date Submitted by the Author: | 19-Jan-2016                                                                                                                                         |
| Complete List of Authors:     | Pham, Thanh-Dong; University of Ulsan,<br>Lee, Byeong-Kyu; University of Ulsan,<br>Pham, Cong De; Pusan National University, Nano Fusion Technology |
| Subject area & keyword:       | Photocatalysis < Catalysis                                                                                                                          |
|                               |                                                                                                                                                     |

SCHOLARONE<sup>™</sup> Manuscripts

| 1      | Advanced removal of toluene in aerosol by adsorption and photocatalytic                                                                                          |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2      | degradation of silver doped TiO <sub>2</sub> /PU under visible light irradiation                                                                                 |
| 3      | Thanh-Dong Pham <sup>a</sup> , Byeong-Kyu Lee <sup>a</sup> , De Pham-Cong <sup>b</sup>                                                                           |
| 4      | <sup>a</sup> Department of Civil and Environmental Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 680-749,                                          |
| 5      | Republic of Korea                                                                                                                                                |
| 6      | <sup>b</sup> Department of Nano Fusion Technology, Pusan National University, Busan 609-735, Republic of Korea                                                   |
| 7      |                                                                                                                                                                  |
| 8<br>9 | <b>Corresponding Author:</b> Byeong-Kyu Lee, Professor, Department of Civil and Environmental Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan, Korea |
| 10     | Tel: 82-52-259-2864, Fax: 82-52-259-2629, E-mail: bklee@ulsan.ac.kr,                                                                                             |
| 11     |                                                                                                                                                                  |
| 12     | Abstract                                                                                                                                                         |
| 13     | We synthesized a novel Ag-TiO <sub>2</sub> /PU material for the effective removal of gaseous toluene by                                                          |
| 14     | both adsorption and photocatalytic degradation. The Ag particles, which distributed on the $TiO_2$                                                               |
| 15     | surface, and the Ag dopants, which incorporated into the TiO <sub>2</sub> lattice, increased the electron-hole                                                   |
| 16     | pair separation efficiency of TiO2. Therefore, Ag-TiO2/PU exhibited high photocatalytic                                                                          |
| 17     | degradation of toluene even under visible light. Porous polyurethane (PU) was used to                                                                            |
| 18     | immobilize the enhanced TiO <sub>2</sub> , to increase the adsorption capacity of the photocatalyst. The                                                         |
| 19     | synthesized Ag-TiO <sub>2</sub> /PU removed gaseous toluene even under dark condition via adsorption.                                                            |
| 20     | The removal of gaseous toluene by Ag-TiO2/PU under visible light conditions was due to the                                                                       |
| 21     | combination of both adsorption and photocatalytic degradation. The oxygen content in the gas                                                                     |
| 22     | stream insignificantly affected the toluene adsorption by the Ag-TiO <sub>2</sub> /PU. However, the                                                              |
| 23     | photocatalytic degradation of toluene by Ag-TiO <sub>2</sub> /PU increased with increasing oxygen content                                                        |
| 24     | and stabilized when the oxygen content exceeded 15 %. These results suggest that ambient air                                                                     |
| 25     | can be used economically as an oxygen source for the photocatalytic degradation of gaseous                                                                       |

toluene by Ag-TiO<sub>2</sub>/PU under visible light condition. Under visible light irradiation, 6 % Ag-

TiO<sub>2</sub>/PU, which was the Ag/TiO<sub>2</sub> ratio that optimized the photocatalytic degradation activity of TiO<sub>2</sub>, removed 85.2 % of the toluene in 100ppm inlet gas, of which 90.3 % was mineralized into CO<sub>2</sub> and H<sub>2</sub>O.

30

Keywords: Ag incorporation; toluene removal; photocatalytic degradation; oxygen content
effects; visible light

33

## 34 **1. Introduction**

Many volatile organic compounds (VOCs), emitted from the combustion of fuels, biomass 35 and waste, smoking, solvent use, and the surfaces of carpet, PVC flooring, adhesive products, 36 coating mediums for furniture, and room decorations, have been regulated due to their human 37 38 toxicity [1, 2]. In particular, even low-dose exposure to carcinogenic benzene and chlorinated 39 VOCs is strongly associated with acute non-lymphocytic leukemia, aplastic anemia and chromosomal aberrations [3]. The inhalation of toluene, which is one of the most commonly 40 found VOCs, can lead to nervous system complications, such as reduction in thinking, memory 41 and muscular abilities, as well as some level of loss in both hearing and color vision [4]. Despite 42 the availability of many treatment technologies, including absorption, condensation, incineration, 43 biological oxidative filtering, and thermal plasma treatment for VOC removal, most have been 44 considered for industrial applications requiring complicated disposal techniques, high costs and 45 skilled labor [5]. Recently, applications for the photocatalytic degradation and removal of 46 gaseous toluene have become a very attractive and promising alternative [6, 7]. Under or near 47 UV irradiation, TiO<sub>2</sub> photocatalyst can photocatalytically degrade toluene into carbon dioxide, 48 49 water and simple mineral acids [8]. Compared to conventional treatment methods, the use of

photocatalysis for toluene removal exhibited several advantages such as low cost and simplicity [9]. However, the photocatalytic degradation of toluene by  $TiO_2$  photocatalysis is a relative slow process with many limitations for industrial or large-scale application, along with safety issues and high-energy consumption due to UV or near UV irradiation [10].

To overcome these disadvantages, numerous studies have investigated enhancing the 54 photocatalytic activity of TiO<sub>2</sub> and expanding the photocatalytic applications in practical systems 55 using visible or solar irradiation to initiate the photocatalysis [11-15]. Ag has been used as a 56 doping or sensitivity agent to enhance the photocatalytic activity of  $TiO_2$  due to silver's ability to 57 58 act as both an electron sink and donor to increase the electron-hole pair separation efficiency of TiO<sub>2</sub> and thereby enhance its photocatalytic activity [16]. Due to silver's antibacterial activity, 59 the Ag-doped TiO<sub>2</sub> photocatalyst has been mostly used as a disinfection material [17-20]. A few 60 61 studies have utilized the synthesized Ag-doped TiO<sub>2</sub> to remove other pollutants, particularly, for removal of toluene gas [21-23]. Thus, the present study firstly aimed to use Ag as a doping agent 62 for enhancing the photocatalytic activity of TiO<sub>2</sub> when applied to the removal of gaseous 63 toluene. 64

The photocatalytic activity and degradation efficiency, in particular, the degradation of 65 pollutants in gas phase, are strongly dependent on the adsorption capacity of the photocatalyst 66 [24]. Thus, the second aim of the present study was to immobilize  $TiO_2$  and Ag-doped  $TiO_2$ 67 photocatalyst on a polyurethane (PU) substrate, a porous material. We hypothesize that the 68 immobilization and doping would increase the adsorption ability of the photocatalyst for the 69 removal of gaseous toluene. The increased adsorption ability would also increased the 70 degradation rate and hence the toluene removal in aerosol by both adsorption and photocatalytic 71 72 degradation.

73 In addition, the photocatalytic degradation processes in aerosol are strongly dependent on the reactions of photo-generated electrons and holes with oxygen and H<sub>2</sub>O molecules to produce 74 superoxide radicals ( $^{*}O_{2}^{-}$ ) and hydroxyl radicals ( $^{*}OH$ ), respectively [25]. Thus, the moisture and 75 oxygen contents are the key factors affecting the photocatalytic degradation of aerosol pollutants. 76 Several studies have investigated the effects of moisture content on the photocatalytic 77 78 degradation in aerosol, but without focusing on the effects of oxygen on the degradation [25-29]. 79 Therefore, the third aim of the present study was to investigate the effects of oxygen content on the photocatalytic degradation of toluene in aerosol using Ag-TiO<sub>2</sub>/PU under visible light 80 81 conditions.

82

## 83 2. Materials and Methods

84

# 85 2.1. Synthesis of Ag-TiO<sub>2</sub>/PU

Before being used as a substrate to immobilize Ag-doped TiO<sub>2</sub>, pristine PU was pre-treated 86 by a mixed solution of toluene, toluene-2,4-diisocyanate, and anhydrous triethylamine to 87 introduce isocyanate groups (NCO) onto its surface [17]. The isocyanated PU was immersed into 88 a solution of amino titanosiloxane, containing a Si-O-Ti bonds and an amine group (NH<sub>2</sub>), which 89 was prepared based on reaction between titanium tetraisopropoxide with  $\gamma$ -aminopropyl 90 triethoxysilane. During the immersing process, the titanosiloxane was immobilized on PU by 91 92 reactions between the isocyanate groups of the isocyanated PU and the amino group (NH<sub>2</sub>) of the amino titanosiloxane [17]. After 1 h immersing, the PU immobilized titanosiloxane was taken 93 out and a 0.1 M AgNO<sub>3</sub> solution, which was prepared by the dissolution of AgNO<sub>3</sub> in deionized 94 95 water at 60°C, was slowly added (drop-wise) onto the titanosiloxane immobilized on PU. The

obtained material was cleaned using 1 M oxalic acid solution, irradiated with a UV light (60W)
for 5 h and calcined under nitrogen at 200°C for 5 h to produce Ag-doped TiO<sub>2</sub> immobilized on
PU (Ag-TiO<sub>2</sub>/PU). The addition volume of AgNO<sub>3</sub> solution was adjusted in order to synthesize
Ag-TiO<sub>2</sub>/PU materials with Ag/TiO<sub>2</sub> ratios of 0, 2, 4, 6, 8 and 10 wt %.

100

101 2.2. Material Characterization

X-ray photoelectron spectroscopy (XPS) spectra of the synthesized Ag-TiO<sub>2</sub>/PU materials 102 were obtained using a Thermo Fisher K-Alpha X-ray Photoelectron Spectrometer system. The 103 Gaussian multi-peak shapes were applied to fit the Ag3d<sub>5/2</sub> and Ti 2p<sub>3/2</sub> peaks in the obtained 104 XPS spectra for determining the elemental state of the silver and titanium in Ag-TiO<sub>2</sub>/PU. A 105 Bruker AXN model with a Cu-K $\alpha$  radiation ( $\lambda = 1.5418$  Å) source was used to obtain X-ray 106 107 diffraction (XRD) spectra of Ag-TiO<sub>2</sub>/PU. The surface morphology of the Ag-TiO<sub>2</sub>/PU materials was analyzed using a Hitachi S-4700 scanning electron microscope (SEM). Before the SEM 108 analysis, the Ag-TiO<sub>2</sub>/PU samples were coated with Pt to increase the conductivity of the 109 110 photocatalyst surface. The surface area (S<sub>BET</sub>) of the synthesized Ag-TiO<sub>2</sub>/PU materials was determined using the Brunauer-Emmett-Teller (BET) isotherm carried out by nitrogen adsorption 111 and desorption at 77K. The optical absorption ability of the Ag-TiO<sub>2</sub>/PU materials in the 112 wavelength range 300-700 nm was determined by an Evolution 300 spectrophotometer (UV-113 1700 Shimadzu). 114

115

116 2.3. Experimental apparatus

Figure 1 shows the experimental apparatus for the continuous photocatalytic degradation and
 removal of gaseous toluene using Ag-TiO<sub>2</sub>/PU. The experimental apparatus was composed of

119 three main parts: gas generator, reaction chamber and analyzer system. The gas generator system 120 included a mixer, a humidifier and three gas cylinders of 1000ppm toluene in nitrogen gas, oxygen and nitrogen gases (Figure 1). The mixer and humidifier were adjusted to control the 121 122 toluene gas concentration and humidity level, respectively. The reaction chamber was composed of a dark cover cask (25 x 50 x 50 cm), two 20 W bulbs and a reactor. The bulbs were placed at 123 the top and bottom of the reaction chamber (Figure 1) to generate visible light in the range of 124 400-700 nm for the photocatalytic irradiation processes. The power density of the generated 125 visible light in the reaction chamber was  $0.05 \text{ W/cm}^2$ . A reactor (2 x 4 x 15 cm) was placed in 126 the center of the reaction chamber. The top and bottom of the reactor were made of guartz to 127 allow easy passage of the visible light generated from the light bulbs though the reactor wall. 128 The online analyzer system included a Varian CP-3800 gas chromatograph (GC) equipped with a 129 130 flame ionization detector and a packed column (Porapak Q 80/100 2 x 2 mm) to analyze the concentration of the outlet toluene. A methanizer, using Ni catalyst, was integrated into the GC 131 system to analyze the CO and CO<sub>2</sub> contents in the outlet gas. 132

133

134 2.4. Removal experiments

Flow rate meters were regulated to achieve a constant flow rate of 100 mL/min of 100ppm toluene in the gas mixture. The humidifier was used to ensure that the relative humidity of the gas mixture remained constant at 50 %. Before the toluene removal experiments, the input gas was oriented through direction A to the GC system to re-check the concentration of the toluene in the gas mixture. When the toluene concentration in the 100mL/min flow of mixed gas was stabilized at 100ppm, the input gas was oriented toward direction B where it passed through the reactor volume containing 36cm<sup>3</sup> of the synthesized Ag-TiO<sub>2</sub>/PU porous material. The toluene

removal experiments were carried out under conditions of both dark and visible light, achieved 142 by turning the bulbs off/on, respectively, to determine the adsorption and photocatalytic 143 degradation ability of the synthesized Ag-TiO<sub>2</sub>/PU, respectively. After the removal experiments, 144 145 the effluent gas was sent to the GC system using an auto sampling injector, which automatically injected 100 µL of the effluent gas into the packed column in intervals of 10 min from the 146 reaction start time ( $t_0 = 0$ ). The reaction start time ( $t_0 = 0$ ) was estimated to be the time when the 147 input gas was oriented flowing direction B. Helium was used as a carrier gas with a flow rate of 148 25 mL/min. The removal efficiency and mineralization degree of toluene by Ag-TiO<sub>2</sub>/PU were 149 evaluated using equations (1) and (2), respectively: 150

151 Toluene removal efficiency (%) = 
$$\frac{C_0 - C_t}{C_0} \times 100\%$$
 (1)

152 Mineralization degree = 
$$\frac{C_{tCO_2}}{7 \times (C_0 - C_t)} \times 100\%$$
 (2)

153 where:

154  $C_0$  (100ppm) is the concentration of toluene at the reaction start time (t<sub>0</sub>=0), and C<sub>t</sub> and C<sub>tCO2</sub> are 155 the concentrations of toluene and CO<sub>2</sub> at reaction time (t<sub>i</sub>=t), respectively.

156

## 157 **3. Results and Discussion**

158

159 3.1. Material Properties

### 160 *3.1.1. Elemental States of Silver*

The high-resolution XPS spectra of the synthesized Ag-TiO<sub>2</sub>/PU indicated that the first elemental state of silver was silver metallic (Ag<sup>0</sup>), with peaks at 374.2 and 368.2 eV (Figure 2) [30]. The obtained XRD results further confirmed the existence of Ag<sup>0</sup> on the surface of Ag-

TiO<sub>2</sub>/PU (Figure 3) [31]. The Ag<sup>0</sup> was produced from the reduction of AgNO<sub>3</sub> under the effects 164 of the UV irradiation and calcination temperature during the Ag-TiO<sub>2</sub>/PU preparation processes 165 [16, 32]. The UV irradiation and oxalic acid, rolled as a cleanser for the purification process, 166 enhanced the reduction of AgNO<sub>3</sub> into Ag<sup>0</sup> [33-36]. In Ag-TiO<sub>2</sub>/PU, silver also existed in form of 167 Ag<sup>+</sup> corresponding to peaks at 373.4 and 367.4 eV in the obtained XPS spectra (Figure 2) [37]. 168 However, the absence of any Ag<sub>2</sub>O peak in the XRD spectra (Figure 3) implied that most of the 169 Ag<sup>+</sup> ions had been incorporated into or anchored in the TiO<sub>2</sub> lattice via Ti-O-Ag bonds or that 170 the concentration of Ag<sup>+</sup> existing in form of Ag<sub>2</sub>O was too low to be detected by the XRD 171 analysis [21, 32]. 172

The  $Ag^{+}/Ag^{0}$  ratios in Ag-TiO<sub>2</sub>/PU, which are proportional to the ratios of (the area under the 173  $Ag^+$  peak)/(the area under the  $Ag^0$  peak) in the XPS spectra, are shown in Table 1. As the 174 Ag/TiO<sub>2</sub> ratio (controlled by increasing the added AgNO<sub>3</sub> volume) in Ag-TiO<sub>2</sub>/PU was increased 175 to 6 wt %, the  $Ag^+/Ag^0$  ratio increased to a maximum of approximately 55.6%, but then slightly 176 decreased with the further increase of the Ag/TiO<sub>2</sub> ratio above 6 wt %. It was because only a 177 certain amount of Ag<sup>+</sup> could be incorporated into or anchored in the TiO<sub>2</sub> lattice via Ti-O-Ag 178 bonds. At the limitation of the incorporation, the additional  $Ag^+$  in the added  $AgNO_3$  could not 179 be further incorporated into the TiO<sub>2</sub> lattice, and was instead reduced into Ag<sup>0</sup> and distributed on 180 the surface of the TiO<sub>2</sub> layer. Thus, the Ag<sup>+</sup>/Ag<sup>0</sup> ratio slightly decreased as the Ag/TiO<sub>2</sub> ratio was 181 increased above 6 wt %. 182

183

## 184 *3.1.2.* Elemental States of Titanium

The obtained XPS results indicate that the elemental state of titanium in  $TiO_2/PU$  was only Ti<sup>4+</sup>, while the elemental states of titanium in the Ag-TiO<sub>2</sub>/PU materials were both Ti<sup>4+</sup> and

 $Ti^{3+}$  (Figure 4) [38, 39]. UV irradiation can reduce any  $Ti^{4+}$  on the  $TiO_2$  surface to  $Ti^{3+}$  [40]. 187 However, the synthesized TiO<sub>2</sub>/PU did not contain any Ti<sup>3+</sup> ions, which indicates that the Ti<sup>3+</sup> 188 was formed due to the incorporation of silver into the TiO<sub>2</sub> lattice. Atla et al. reported that the 189 incorporated Ag induced a change in the chemical state of TiO<sub>2</sub> leading to the reduction of Ti<sup>4+</sup> 190 into Ti<sup>3+</sup> [32]. The incorporation of Ag also induced oxygen vacancies in the TiO<sub>2</sub> lattice, 191 resulting in the reduction of  $Ti^{4+}$  to  $Ti^{3+}$  [41, 42]. Table 1 shows the calculated  $Ti^{3+}/Ti^{4+}$  ratios in 192 the synthesized Ag-TiO<sub>2</sub>/PU, which are proportional to the ratios of (the area under the  $Ti^{3+}$ 193 peak)/(the area under the Ti<sup>4+</sup> peak) in the obtained XPS spectra. The results indicate that the 194 Ti<sup>3+</sup> content in Ag-TiO<sub>2</sub>/PU increased rapidly with increasing Ag/TiO<sub>2</sub> ratio, and gradually 195 stabilized when the Ag/TiO<sub>2</sub> ratio rose above 6 wt %. The increase in Ti<sup>3+</sup> content in Ag-TiO<sub>2</sub>/PU 196 was attributed to the increase in Ag content, which was incorporated into the TiO<sub>2</sub> lattice. 197 However, the Ag was only incorporated into the TiO<sub>2</sub> lattice up to a certain limit, leading to the 198 stabilization of Ti<sup>3+</sup> content in Ag-TiO<sub>2</sub>/PU even with the further increase in the Ag/TiO<sub>2</sub> ratio. 199

200

# 201 3.1.3. Morphology and Surface Area

Figure 5 shows the surface morphology of the synthesized TiO<sub>2</sub>/PU, and the 2, 4, 6, 8 and 202 10% Ag-TiO<sub>2</sub>/PU materials. The obtained results indicate that the TiO<sub>2</sub> in TiO<sub>2</sub>/PU was 203 smoothly immobilized on the PU surface as a thin layer (Figure 5A). Compared to the surface 204 morphology of TiO<sub>2</sub>/PU, the Ag-TiO<sub>2</sub>/PU materials exhibited a rougher morphology due to the 205 dispersion of the formed small Ag particles on the surface of the TiO<sub>2</sub> layer. The obtained 206 HRTEM results confirmed the existences of Ag particles on surface of TiO<sub>2</sub> (Figure 6). The 207 lattice spacing of approximately 0.24 and 0.25 nm correspond to the interlayer distance of the 208 (111) and (004) crystal planes Ag [43, 44]. The degree of surface roughness of Ag-TiO<sub>2</sub>/PU 209

increased with increasing  $Ag/TiO_2$  ratio (increasing in Ag particle content). When the  $Ag/TiO_2$ ratios increased up to 8 wt %, the Ag particles began to cluster into larger particles covering the TiO<sub>2</sub> layer.

213 The BET surface areas of TiO<sub>2</sub>/PU and Ag-TiO<sub>2</sub>/PU are shown in Table 1. The BET surface area of TiO<sub>2</sub>/PU was 110.9 m<sup>2</sup>/g, which was much higher than that of commercial TiO<sub>2</sub>powder, 214 such as AEROXIDE<sup>®</sup> TiO<sub>2</sub> P25 obtained from Evonik Degussa Corporation (approximately 215  $60 \text{ m}^2/\text{g}$ ). This indicates that the surface area of TiO<sub>2</sub>was successfully enhanced by using porous 216 honeycomb PU as a substrate for the immobilization. The obtained BET results also indicate that 217 the surface areas of the synthesized Ag-TiO<sub>2</sub>/PU materials were much higher than that of 218 TiO<sub>2</sub>/PU. This may have been due to the aforementioned effect of the Ag particles dispersed on 219 the TiO<sub>2</sub> surface in increasing the degree of surface roughness of TiO<sub>2</sub>. The BET surface areas of 220 the synthesized Ag-TiO<sub>2</sub>/PU materials were also greatly increased with increasing Ag/TiO<sub>2</sub> 221 ratios up to 6 wt %. However, the BET surface area of the areas of the 8 % Ag-TiO<sub>2</sub>/PU and 10 222 % Ag-TiO<sub>2</sub>/PU were slightly lower than that of the 6 % Ag-TiO<sub>2</sub>/PU. This was attributed to the 223 224 gathering or cluster of the Ag into larger particles at the high Ag/TiO<sub>2</sub> ratios, according to the SEM analysis. Thus, 6 % Ag-TiO<sub>2</sub>/PU exhibited the highest surface area (186.6  $m^2/g$ ). 225

226

### 227 *3.1.4. Optical absorption ability*

Figure 7 shows the optical absorption in range of 300-700 nm of the synthesized  $TiO_2/PU$ and 2, 4, 6, 8 and 10 % Ag- $TiO_2/PU$  materials.  $TiO_2/PU$  inherited the optical absorption properties of  $TiO_2$ , which exhibits a strong absorption only in the UV region and the absorption edge around 370nm [13, 45]. The optical absorption of the synthesized Ag- $TiO_2/PU$  materials was observed in both the UV and visible regions. The significant enhancement of optical

233 absorption in the visible region of Ag-TiO<sub>2</sub>/PU was due to a contribution of the plasmon resonance of the Ag particles dispersed onto the TiO<sub>2</sub> surface [46]. The plasmon resonance of Ag 234 particles excited electrons of the valence band of TiO<sub>2</sub> and transferred the excited electrons from 235 the valence band to the conduction band of  $TiO_2$  [45]. The Ag particles also provided sites for the 236 accumulation of the excited electrons, so that Ag acted as an electron sink to hinder the 237 recombination of the excited electrons in the conduction band with holes in the valence band of 238 TiO<sub>2</sub> [47]. Therefore, Ag-TiO<sub>2</sub>/PU absorbed the visible light for the separation of the electrons 239 and holes. The light absorption enhancement of Ag-TiO<sub>2</sub>/PU was also due to the role of the 240 incorporated Ag, which bonded to TiO<sub>2</sub>via Ag-O-Ti bonding, leading to oxygen vacancies and 241 the formation of  $Ti^{3+}$  in the TiO<sub>2</sub> lattice. It has been reported that the energy level of  $Ti^{3+}$  was 242 located in between the conduction band and the valence band of TiO<sub>2</sub> [47]. Therefore, the 243 formed Ti<sup>3+</sup> also acted as an intermediate agent to enhance the transfer of electrons from the 244 valence band to the conduction band of TiO<sub>2</sub>, contributing to the enhancement of the optical 245 absorption of the synthesized Ag-TiO<sub>2</sub>/PU. 246

Figure 7 also shows that the optical absorption ability of Ag-TiO<sub>2</sub>/PU increased as the Ag 247 weight fraction in Ag/TiO<sub>2</sub> increased up to 6 wt %, but then slightly decreased with further 248 increase in the Ag/TiO<sub>2</sub> ratio. At the high Ag/TiO<sub>2</sub> ratios of 8 and 10 wt %, Ag tended to gather 249 into larger particles on the  $TiO_2$  surface (see section 3.1.3), leading to an uneven distribution of 250 Ag particles on the  $TiO_2$  layer or a decrease in the interfacial surface between Ag and  $TiO_2$ 251 (Table 1). Thus, Ag could not act as a more effective electron carrier/sink to enhance the electron 252 hole pair separation efficiency of TiO<sub>2</sub>, resulting in the decreased light absorption efficiency of 253 Ag-TiO<sub>2</sub>/PU at the high Ag/TiO<sub>2</sub> ratios of 8 and 10 wt %. The large Ag particles also eclipsed 254 the light reaching the TiO<sub>2</sub> surface, thus decreasing the optical absorption of Ag-TiO<sub>2</sub>/PU [48]. 255

Thus, a further increase of Ag content in Ag-TiO<sub>2</sub>/PU further reduced the light absorption
intensity (Figure 7 E and F).

258

259 3.2. Toluene Removal

260

261 *3.2.1. Removal Mechanism* 

Figure 8 shows the toluene removal results by TiO<sub>2</sub>/PU, and 2, 4, 6, 8 and 10% Ag-TiO<sub>2</sub>/PU. 262 The experiments were conducted in dark conditions for the first 180 min, after which visible 263 light was provided for an additional 180min. Under the darkened conditions, the outlet toluene 264 concentration gradually increased up to 100ppm at around 165 min, which is the same as the 265 inlet concentration. This means that toluene saturation at the given adsorbent dose (Ag-TiO<sub>2</sub>/PU) 266 267 occurred at around 165 min (Figure 8A). In addition, no CO<sub>2</sub> corresponding to the photocatalytic degradation of gaseous toluene was detected (Figure 8B). This indicates that gaseous toluene was 268 removed solely by adsorption by Ag-TiO<sub>2</sub>/PU in darkened conditions. When Ag-TiO<sub>2</sub>/PU was 269 270 exposed to water vapor, its surface was be hydroxylated, leading to the formation of hydroxyl groups on surface of Ag-TiO<sub>2</sub>/PU via Ti-OH or Ag-OH bonds [49, 50]. The hydroxyl groups 271 were thus able to bond with the  $\pi$ -electrons of the aromatic ring of toluene, resulting in the 272 adsorption of toluene on the Ag-TiO<sub>2</sub>/PU surface [49]. The toluene was also trapped on the Ag-273 TiO<sub>2</sub>/PU surface by physical bond or electrostatic interaction between the aromatic ring of 274 toluene and the various cations, such as  $Ti^{4+}$ ,  $Ti^{3+}$  and  $Ag^+$ , existing on the Ag-TiO<sub>2</sub>/PU surface 275 [51]. 276

277 Radiation with visible light after saturation did not affect the toluene concentration passing
278 through TiO<sub>2</sub>/PU, which indicated that TiO<sub>2</sub>/PU did not exhibit any significant photocatalytic

279 degradation activity to remove gaseous toluene under visible light conditions. However, the 280 outlet toluene passing through the Ag-TiO<sub>2</sub>/PU materials suddenly increased to a level exceeding the inlet concentration, due to the desorption of the toluene adsorbed on Ag-TiO<sub>2</sub>/PU (rolled as 281 282 an adsorbent) by scrubbing of the  $CO_2$  generated from the photocatalytic degradation of toluene by Ag-TiO<sub>2</sub>/PU (mainly acting as a photocatalyst) under visible light conditions. Because the 283 doped Ag enhancing the electron-hole pair generation capacity and separation efficiency of  $TiO_2$ , 284 Ag-TiO<sub>2</sub>/PU easily generated electron-hole pairs, even under visible. The generated electrons 285 and holes then participated in reactions with the O<sub>2</sub> and/or H<sub>2</sub>O molecules in aerosol to produce 286 hydroxyl and superoxide radicals, which are strong oxidative agents. The mechanism by which 287 the hydroxyl and superoxide radicals were generated by Ag-TiO<sub>2</sub>/PU under visible light is 288 described by the following reactions: 289

Ag-TiO<sub>2</sub>/PU 
$$\xrightarrow{Visible \ light}$$
  $e^- + h^+$  (3)

$$e^- + O_2 \rightarrow + {}^*O_2^-$$
 (4)

 $h^{+} \quad + \quad H_{2}O \quad \rightarrow \quad H^{+} \quad + \quad {}^{*}OH \qquad (5)$ 

$$2 h^{+} + 2 H_2 O \rightarrow 2 H^{+} + H_2 O_2$$
 (6)

$$H_2O_2 \rightarrow 2^*OH$$
 (7)

$$36^{*}OH + C_{7}H_{8} \rightarrow 7CO_{2} + 22 H_{2}O$$
 (8)

These generated oxy radicals then participated in the degradation of toluene into  $CO_2$  and H<sub>2</sub>O, accompanied by a sharp increase in the  $CO_2$  concentration, as shown in Figure 8B [51-53]. The scrubbing of the adsorbed toluene by the  $CO_2$  generated from the photocatalytic degradation of toluene caused desorption of the toluene, which had initially been adsorbed on the Ag-

TiO<sub>2</sub>/PU surface during the darkened period. This desorption led to a sudden increase in the 294 toluene concentration in the reactor. Although Ag-TiO<sub>2</sub>/PU photocatalytically degraded a certain 295 amount of the toluene passing through the reactor, the outlet toluene rose above its inlet 296 297 concentration (100 ppm) for a short period before the reaction time reached 255 min. After the adsorbed toluene was almost completely desorbed, the outlet toluene concentration displayed a 298 sharp decrease due to the continuous photocatalytic degradation of toluene by the Ag-TiO<sub>2</sub>/PU 299 photocatalyst, accompanied by a decrease in the CO<sub>2</sub> concentration with a slight time lag of 300 around 15 min (Figure 8B). After the adsorbed toluene was almost entirely desorbed, the 301 incoming toluene underwent continuous photocatalytic degradation. Thus, the outlet toluene 302 concentration plateaued in the range of 15 to 38 ppm depending on the Ag content in Ag-303 TiO<sub>2</sub>/PU (Figure 8A). 304

When visible light was provided from the beginning of the toluene removal experiments 305  $(t_0=0)$ , without an adsorption period under dark conditions, the outlet toluene concentrations 306 passing through the Ag-TiO<sub>2</sub>/PU materials plateaued at around 10 to 30 ppm after 75 or 90 min 307 (Figure 9A). During the initial experimental period, the toluene was removed by both adsorption 308 and the photocatalytic degradation of Ag-TiO<sub>2</sub>/PU. However, the CO<sub>2</sub> gas, generated as a main 309 product of the photocatalytic degradation of toluene, disturbed the adsorption of toluene early on. 310 Thus, if the visible light was provided for longer than 75-90 min, the input toluene was only 311 removed by the photocatalytic degradation activity of Ag-TiO<sub>2</sub>/PU. 312

313

314 *3.2.2.* Optimal Ag content

Figure 8A shows that under dark condition, the slope in the outlet toluene concentration passing through 6% Ag-TiO<sub>2</sub>/PU was the shallowest. The steep slope of an adsorption curve is

inversely proportional to the adsorption capacity. A material with a very steep slope in its adsorption curve reaches its adsorption saturation easily or has a low adsorption capacity, whereas a material was a shallower slope has a high adsorption capacity. Thus, among the Ag-TiO<sub>2</sub>/PU materials, 6 % Ag-TiO<sub>2</sub>/PU exhibited the highest adsorption capacity for toluene removal because it had the highest surface area (Table 1).

Figures 8 and 9 show that the outlet toluene and CO<sub>2</sub> concentrations that passed through the 322 Ag-TiO<sub>2</sub>/PU materials under visible light irradiation were stabilized at certain values that could 323 be used to calculate the toluene removal efficiency and the mineralization degree of toluene into 324 CO<sub>2</sub> and H<sub>2</sub>O by Ag-TiO<sub>2</sub>/PU at different Ag/TiO<sub>2</sub> ratios (Table 2). The toluene removal 325 efficiency and the degree of mineralization by Ag-TiO<sub>2</sub>/PU showed similar results for both 326 conditions A and B (explained in the note at the bottom of Table 2). The removal efficiency of 327 328 toluene increased as the Ag/TiO<sub>2</sub> ratio increased up to 6 wt %, but then gradually decreased with further increase in the ratio. These results were matched by those obtained from the XPS and 329 UV-Vis absorption analyses of Ag-TiO<sub>2</sub>/PU photocatalyst. The increase in the Ag/TiO<sub>2</sub> ratio led 330 to an increase in the number of both Ag ions, which were incorporated into the TiO<sub>2</sub> lattice, and 331 metallic Ag, which was dispersed onto the TiO<sub>2</sub> layer. Consequently, the electron-hole 332 separation efficiency and lifespan of the excited electrons in TiO<sub>2</sub> were both increased, which 333 further increased the photocatalytic degradation efficiency of TiO<sub>2</sub>. However, the incorporation 334 of Ag ions into the TiO<sub>2</sub> lattice was limited by the tendency of the Ag particles, which had 335 dispersed onto the TiO<sub>2</sub> lattice and thus enhanced the electron-hole pair separation efficiency of 336 TiO<sub>2</sub>, to gather into large particles at high Ag/TiO<sub>2</sub> ratios of 8 and 10 wt %, which decreased 337 their enhancement role. Thus, the effect of Ag in enhancing the photocatalytic activity of TiO<sub>2</sub> 338 339 seemed to reach a limit when the Ag/TiO<sub>2</sub> ratio was 6 wt %.

340

341

342 *3.2.3.* Effects of Oxygen content

Figure 10 shows the toluene removal by 6% Ag-TiO<sub>2</sub>/PU carried out under darkened conditions for the first 180 min, followed by visible light irradiation for an additional 180 min, as a function of the oxygen content in the input gas stream. Under the darkened condition, the slopes in the outlet toluene concentrations passing through 6 % Ag-TiO<sub>2</sub>/PU, and hence its toluene adsorption ability, were not affected by the oxygen content. This indicated that oxygen and toluene were adsorbed at different sites on the Ag-TiO<sub>2</sub>/PU surface, so that the adsorption of oxygen did not compete with toluene adsorption [25].

Under visible light conditions, the photocatalytic degradation of gaseous toluene using Ag-350 351 TiO<sub>2</sub>/PU was significantly affected by the oxygen content in the input gas stream. The photocatalytic degradation of toluene increased with increasing oxygen content up to 15 % and 352 then stabilized (Figure 10A). The  $O_2$  reacted with the electrons generated on the surface of Ag-353 354 TiO<sub>2</sub>/PU to produce superoxide radicals (reaction 4), which increased the photocatalytic degradation of toluene in the gas stream [54]. The reaction between the oxygen and the photo-355 generated electrons also prevented the recombination of the generated electrons and holes to 356 prolong the lifetime of the generated holes, thereby increasing the production of hydroxyl 357 radicals (via reactions 5 to 7) and hence increasing the degradation of toluene [55]. The reaction 358 between oxygen and electrons peaked at an oxygen content of 15 %, above which the 359 degradation of toluene in the gas stream was stabilized. These study results supported the 360 conclusion that ambient air, with an oxygen content of 21 %, can provide sufficient oxygen for 361

the economic photocatalytic degradation of gaseous toluene by Ag-TiO<sub>2</sub>/PU under visible lightcondition.

364

## 365 4. Conclusion

The synthesized Ag-TiO<sub>2</sub>/PU exhibited high adsorption and photocatalytic degradation for 366 the effective removal of gaseous toluene. The high adsorption ability was attributed to the use of 367 porous PU as a substrate for the immobilization of Ag-TiO<sub>2</sub>, which greatly increased the surface 368 area of the adsorbents (Ag-TiO<sub>2</sub>/PU). The high photocatalytic degradation of toluene was 369 attributed to the Ag particles, which deposited onto the TiO<sub>2</sub> surface, and the Ag dopants, which 370 incorporated into the TiO<sub>2</sub> lattice. The optimal Ag/TiO<sub>2</sub> ratio for enhancing the photocatalytic 371 degradation activity of TiO<sub>2</sub> for toluene removal was 6 wt %. Under dark condition, the 372 373 synthesized Ag-TiO<sub>2</sub>/PU exhibited only adsorption activity for removal of gaseous toluene, whereas under visible light irradiation condition it exhibited a combination of both adsorption 374 and photocatalytic degradation. We investigated that the ambient air can be used economically to 375 376 provide sufficient oxygen for the photocatalytic degradation of gaseous toluene by Ag-TiO<sub>2</sub>/PU under visible light condition. Under visible light irradiation, 6 % Ag-TiO<sub>2</sub>/PU successfully 377 removed 85.2 % of the 100ppm toluene in gas stream, while 90.3 % of the removed amount was 378 mineralized into CO<sub>2</sub> and H<sub>2</sub>O. 379

380

## 381 Acknowledgments:

This work was supported by a grant from the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning (2013R1A2A2A03013138).

## 385 **Reference**

- [1] J. Li, S. Lu, G. Liu, Y. Zhou, Y. Lv, J. She, R. Fan, Co-exposure to polycyclic aromatic
  hydrocarbons, benzene and toluene and their dose–effects on oxidative stress damage in
  kindergarten-aged children in Guangzhou, China, Science of the Total Environment, 524-525
  (2015) 74-80.
- 390 [2] H.K. Lai, J.M. Jantunen, N. Kunzli, N. Kulinskaya, R. Colvile, M.J. Nieuwenhuijsen,
  391 Determinants of indoor benzene in Europe, Atmospheric Environment, 41 (2007) 9128-9135.
- [3] S.N. Sinha, P.K. Kulkarni, S.H. Shah, N.M. Desai, G.M. Patel, M.M. Mansuri, H.N. Saiyed,
  Environmental monitoring of benzene and toluene produced in indoor air due to combustion
  of solid biomass fuels, Science of the Total Environment, 357 (2006) 280-287.
- [4] A. Rezaee, G.H. Pourtaghi, A. Khavanin, R.S. Mamoory, M.T. Ghaneian, H. Godini,
   Photocatalytic decomposition of gaseous toluene by TiO<sub>2</sub> nanoparticles coated on activated
   carbon, Iranian Journal of Environmental Health Science & Engineering, 5 (2008) 305-310.
- 398 [5] C. Treesubsuntorn, P. Thiravetyan, Removal of benzene from indoor air by Dracaena
  399 sanderiana: Effect of wax and stomata, Atmospheric Environment, 57 (2013) 317-321.
- 400 [6] L. Zou, Y. Luo, M. Hooper, E. Hu, Removal of VOCs by photocatalysis process using
  401 adsorption enhanced TiO<sub>2</sub>–SiO<sub>2</sub> catalyst, Chemical Engineering and Processing, 45 (2006)
  402 959-964.
- [7] W.K. Jo, K.H. Park, Heterogeneous photocatalysis of aromatic and chlorinated volatile
  organic compounds (VOCs) for non-occupational indoor air application, Chemosphere, 57
  (2004) 555-565.
- 406 [8] W. Chen, J.S. Zhang, UV-PCO device for indoor VOCs removal: Investigation on multiple
  407 compounds effect, Building and Environment, 43 (2008) 246-252.

- 408 [9] S. Preis, D. Klauson, A. Gregor, Potential of electric discharge plasma methods in abatement
  409 of volatile organic compounds originating from the food industry, Journal of Environmental
  410 Management, 114 (2013) 125-138.
- 411 [10] Z. Han, V.W. Chang, X. Wang, T.T. Lim, L. Hildemann, Experimental study on visible-
- light induced photocatalytic oxidation of gaseous formaldehyde by polyester fiber supported
  photocatalysts, Chemical Engineering Journal, 218 (2013) 9-18.
- [11] L. Fan, J. Long, Q. Gu, H. Huang, H. Lin, X. Wang, Single-site nickel-grafted anatase TiO<sub>2</sub>
  for hydrogen production: Toward understanding the nature of visible-light photocatalysis,
  Journal of Catalysis, 320 (2014) 147-159.
- 417 [12] S.N.R. Inturi, T. Boningari, M. Suidan, P.G. Smirniotis, Visible-light-induced
  418 photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe,
  419 Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO<sub>2</sub>, Applied Catalysis B: Environmental, 144
  420 (2014) 333-342.
- [13] B. Wang, G. Zhang, X. Leng, Z. Sun, S. Zheng, Characterization and improved solar light
  activity of vanadium doped TiO<sub>2</sub>/diatomite hybrid catalysts, Journal of Hazardous Materials,
  284 (2015) 212-220.
- [14] M.B. Fisher, D.A. Keane, Fernández-Ibanez, J. Colreavy, S.J. Hinder, K.G. McGuigan, S.C.
  Pillai, Nitrogen and copper doped solar light active TiO<sub>2</sub> photocatalysts for water
  decontamination, Applied Catalysis B: Environmental, 130-131 (2013) 8-13.
- 427 [15] T.D. Pham, B.K. Lee, Cu doped TiO<sub>2</sub>/GF for photocatalytic disinfection of Escherichia coli
  428 in bioaerosols under visible light irradiation: Application and Mechanism, Applied Surface
  429 Science, 296 (2014) 15-23.

- [16] T.D. Pham, B.K. Lee, Effects of Ag doping on the photocatalytic disinfection of E. coli in
  bioaerosol by Ag–TiO<sub>2</sub>/GF under visible light, Journal of Colloid and Interface Science, 428
  (2014) 24-31.
- 433 [17] T.D. Pham, B.K. Lee, Novel integrated approach of adsorption and photo-oxidation using
- Ag-TiO<sub>2</sub>/PU for bioaerosol removal under visible ligh, Chemical Engineering Journal, 275
  (2015) 357-365.
- 436 [18] Y. Jin, Z. Dai, F. Liu, H. Kim, M. Tong, Y. Hou, Bactericidal mechanisms of Ag<sub>2</sub>O/TNBs
  437 under both dark and light conditions, Water research, 47 (2013) 1837-1847.
- [19] G. Xiao, X. Zhang, W. Zhang, S. Zhang, H. Su, T. Tan, Visible-light-mediated synergistic
  photocatalytic antimicrobial effects and mechanism of Ag-nanoparticles@chitosan-TiO<sub>2</sub>
  organic-inorganic composites for water disinfection, Applied Catalysis B: Environmental,
  170-171 (2015) 255-262.
- [20] L. Liu, H. Bai, J. Liu, D.D. Sun, Multifunctional graphene oxide-TiO<sub>2</sub>-Ag nanocomposites
  for high performance water disinfection and decontamination under solar irradiation, Journal
  of Hazardous Materials, 261 (2013) 214-223.
- [21] N. Attarchia, M. Montazer, T. Toliyat, Ag/TiO<sub>2</sub>/ β-CD nano composite: Preparation and
  photo catalytic properties for methylene blue degradation, Applied Catalysis A: General, 467
  (2013) 107-116.
- 448 [22] C. Liua, C. Cao, X. Luo, S. Luo, Ag-bridged Ag<sub>2</sub>O nanowire network/TiO<sub>2</sub> nanotube array
- 449 p–n heterojunction as a highly efficient and stable visible light photocatalyst, Journal of
- 450 Hazardous Materials, 285 (2015) 319-324.

| 451 | [23] D.M. Tobaldi, R.C. Pullar, A.F. Gualtieri, M.P. Seabra, J.A. Labrincha, Sol-gel synthesis,               |
|-----|---------------------------------------------------------------------------------------------------------------|
| 452 | characterisation and photocatalytic activity of pure, W-, Ag- and W/Ag co-doped $\mathrm{TiO}_2$              |
| 453 | nanopowders, Chemical Engineering Journal, 214 (2013) 364-375.                                                |
| 454 | [24] R. Djellabi, M.F. Ghorab, G. Cerrato, S. Morandi, S. Gatto, V. Oldani, A.D. Michele, C.L.                |
| 455 | Bianchi, Photoactive TiO2-montmorillonite composite for degradation of organic dyes in                        |
| 456 | water, Journal of Photochemistry and Photobiology A: Chemistry, 295 (2014) 57-63.                             |
| 457 | [25] Y.T. Lin, C.H. Weng, F.Y. Chen, Key operating parameters affecting photocatalytic activity               |
| 458 | of visible-light-induced C-doped TiO <sub>2</sub> catalyst for ethylene oxidation, Chemical Engineering       |
| 459 | Journal, 248 (2014) 175-183.                                                                                  |
| 460 | [26] J.F. Wu, C.H. Hung, C.S. Yuan, Kinetic modeling of promotion and inhibition of                           |
| 461 | temperature on photocatalytic degradation of benzene vapor, Journal of Photochemistry and                     |
| 462 | Photobiology A: Chemistry, 170 (2005) 299-306.                                                                |
| 463 | [27] X. Fu, L.A. Clark, W.A. Zeltner, M.A. Anderson, Effects of reaction temperature and water                |
| 464 | vapor content on the heterogeneous photocatalytic oxidation of ethylene, Journal of                           |
| 465 | Photochemistry and Photobiology A: Chemistry, 97 (1996) 181-186.                                              |
| 466 | [28] K. Demeestere, J. Dewulf, B. De Witte, H. Van Langenhove, Titanium dioxide mediated                      |
| 467 | heterogeneous photocatalytic degradation of gaseous dimethyl sulfide: Parameter study and                     |
| 468 | reaction pathways, Applied Catalysis B: Environmental, 60 (2005) 93-106.                                      |
| 469 | [29] C. Raillard, V. Héquet, P.L. Cloirec, J. Legrand, TiO <sub>2</sub> coating types influencing the role of |
| 470 | water vapor on the photocatalytic oxidation of methyl ethyl ketone in the gas phas, Applied                   |
| 471 | Catalysis B: Environmental, 59 (2005) 213-220.                                                                |
| 472 | [30] A. Amarjargal, L.D. Tijing, H.K. Shon, C.H. Park, C.S. Kim, Facile in situ growth of highly              |
| 473 | monodispersed Ag nanoparticles on electrospun PU nanofiber membranes: Flexible and high                       |
|     |                                                                                                               |

| 474 | efficiency substrates for surface enhanced Raman scattering, Applied Surface Science 308,             |
|-----|-------------------------------------------------------------------------------------------------------|
| 475 | 308 (2014) 396-401.                                                                                   |
| 476 | [31] X. Gao, M. Zhao, Z. Zhang, C. Chen, J. Ma, J. Lu, Effects of hydrogen annealing on the           |
| 477 | microstructure and optical properties of single-phased Ag <sub>2</sub> O film deposited using direct- |
| 478 | current reactive magnetron sputtering, Thin Solid Films, 519 (2011) 6620-6623.                        |
| 479 | [32] S.B. Atla, C.C. Chen, C.Y. Chen, P.Y. Lin, W. Pan, K.C. Cheng, Y.M. Huang, Y.F. Chang,           |
| 480 | J.S. Jean, Visible light response of $Ag^+/TiO_2-Ti_2O_3$ prepared by photodeposition under foam      |
| 481 | fractionation, Journal of Photochemistry and Photobiology A: Chemistry, 236 (2012) 1-8.               |

- 482 [33] Z. Zhang, J.B. Yi, J. Ding, L.M. Wang, H.L. Seng, S.J. Wang, J.G. Tao, G.P. Li, G.Z. Xing,
- T.C. Sum, C.H.A. Huan, T. Wu, Cu doped ZnO nanoneedles and nanonails:morphological
  evolution and physical properties Journal of Physical Chemistry C, 112 (2008) 9579-9585.
- 485 [34] Q.D. Truong, M. Kakihana, Hydrothermal growth of cross-linked hyperbranched copper
  486 dendrites using copper oxalate complex, Journal of Crystal Growth, 348 (2012) 65-70.
- [35] E. Morrison, D. Gutiérrez-Tauste, C. Domingo, E. Vigil, J.A. Ayllón, One step room
  temperature photodeposition of Cu/TiO<sub>2</sub> composite films and its conversion to CuO/TiO<sub>2</sub>,
  Thin Solid Films, 517 (2009) 5621-5624.
- 490 [36] A. Kubacka, M.J. Munoz-Batista, M. Fernández-García, S. Obregón, G. Colón, Evolution of
- H<sub>2</sub> photoproduction with Cu content on CuO<sub>x</sub>-TiO<sub>2</sub> composite catalysts prepared by a
   microemulsion method, Applied Catalysis B: Environmental, 163 (2015) 214-222.
- 493 [37] M.H. Ahmed, T.E. Keyes, J.A. Byrne, The photocatalytic inactivation effect of Ag–TiO<sub>2</sub> on
- 494 β-amyloid peptide (1–42), Journal of Photochemistry and Photobiology A: Chemistry, 254
  495 (2013) 1-11.

| 496 | [38] H.W.P. Carvalhoa, A.P.L. Batistab, P. Hammer, T.C. Ramalho, Photocatalytic degradation |
|-----|---------------------------------------------------------------------------------------------|
| 497 | of methylene blue by $TiO_2$ -Cu thin films: Theoretical and experimental study, Journal of |
| 498 | Hazardous Materials, 184 (2010) 273–280.                                                    |

- 499 [39] C.S. Kim, J.W. Shin, Y.H. Cho, H.D. Jang, H.S. Byun, T.O. Kim, Synthesis and
- characterization of Cu/N-doped mesoporous TiO<sub>2</sub> visible light photocatalysts, Applied
  Catalysis A: General, 455 (2013) 211-218.
- [40] H. Liu, W. Yang, Y. Ma, Y. Cao, J. Yao, J. Zhang, T. Hu, Synthesis and characterization of
  titania prepared by using a photoassisted sol-gel method, Langmuir, 19 (2003) 3001-3005.
- [41] R. Jaiswal, N. Patel, D.C. Kothari, A. Miotello, Improved visible light photocatalytic
  activity of TiO<sub>2</sub> co-doped with Vanadium and Nitrogen, Applied Catalysis B: Environmental,
  126 (2012) 47-54.
- 507 [42] M. Gurulakshmi, M. Selvaraj, A. Selvamani, P. Vijayan, N.R.S. Rekha, K. Shanthi,
   508 Enhanced visible-light photocatalytic activity of V<sub>2</sub>O<sub>5</sub>/S-TiO<sub>2</sub> nanocomposites, Applied
   509 Catalysis A: General, 449 (2012) 31-46.
- [43] Z.H. Shah, J. Wang, Y. Ge, C. Wang, W. Mao, S. Zhang, R. Lu, Highly enhanced
  plasmonic photocatalytic activity of Ag/AgCl/TiO<sub>2</sub> by CuO co-catalyst, Journal of Materials
- 512 Chemistry A, 3 (2015) 3568–3575.
- 513 [44] S. Zhang, L. Chen, L. Liu, W. Guo, Y. Yang, Y. Guo, M. Huo, Design of H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub>/TiO<sub>2</sub>
  514 and Ag/H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub>/TiO<sub>2</sub> film-coated optical fiber photoreactor for the degradation of
  515 aqueous rhodamine B and 4-nitrophenol under simulated sunlight irradiation, Chemical
- 516 Engineering Journal, 200-202 (2012) 300-309.
- 517 [45] E.S. Aazam, Visible light photocatalytic degradation of thiophene using Ag–TiO<sub>2</sub>/multi-
- walled carbon nanotubes nanocomposite, Ceramics International, 40 (2014) 6705-6711.

- [46] K.P.O. Mahesh, D.H. Kuo, B.R. Huang, Facile synthesis of heterostructured Ag-deposited
  SiO<sub>2</sub>@TiO<sub>2</sub> composite spheres with enhanced catalytic activity towards the photodegradation
  of AB 1 dye, Journal of Molecular Catalysis A: Chemical, 396 (2015) 290-296.
  [47] L.V. Trandafilovic, R.K. Whiffen, S.D. Brankovic, M. Stoiljkovic, A.S. Luyt, V. Djokovic,
  ZnO/Ag hybrid nanocubes in alginate biopolymer: Synthesis and properties, Chemical
- Engineering Journal, 253 (2014) 341-349.
- [48] W.T. Chen, V. Jovic, D. Sun-Waterhouse, H. Idriss, G.I.N. Waterhouse, The role of CuO in
   promoting photocatalytic hydrogen production over TiO<sub>2</sub>, Internation Journal of Hydrogen
   Energy, 38 (2013) 15036-15048.
- [49] F. Zhang, M. Wang, X. Zhu, B. Hong, W. Wang, Z. Qi, W. Xie, J. Ding, J. Bao, S. Sun, C.
  Gao, Effect of surface modification with H<sub>2</sub>S and NH<sub>3</sub> on TiO<sub>2</sub> for adsorption and
  photocatalytic degradation of gaseous toluene, Applied Catalysis B: Environmental, 170-171
  (2015) 215-224.
- [50] T.D. Nguyen-Phan, M.B. Song, H. Yun, E.J. Kim, E.S. Oh, E.W. Shin, Characterization of
  vanadium-doped mesoporous titania and its adsorption of gaseous benzene. , Applied Surface
  Science, 257 (2011) 2024-2031.
- [51] M. Takeuchi, M. Hidaka, M. Anpo, Efficient removal of toluene and benzene in gas phase
  by the TiO<sub>2</sub>/Y-zeolite hybrid photocatalyst, Journal of Hazardous Materials, 237-238 (2012)
  133-139.
- 538 [52] b.Y. Lee, S.H. Park, S.C. Lee, M. Kang, S.J. Choung, Decomposition of benzene by using a
  539 discharge plasma–photocatalyst hybrid system, Catalysis Today, 93-95 (2004) 769-776.
- 540 [53] H. Dong, G. Chen, J. Sun, C. Li, Y. Yu, D. Chen, A novel high-efficiency visible-light
- sensitive Ag<sub>2</sub>CO<sub>3</sub> photocatalyst with universal photodegradation performances: Simple

# Page 25 of 39

# **RSC Advances**

| 542 | synthesis, reaction mechanism and first-principles study, Applied Catalysis B:                   |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 543 | Environmental, 134-135 (2013) 46-54.                                                             |  |  |  |  |  |
| 544 | [54] A.K. Boulamanti, C.J. Philippopoulos, Photocatalytic degradation of methyl tert-butyl ether |  |  |  |  |  |
| 545 | in the gas-phase: A kinetic study, Journal of Hazardous Materials, 160 (2008) 83-87.             |  |  |  |  |  |
| 546 | [55] X.V. Doorslaer, P.M. Heynderickx, K. Demeestere, K. Debevere, H.V. Langenhove, J.           |  |  |  |  |  |
| 547 | Dewulf, TiO <sub>2</sub> mediated heterogeneous photocatalytic degradation of moxifloxacin:      |  |  |  |  |  |
| 548 | Operational variables and scavenger study, Applied Catalysis B: Environmental, 111-112           |  |  |  |  |  |
| 549 | (2012) 150-156.                                                                                  |  |  |  |  |  |
| 550 |                                                                                                  |  |  |  |  |  |
| 551 |                                                                                                  |  |  |  |  |  |
| 552 |                                                                                                  |  |  |  |  |  |
| 553 |                                                                                                  |  |  |  |  |  |
| 554 |                                                                                                  |  |  |  |  |  |
| 555 |                                                                                                  |  |  |  |  |  |
| 556 |                                                                                                  |  |  |  |  |  |
| 557 |                                                                                                  |  |  |  |  |  |
| 558 |                                                                                                  |  |  |  |  |  |
| 559 |                                                                                                  |  |  |  |  |  |
| 560 |                                                                                                  |  |  |  |  |  |
| 561 |                                                                                                  |  |  |  |  |  |
| 562 |                                                                                                  |  |  |  |  |  |
| 563 |                                                                                                  |  |  |  |  |  |

| -   |                              | Ag <sup>+</sup> /Ag <sup>0</sup> ratios | Ti <sup>3+</sup> /Ti <sup>4+</sup> ratios<br>(%) | <b>BET surface area</b> (m <sup>2</sup> /g) |
|-----|------------------------------|-----------------------------------------|--------------------------------------------------|---------------------------------------------|
| -   | TiO <sub>2</sub> /PU         | -                                       | 0                                                | 110.9                                       |
|     | 2 % Ag-TiO <sub>2</sub> /PU  | 42.4                                    | 15.5                                             | 129.2                                       |
|     | 4 % Ag-TiO <sub>2</sub> /PU  | 48.8                                    | 19.7                                             | 155.7                                       |
|     | 6 % Ag-TiO <sub>2</sub> /PU  | 55.6                                    | 22.6                                             | 186.6                                       |
|     | 8 % Ag-TiO <sub>2</sub> /PU  | 54.3                                    | 23.4                                             | 176.3                                       |
| _   | 10 % Ag-TiO <sub>2</sub> /PU | 53.1                                    | 24.2                                             | 148.1                                       |
| 566 |                              |                                         |                                                  |                                             |
| 567 |                              |                                         |                                                  |                                             |
| 568 |                              |                                         |                                                  |                                             |
| 569 |                              |                                         |                                                  |                                             |
| 570 |                              |                                         |                                                  |                                             |
| 571 |                              |                                         |                                                  |                                             |
| 572 |                              |                                         |                                                  |                                             |
| 573 |                              |                                         |                                                  |                                             |
| 574 |                              |                                         |                                                  |                                             |
| 575 |                              |                                         |                                                  |                                             |
| 576 |                              |                                         |                                                  |                                             |
| 577 |                              |                                         |                                                  |                                             |
| 578 |                              |                                         |                                                  |                                             |
| 579 |                              |                                         |                                                  |                                             |
| 580 |                              |                                         |                                                  |                                             |

- Table 1: The ratios of  $Ag^{0}/Ag^{+}$  and  $Ti^{3+}/Ti^{4+}$  and the BET surface area of the Ag-TiO<sub>2</sub>/PU
- 565 materials

# Page 27 of 39

# **RSC Advances**

581 Table 2: The toluene removal efficiency and the mineralization degree by Ag-TiO<sub>2</sub>/PU

| 582 | photocatalysts at | different Ag/Ti | O2 ratios under | visible light | t conditions |
|-----|-------------------|-----------------|-----------------|---------------|--------------|
|-----|-------------------|-----------------|-----------------|---------------|--------------|

|            |                                                          | <b>Condition A</b>                                   |                                                | <b>Condition B</b>                      |                              |  |
|------------|----------------------------------------------------------|------------------------------------------------------|------------------------------------------------|-----------------------------------------|------------------------------|--|
|            |                                                          | Removal<br>efficiency (%)                            | Mineralization<br>degree (%)                   | Removal<br>efficiency (%)               | Mineralization<br>degree (%) |  |
| -          | 2 % Ag-TiO <sub>2</sub> /PU                              | 62.5                                                 | 88.2                                           | 62.9                                    | 88.5                         |  |
|            | 4 % Ag-TiO <sub>2</sub> /PU                              | 68.3                                                 | 89.1                                           | 68.7                                    | 89.6                         |  |
|            | 6 % Ag-TiO <sub>2</sub> /PU                              | 85.2                                                 | 90.3                                           | 85.6                                    | 90.8                         |  |
|            | 8 % Ag-TiO <sub>2</sub> /PU                              | 81.4                                                 | 88.4                                           | 81.7                                    | 89.1                         |  |
|            | 10 % Ag-TiO <sub>2</sub> /PU                             | 75.6                                                 | 89.3                                           | 76.5                                    | 88.4                         |  |
| 583<br>584 | Note: Condition A: Light was<br>Condition B: Light was p | s provided after the tole<br>provided from the begin | uene was adsorbed du<br>nning of the toluene r | uring the darkened permoval $(t=t_o)$ . | eriod (0-180 min)            |  |
| 585        |                                                          |                                                      |                                                |                                         |                              |  |
| 586        |                                                          |                                                      |                                                |                                         |                              |  |
| 587        |                                                          |                                                      |                                                |                                         |                              |  |
| 588        |                                                          |                                                      |                                                |                                         |                              |  |
| 589        |                                                          |                                                      |                                                |                                         |                              |  |
| 590        |                                                          |                                                      |                                                |                                         |                              |  |
| 591        |                                                          |                                                      |                                                |                                         |                              |  |
| 592        |                                                          |                                                      |                                                |                                         |                              |  |
| 593        |                                                          |                                                      |                                                |                                         |                              |  |
| 594        |                                                          |                                                      |                                                |                                         |                              |  |
| 595        |                                                          |                                                      |                                                |                                         |                              |  |
| 596        |                                                          |                                                      |                                                |                                         |                              |  |
| 597        |                                                          |                                                      |                                                |                                         |                              |  |
| 598        |                                                          |                                                      |                                                |                                         |                              |  |









Figure 2: High-resolution XPS spectra of Ag in X % Ag-TiO<sub>2</sub>/PU







- 639 Figure 5: SEM of TiO<sub>2</sub>/PU (A), and 2% (B), 4% (C), 6% (D), 8% (E) and 10% (F) Ag-TiO<sub>2</sub>/PU







Figure 8: Toluene removal (A) and generated CO<sub>2</sub> concentration (B) by X % Ag-TiO<sub>2</sub>/PU under
dark and then visible light conditions

661



662

Figure 9: Toluene removal (A) and generated CO<sub>2</sub> concentration (B) by X % Ag-TiO<sub>2</sub>/PU under
visible light conditions



#### 671 Table captions

- Table 1: The ratios of  $Ag^{0}/Ag^{+}$  and  $Ti^{3+}/Ti^{4+}$  and the BET surface area of the Ag-TiO<sub>2</sub>/PU materials
- Table 2: The toluene removal efficiency and the mineralization degree by Ag-TiO<sub>2</sub>/PU
- 675 photocatalysts at different Ag/TiO<sub>2</sub> ratios under visible light conditions
- 676

# 677 Figure captions

- Figure 1: The experimental apparatus for removal of gaseous toluene
- Figure 2: High-resolution XPS spectra of Ag in X % Ag-TiO<sub>2</sub>/PU
- 680 Figure 3: XRD patterns of X % Ag-TiO<sub>2</sub>/PU
- Figure 4: High-resolution XPS spectra of Ti 2p<sub>3/2</sub> in X % Ag-TiO<sub>2</sub>/PU
- 682 Figure 5: SEM of TiO<sub>2</sub>/PU (A), and 2% (B), 4% (C), 6% (D), 8% (E) and 10% (F) Ag-TiO<sub>2</sub>/PU
- Figure 6: TEM images of TiO<sub>2</sub>/PU (A) and Ag-TiO<sub>2</sub>/PU (B); HRTEM images of the selected
- areas in the TEM images of  $TiO_2/PU$  (A1) and Ag- $TiO_2/PU$  (B1, B2 and B3).
- Figure 7: UV-Vis absorption spectra of  $TiO_2/PU$  and 2, 4, 6, 8 and 10% Ag- $TiO_2/PU$
- Figure 8: Toluene removal (A) and generated CO<sub>2</sub> concentration (B) by X % Ag-TiO<sub>2</sub>/PU under
- 687 dark and then visible light conditions
- Figure 9: Toluene removal (A) and generated CO<sub>2</sub> concentration (B) by X % Ag-TiO<sub>2</sub>/PU under
- 689 visible light conditions
- Figure 10: Effect of  $O_2$  content on outlet toluene (A) and generated  $CO_2$  concentration (B)
- 691 passing 6% Ag-TiO<sub>2</sub>/PU

