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The mechanical and thermodynamic properties of four ytterbium carbides with increasing carbon contents have been 

examined using ab initio calculations based on density functional theory. In order to describe the strong on-site Coulomb 

repulsion among localized 4f electrons, generalized gradient approximation plus a Hubbard parameter (GGA + U) 

formalisms have been adopted for the exchange correlation term. The elastic constants of YbC, Yb2C3, YbC2, and YbC6 are 

related to Hubbard U. The bulk modulus B, shear modulus G, and Young’s modulus E are evaluated through Voigt-Reuss-

Hill approximation. Among the four ytterbium carbides, YbC6 yields the largest B, G, and E, and YbC2 exhibits relatively soft 

and ductile characteristics. Mechanical anisotropy was estimated using several anisotropic indexes and factors. The 

anisotropic property of E of four ytterbium carbides is more evident than that of B. Phonon calculation reveals the 

thermodynamic stability of YbC2 and YbC6, which is consistent with experimental observations.

1. Introduction 

Metal carbides have been extensively investigated from both 

experimental and theoretical points of view because of their 

unique magnetic and electrical properties for electronic 

applications.1-4 Rare-earth carbides has been commonly used 

as model systems to probe structure–property relationships 

because of their structural diversity. C atoms play a principal 

role in the structural diversity of rare-earth carbides. The C-to-

metal atomic ratio in rare-earth carbides exhibits a broad 

range, for instance, the C-to-metal atomic ratios of CeC and 

EuC6 are 1 and 6, respectively.5-7 The C atoms in rare-earth 

carbides also exist in various forms, such as three-dimensional 

networks, two-dimensional layered structures, and C-C 

dumbbell units. Two-dimensional C layers are implicated in 

superconducting graphite intercalation compounds (GICs). The 

combination of the graphene and intercalated sheets is 

accounted for superconductivity because neither graphite nor 

pure metal exhibits a high Tc.
8 It is reported that the C–C 

dumbbell distance is correlated with Tc of rare-earth carbides 

superconductors.9 The C–C distance in the C2 dumbbell at 

approximately 1.30 Å shows the highest Tc among rare-earth 

carbides. The C2 dumbbell is also found in RExTyC2 carbides, 

where RE denotes a rare-earth metal and T denotes a 

transition metal. C2 and T form a quasi-one-dimensional linear 

TC4 unit embedded in matrix RE cations. It is found that the 

medium-frequency C2 vibrations drive the high Tc in Sc3CoC4.10 

Furthermore, C2 dumbbell dimer unit could transfer to two-

dimensional graphite sheets under pressure, such as in Ca-C 

systems.11-13 

The past decade has been seen intense efforts directed at 

studies of the structures and properties of ytterbium carbides. 

The ytterbium-carbon systems are significantly different from 

those of lightweight rare-earth carbide systems, which have 

well defined dicarbides, Pu2C3-type sequicarbides, and NaCl-

type monocarbides.14, 15 However, NaCl-type monocarbides 

with a stoichiometric ratio of 1:1 has yet to be determined in 

Yb−C systems. Yb3C is characterized by a C-deficient NaCl-type 

structure.14 Although Yb2C3 with a body-centered cubic Pu2C3-

type structure can be prepared at high pressures, the 

thermodynamic stability of this compound under ambient 

conditions remains elusive.16 Similar to lightweight rare-earth 

carbides, YbC2 assumes a tetragonal CaC2-type structure.17 

Surprisingly, the lattice parameters of YbC2 are different from 

other rare-earth dicarbides. The lattice parameters of rare-

earth carbides decrease regularly with increasing of atomic 

number of metal atoms, by contrast, the lattice parameters of 

YbC2 lie between those of HoC2 and ErC2.14 The interest of 

ytterbium carbides is in part fueled by the discovery of 

superconductivity in YbC6 with Tc of 6.5 K.18 Two mechanisms 

have been proposed to understand the superconductivity of 

GICs, including YbC6. Csanyi et al. proposed an unconventional 

exciton or plasmon-mediated pairing mechanism.19 Later, a 

conventional BCS phonon-mediated mechanism has also been 

suggested; in this mechanism, interlayer bands display a 

sufficiently strong coupling with both in-plane intercalant and 

out-of-plane graphite phonon modes to allow for a relatively 

high Tc.
20, 21 

4f electrons play a pivotal role in understanding the 

electronic and thermodynamic properties of rare-earth 

compounds; however, conventional density function theory 

(DFT), which uses conventional exchange-correlation potential, 

such as local density functional approximation (LDA) or 
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generalized gradient approximation (GGA), has failed to 

describe the ground state properties of systems containing 4f 

electrons because of their strong on-site Coulomb repulsion. 

An effective modification of pure DFT which calls LDA/GGA + U 

(U is the Hubbard energy) scheme22-24 can be used to obtain 

considerable improvement with respect to the LDA or GGA 

results. In fact, DFT + U calculations have been performed to 

explore the electronic properties of ytterbium compounds. 

Including localized 4f orbitals in the LDA + U method results in 

the downward rigid shift of the energy of the filled 4f bands in 

YbC6.25 The more recently studies of novel correlated 

topological insulator YbB6 reveals that the 4f band moves to a 

higher energy and does not cross the 5d band when turning on 

the Hubbard parameter U; this findings is consistent with 

experimental data.26 

Although numerous studies on the structural and electronic 

properties of individual ytterbium carbide have been 

performed, theoretical studies on ytterbium carbides, 

especially mechanical and thermodynamic properties with 

respect to carbon contents have been rarely conducted. In 

addition, the effects of electronic strong correlation on 

ytterbium carbides have been sparsely visited. In this work, 

four representative ytterbium carbides with increasing carbon 

contents (YbC, Yb2C3, YbC2, and YbC6) were selected to 

systematically exmine their mechanical and thermodynamic 

properties through ab initio GGA+ U calculations. 

2. Computational methods  

The ab initio calculations were performed within the 

framework of DFT as implemented in the Vienna Ab-initio 

Simulation Package (VASP).27 The all-electron projector 

augmented wave (PAW)28 pseudopotential for Yb and C from 

the VASP pseudopotential library were used. The electron 

wave function was expanded in plane waves up to a cutoff 

energy of 550 eV. The k-point meshes29 in the full edge of the 

Brillouin zone (BZ) are sampled of 2π × 0.02 Å-1. Iteration 

relaxation of atomic positions and cell volume was stopped 

when the forces generally acting on the atoms were found to 

be smaller than 0.01 eV/Å. With this criterion, the change in 

total energy between successive steps was less than 0.01 

meV/cell. The exchange and correlation energy was assessed 

by GGA in the scheme of Perdew-Burke-Ernzerhof (PBE).30 The 

strong on-site Coulomb repulsion among the localized Yb 4f 

electrons was described by the DFT + U method22, 24 developed 

by Dudarev et al.23 In this scheme, the total GGA energy 

functional is defined as: 

)](TrTr[
2

σσσ

σ

ρρρ −
−

+= ∑+

JU
EE GGAUGGA
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where ρσ is the density matrix of f states with spin σ, U and J 

are the spherically averaged screened Coulomb energy and 

exchange energy, respectively. Since only the difference 

between U and J is significant, thus we will henceforth label 

them as one single parameter U for simplicity, In the 

subsequent calculations, the parameter U varies from 1 to 5, 

and U = 0 means turning off the Hubbard U term. 

Phonon calculations were performed by supercell approach 

and finite displacement method.31 From finite displacements, 

the Hellmann-Feynman atomic forces computed at the 

optimized supercell by VASP code were transferred to the  

PHONOPY code32, 33 to construct the dynamical matrix. 

Diagonalization of the dynamical matrix gives phonon 

frequencies and their corresponding density of states. In the 

interpolation of the constants for calculating the phonon 

dispersion, 3×3×3, 2×2×2, 3×3×3, and 2×2×1 

supercells with k-point mesh of 2π × 0.02 Å-1 were used for 

YbC, Yb2C3, YbC2 and YbC6. respectively. Thermodynamic 

properties can be determined by phonon calculations using 

the quasiharmonic approximation (QHA).33 The phonon 

contribution to the Helmholtz free energy F is given by: 
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where ω(q, v) is the phonon frequency at wave vector q and 
band v, and T is the temperature. kB and ћ are the Boltzmann 
constants and the reduced Planck constants, respectively. The 
heat CV and S are given by  
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respectively. 

3. Results and discussion 

3.1 Equilibrium structural properties 

YbC with a stoichiometric ratio of 1:1 adopts an ordered cubic 

NaCl-type structure (space group Fm-3m), in which Yb atoms 

assume Na positions and C atoms occupy Cl positions, as  

 

Fig. 1 Crystal structures of (a) YbC, (b) Yb2C3, (c) YbC2, and (d) YbC6. The large and small 

spheres represent Yb and C atoms, respectively. 
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Fig. 2 Lattice constants as a function of Hubbard U for (a) YbC, (b) Yb2C3, (c)YbC2, 
and (d) YbC6. 

shown in Fig. 1(a). The Yb atoms form a close-packed 

structure, whereas the C atoms enter octahedral interstices. 

The lattice constant a of YbC with various Hubbard U values 

are presented in Fig. 2(a). The lattice constants display a ladder 

shape as Hubbard U values increase. When Hubbard U is 

turned off, the calculated lattice constant a reaches 5.024 Å, 

which is the smallest value. At Hubbard U = 5 eV, the lattice 

constant a is 5.062 Å. Ytterbium sequicarbides, Yb2C3, assumes 

a cubic Pu2C3-type crystal structure (space group I-43d) with 

eight formula units (fu) in a conventional cell. The Yb atoms 

are aligned along the [111] direction, and the C atoms form 

dumbbell-shaped dimers occupying the voids in the 

bisphenoids of the Yb substructure. The calculated lattice 

constant a as a relationship of Hubbard U is shown in Fig. 2(b). 

The calculated lattice constant a of 8.290 Å at Hubbard U = 0 

eV is 2.7% larger than the experimental value of 8.073Å.16 

Furthermore, the calculated C−C distances slightly decrease as 

Hubbard U value increases, from 1.314 Å at Hubbard U = 0 eV 

to 1.303 Å at Hubbard U = 5 eV. However, the difference 

between the calculated C−C distances with various Hubbard U 

values within 0.2% and the C−C dimer distances of Yb2C3 are 

close to the experimental value of 1.313 Å.16  

YbC2 crystallizes in a body-centered tetragonal CaC2-type 

structure (space group I4/mmm), in which the C atoms exist in 

the form of a C−C dimer similar to that in Yb2C3. The C−C 

dimers oriented parallel to the c axis are six-fold coordinated 

by Yb atoms forming an elongated octahedron. As the 

Hubbard U increases from 0 eV to 5 eV, the lattice constants a 

and c increase by 1.9% and 1.6%, respectively. The calculated 

C−C dimer distances in YbC2 with various Hubbard U remain 

almost unchanged and reach the experimental value of 1.293 

Å.17 Moreover, it is noteworthy that the C−C dimer distance in 

other Pu2C3- and CaC2-type rare-earth carbides is 

approximately 1.3 Å, such as 1.298 Å in Y2C3,34 1.2942 Å in 

La2C3,35 1.2888 Å in YC2,36 and 1.303 Å in LaC2.37 This result 

indicates that the C−C dimer distance shows a weak 

dependence on the choice of metal atoms in these crystals. 

 

Fig. 3 Dependence of the elastic constants on Hubbard U for (a) YbC, (b) Yb2C3, 
(c) YbC2, and (d) YbC6. 

Thus, it is not unexpected that the C-C dimer distances in Yb2C3 

and YbC2 change slightly with various Hubbard U because the 

Hubbard U correction is added on the 4f electrons of the Yb 

atoms. YbC6, a famous kind of GICs, presents an AαAβ stacking 

where A corresponds to C layers and α and β represent the Yb 

intercalant layers. Interestingly, the lattice constant c 

significantly increases when Hubbard U increases; by contrast, 

the lattice constant a seems unaffected to Hubbard U and is 

approximately equals to 4.340 Å, which is close to the 

experimental value of 4.320 Å6, 7 and the theoretical value of 

4.340 Å.38 In fact, the lattice parameters a slightly differs in 

other GICs, such as 4.29Å of NdC6, and 4.314 Å of EuC6.6, 7  

3.2 Elastic constants and polycrystalline moduli 

The elastic constants of a solid link the mechanical and 

dynamical behaviors and provide important information 

regarding the nature of the forces operating in the solids, such 

as stability and stiffness. The independent elastic constants of 

YbC, Yb2C3, YbC2 and YbC6 with various Hubbard U values are 

calculated from the strained structures, and the relationship 

between independent elastic constants and Hubbard U values 

is plotted in Fig. 3. There are three independent elastic 

constants for cubic YbC and Yb2C3, i.e., C11, C12, and C44. The 

elastic constants of YbC and Yb2C3 decrease as Hubbard U 

increases except C12 of YbC. The elastic constant C12 of YbC first 

falls to 40.1 GPa at Hubbard U = 3 eV and then rises to 50 GPa 

at Hubbard U = 5 eV, forming a valley at Hubbard U = 3 eV, as 

shown in Fig. 3(a). For the relatively low-symmetry tetragonal 

YbC2 and hexagonal YbC6, there are six independent elastic 

constants. Similar to the elastic constants of YbC and Yb2C3 

systems, most of the elastic constants of YbC2 and YbC6  

Page 3 of 10 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Journal Name 

4 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

 

Fig. 4 Calculated bulk modulus B and shear modulus G of YbC, Yb2C3, YbC2 and 
YbC6 under Voigt and Reuss approximations with various Hubbard U values. 

decrease when Hubbard U increases. The elastic constant C33 

of YbC2 and YbC6 decreases by approximately 23% and 14% 

from Hubbard U = 0 eV to 5 eV, respectively. Interestingly, the 

elastic constant C13 of YbC2 and YbC6 initially decreases and 

then increases as Hubbard U increases. The elastic constant C11 

of YbC6 is the largest among the elastic constants of the four 

ytterbium carbides; in particular, C11 of YbC6 is 719 GPa and 

713 GPa at Hubbard U = 0 and 5 eV, respectively. Moreover, 

the elastic constant C66 of YbC6 remains unchanged at 314 GPa 

with Hubbard U, as shown in Fig. 3(d). When the independent 

elastic constants are obtained, the intrinsic mechanical 

stability of the structure at various Hubbard U = 0, 1, 3 and 5 

eV can be verified ony the Born−Huang laUce dynamical 

theory. The criteria to determine the mechanical stability of 

cubic, tetragonal and hexagonal crystals are depicted as 

follows:39 

Cubic phase (for YbC and Yb2C3): 

C11 − C12> 0, C11 + 2C12 > 0, C44 > 0. 

Tetragonal phase (for YbC2): 

C11 > |C12|, (C11 + 2C12)C33 > 2C13
2 , C44 > 0, C66 > 0.  

Hexagonal phase (for YbC6): 

C11 > |C12|, (C11 + 2C12)C33 > 2C13
2, C44 > 0.  

After these criteria are verified, the four ytterbium carbides 

with various Hubbard U values satisfy the criteria of 

mechanical stability except tetragonal YbC2 with Hubbard U = 

5 eV where C44 is negative. Specially, it is worth noticing that 

the NaCl-type YbC is mechanically stable, although this carbide 

has not been synthesized successfully. 

Mechanical properties are mainly determined by the 

quantity including bulk modulus B, Young’s modulus E, shear 

modulus G, Pugh’s ratio B/G and Poisson’s ratio ν. Among 

these mechanical quantities, B and G can be obtained by 

Voigt−Reuss−Hill (VRH) approximation.40-42 Under the VRH BV, 

BR, GV, and GR, where the subscripts V and R represent Voigt 

and Reuss estimations of B and G, respectively, in different 

crystal systems can be expressed as follows:  

Cubic phase (for YbC and Yb2C3):43, 44 

BV = BR = (C11 + 2C12)/3, 

Gv = (C11 – C12 + 3C44)/5, 

GR = 5(C11 – C12)C44/[4C44+3(C11 - C12)]. 

Tetragonal phase (for YbC2):45 

BV = (1/9)[ 2(C11 + C12) + 4C13 + C33], 

BR = C2/M, 

GV = (1/30)(M + 3C11 – 3C12 + 12C44 + 6C66), 

GR = 15[18BV/C2 + 6/(C11 – C12) + 6/C44 + 3/C66]-1, 

M = C11 + C12 + 2C33 – 4C13, 

C2 = (C11 + C12)C33 – 2C13
2.  

Hexagonal phase (for YbC6):46 

BV = (1/9)[ 2(C11 + C12) + 4C13 + C33], 

BR = C2/M, 

GV = (1/30)(M + 12C44 + 12C66), 

GR = (5/2)[C2C44C66] / [3BVC 44C66 + C2(C44 + C66)], 

M = C11 + C12 + 2C33 – 4C13, 

C2 = (C11 + C12)C33 – 2C13
2. 

Hence, B and G are given as follows: 

B = 1/2(BR + BV) and G = 1/2(GR +GV). 

Once B and G are obtained, E and υ can be defined as follows: 

E = 9BG/(3B + G) and υ = (3B – 2G)/[2(3B + G)]. 

The dependence of BV, BR, GV, and GR on Hubbard U of YbC, 

Yb2C3, YbC2, and YbC6 is shown in Fig. 4. BV, BR, GV, and GR likely 

decrease as Hubbard U values increases except BV and BR of 

YbC. BV and BR of YbC first decreases from 103.5 GPa at U = 0 

eV to 78.1 GPa atr U = 3 eV and then increases to 84.7 GPa at 

U = 5 eV in accordance with the relationship of C11 and C12 as 

Hubbard U. By contrast, Hubbard U slightly affect B and G of 

YbC2 and YbC6, and this result is consistent with the variation 

in elastic constants.  

Bulk modulus B is measure of the resistance of a solid to 

volume change; shear modulus G represents the resistance to 

plastic deformation; and Young’s modulus E denotes the 

resistance to uniaxial deformation. The calculated B, G, and E 

of the four ytterbium carbides with Hubbard U = 3 eV are 

listed in Table 1. Among the four ytterbium carbides, YbC6 

yields the largest B of 155.9 GPa, G of 104.8 GPa, and E of 

256.7GPa. This result indicates that YbC6 is stiffer than the 

three other ytterbium carbides. On the contrary, YbC2 exhibits 

the smallest B of 58.2 GPa, G of 21.7 GPa, and E of 58.0 GPa. B 

of YbC2 is only approximately one-third of that of YbC6. 

Hardness and ductile will not coexist in a material. The ductile 

or brittle properties of materials can be related empirically to 

Pugh’s ratio B/G. If B/G > 1.75, materials are ductile; otherwise, 

materials are brittle.47 The smallest B/G of 1.49 observed in 

YbC6 indicates brittleness. The largest B/G of 2.68 is detected 

Table 1. Bulk modulus B, shear modulus G, Young’s modulus E, Pugh’s ratio B/G, and 

Poisson ration ν calculated with VRH approximations of YbC, Yb2C3, YbC2 and YbC6 at 

Hubbard U = 3 eV. 

 B (GPa) G (GPa) E (GPa) B/G ν 

YbC 78.1 34.2 89.6 2.28 0.309 

Yb2C3 74.1 47.9 118.2 1.55 0.240 

YbC2 58.2 21.7 58.0 2.68 0.334 

YbC6 155.9 104.8 256.7 1.49 0.226 
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in YbC2; this finding shows that YbC2 is relatively soft and 

ductile. Poisson’s ratio ν generally quantifies the stability of a 

solid against shear deformation. For ductile materials, ν is 

approximately 0.33.48 The ductility of YbC2 is confirmed by the 

calculated ν of 0.33. Interestingly, B and G of YbC and Yb2C3 

yield the same order of magnitude; however, B/G of YbC and 

Yb2C3 is more or less 1.75; thus, these carbides exhibit 

different degrees of brittleness. 

3.3 Elastic Anisotropy  

Anisotropic behaviors should be estimated on the basis of 

fundamental and technological aspects because known 

crystals are elastically anisotropic. Several indexes, including 

the percent anisotropy (AB and AG) and shear anisotropic 

factors (A1, A2, and A3) have been developed to evaluate 

elastic anisotropy.49 The percent anisotropy in compressibility 

and shear are defined as follows:  

AB = (BV − BR)/(BV + BR) 

and 

AG = (GV − GR) / (GV + GR), 

respectively. For a completely isotropic system, AB and AG are 

0, and the deviation from 0 measures the degree of elastic 

anisotropy. As shown in Table 2, the percent anisotropies in 

the shear AG of high-symmetry cubic YbC and Yb2C3 systems 

are 0.0877 and 0.0240, respectively; whereas AB equals 0 

because of the same BV and BG. YbC6 possesses the largest AB 

of 0.3455 and a moderate AG of 0.5268, whereas YbC2 yields 

the largest AG of 0.8989. This result indicates that YbC2 displays 

a large anisotropy in shear. It is should be noted that AG of the 

four ytterbium carbides is larger than AB, suggesting that these 

carbides are slightly anisotropic in compressibility. 

Shear anisotropic factors correspond to the degree of 

anisotropy in the bonding between atoms in different planes. 

A1 of the (100) shear planes between [011] and [010] 

directions, A2 of the (010) shear planes between [101] and 

[001] directions, and A3 of the (001) shear planes between 

[110] and [010] directions are defined as follows: 

A1 = (4C44) / (C11+C33-2C13),  

A2 = (4C55) / (C22+C33-2C23), 

and  

A3 = (4C66) / (C11+C22-2C12).  

The three indexes must be identical for a completely isotropic 

system, and any deviation from unity corresponds to the 

degree of shear anisotropy. A1, A2, and A3 are identical in YbC 

and Yb2C3 because of the shear isotropy of cubic structure. A1 

of YbC2 is smaller than that of YbC6, indicating that YbC2 

behaves more (100) shear anisotropically than YbC6. A3 of 

0.9997 of YbC6 demonstrates the almost isotropic property of 

(001) shear planes between [110] and [100] directions. 

Table 2. Percent anisotropy (AB and AG) and shear anisotropic factors (A1, A2, and A3) of 

YbC, Yb2C3, YbC2, and YbC6 at Hubbard U = 3 eV. 

 AB AG A1 A2 A3 

YbC 0 0.0877 0.4211 0.4211 0.4211 

Yb2C3 0 0.0240 0.6385 0.6385 0.6385 

YbC2 0.0490 0.8989 0.0095 0.0095 1.2488 

YbC6 0.3455 0.5628 0.1207 0.1207 0.9997 

 

 

Fig. 5 Surface constructions of bulk modulus B of (a) YbC, (b) Yb2C3, (c) YbC2, and (d) 

YbC6.  

 

Fig. 6 Bulk modulus B projections on (a) (010) and (b) (001) plane of YbC, Yb2C3, 
YbC2, and YbC6. 

A three-dimensional surface construction of B and E, along 
with their projections on specific planes, is plotted to describe 
the anisotropy of the mechanical moduli of the four ytterbium 
carbides. The reciprocal of B and E are defined as follows:50 
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where l1, l2, and l3 are the direction cosines in various systems, 

and sij is elastic compliance constant obtained using the GGA + 

U scheme with Hubbard U = 3 eV.  

   The surface constructions of B of YbC, Yb2C3, YbC2, and YbC6 

are displayed in Fig. 5, and their B projections on the (010) and 

(001) planes are plotted in Fig. 6. The surface constructions of 

B of YbC and Yb2C3 exhibit a perfect sphere, indicating isotropic 
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characteristics because of high-symmetry cubic lattice, see 

Figs. 5(a) and 5(b). B of tetragonal YbC2 and hexagonal YbC6 

shows strong anisotropic features. The surface construction of 

B of YbC2 is likely an ellipsoid, see Fig. 5(c), whereas the 

surface of B of YbC6 is similar to a disc, see Fig. 5(d). It is worth 

noticing that these results are in good agreement with the 

calculated anisotropic factors and indexes listed in Table 2. B 

projections on the (010) and (001) planes provide further 

details regarding anisotropic properties. The x axis range is five 

times larger than the y axis range to display B projections of 

the four carbides. The B projection on the (010) plane of YbC 

and Yb2C3, resembling an ellipse in Fig. 6(a), should be a circle. 

The B projection on the (010) plane of YbC6 exhibits a butterfly 

shape, showing a strong anisotropic property. B projected on 

the (001) plane of the four ytterbium carbides is circular, which 

indicates an isotropic property. Due to the large B of YbC6, the 

circular B on the (001) plane is noticeably larger than the three 

other ytterbium carbides. Fig. 6(b) illustrates only B of YbC, 

Yb2C3, and YbC2 but excludes B of YbC6 to show the B 

projection. The circular area of YbC is slightly larger than that 

of Yb2C3, which is consistent with B listed in Table 1.  

The surface constructions of E of YbC, Yb2C3, YbC2, and YbC6 

are displayed in Fig. 7, and E projections on the (010) and (001) 

planes are plotted in Fig. 8. The anisotropic property of E of 

YbC, Yb2C3, YbC2, and YbC6 is more evident than that of B. The 

 

Fig. 7 Surface constructions of Young’s modulus E of (a) YbC, (b) Yb2C3, (c) YbC2, and (d) 

YbC6.  

 

Fig. 8 Young’s modulus E projections on (a) (010) and (b) (001) plane of YbC, Yb2C3, 

YbC2, and YbC6.  

surface constructions of E of YbC and Yb2C3 resemble a similar 

shape, see Figs. 7(a) and 7(b). E along the [100], [010], and 

[001] directions are considerably larger than E along other 

directions, indicating anisotropic features. From Fig. 8(b), it can  

be seen that E of YbC projection on the (001) plane is smaller 

than that of Yb2C3, which is consistent with that of VRH 

approximations listed in Table 1. The surface construction of E 

of YbC2 is similar to a fishing float with a large value along the 

[001] direction, showing a strong anisotropic property. The 

projection of E of YbC2 exhibits a rounded square, as seen in 

Fig. 8(b). Similar to the surface construction of B, the surface 

construction of E of YbC6 is similar to a disc perpendicular to 

the [001] direction. Interestingly, E of YbC6 in the [100] 

direction is obviously larger than that in the [001] direction, as 

shown in Fig. 8(a). The projection E on the (001) plane of YbC6 

is a circle but is not shown in Fig. 8(b) because of its large area. 

3.4 Anisotropy in acoustic velocities 

The phase velocities of pure transverse and longitudinal modes 
of YbC, Yb2C3, YbC2, and YbC6 are investigated from single 
crystal elastic constants in accordance with the procedure 

developed by Brugger.51, 52 The symmetry of crystal indictates 

that pure transverse and longitudinal modes can exist along 

specific directions: [001], [110], and [111] for a cubic crystal; 

[001], [110], and [100] for a tetragonal crystal; and [001] and 

[110] for a hexagonal crystal. In each direction, two transverse 

modes and one longitudinal mode are involved.53 The 

calculated sound velocities of ytterbium carbides with 

Hubbard U = 3 eV are shown in Table 3.  

In the two cubic phases, the sound velocities of Yb2C3 are 

larger than those of YbC in the [001], [110], and [111] 

directions. For example, the longitudinal and transverse mode 

velocities of Yb2C3 in the [001] direction are 5.6% and 34.8% 

larger than those of YbC. The longitudinal and transversemode 

velocities of the cubic system are proportional to C11 and C44, 

respectively, and are inversely proportional to the density ρ 

which is dominated by carbon contents. C11 and C44 of Yb2C3 

are larger than those of YbC, and the density ρ of Yb2C3 is 

smaller than that of YbC due to the relatively higher carbon 

contents. This leads to that the average sound velocities of 

Yb2C3 are larger than that of YbC, as shown in Fig. 9. The 

longitudinal and transverse vibration modes in the [001] 

Table 3. Sound velocities (km/s) along different directions for YbC, Yb2C3, YbC2 and YbC6 

with Hubbard U = 3 eV. 

  YbC Yb2C3 YbC2 YbC6 

[001] [001]vl 4.019 4.245 6.101 4.563 

[110]vt1 1.586 2.139 0.354 2.028 

[110] [110]vl 3.847 4.157 4.108 11.419 

[-110]vt1 2.445 2.677 2.414 7.562 

[001]vt2 1.586 2.139 0.354 2.028 

[111] [111]vl 3.397 3.817   

[11-2]vt1 2.196 2.510   

[100] [100]vl   3.927  

[010]vt1   2.698  

[001]vt2   0.354  
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Fig. 9 Averaged sound velocities (vm) in the [100], [001], [110] and [111] directions of 

YbC, Yb2C3, YbC2, and YbC6. 

direction of YbC2 are parallel and perpendicular to the C2 dimer 

stretching mode. Thus, YbC2 yields a relatively larger 

longitudinal mode velocity of 6.10 km/s and an extremely low 

transverse mode velocity of 0.35 km/s. Moreover, the 

significant difference between the transverse and longitudinal 

velocities in the [001], [100], and [110] directions results in 

relatively low average velocities, as shown in Fig. 9. 

The longitudinal mode velocity in the [110] direction of YbC6 

is as high as 11.42 km/s, whereas two transverse mode 

velocities along [-110] and [001] directions are 7.562 km/s and 

2.028 km/s, respectively. The sound velocity is well correlated 

with the structural characteristics. The longitudinal mode 

[110]vl direction is the nearest C−C connecting direction in the 

six-membered C ring; conversely, the transverse mode [-

110]vt1 direction is the second-nearest C−C connecting 

direction in the six-membered C ring. Furthermore, the large 

longitudinal mode velocity in the [110] direction corresponds 

the highest average velocity along the [110] direction among 

the four ytterbium carbides.  

3.5 Thermodynamic properties 

The calculated phonon band structures along some high-

symmetry directions in Brillouin zone and the phonon 

projected density of states (PDOS) of YbC2 and YbC6 at 

Hubbard U = 3 eV are displayed in Fig. 10. Phonon calculations 

established the dynamical stability of YbC2 and YbC6 in view of 

the absence of imaginary frequencies. Additional phonon 

calculations of YbC and Yb2C3 with various Hubbard U 

parameters and sizes of supercells are performed. The results 

show that imaginary frequencies exist in their phonon band 

structures (data not shown here). This finding reveals that YbC 

and Yb2C3 are not thermodynamically stable, which does not 

coincide with the mechanical stability. This phenomenon is 

also found in UO2. The Pnma phase of UO2 is predicted to be 

mechanically stable, but is found to be thermodynamically 

unstable from phonon calculations.54 

 

 

Fig. 10. Phonon band structures and PDOS of (a) YbC2 and (b) YbC6 with Hubbard U = 3 

eV. The unit of PhDOS is states/THz/fu. 

 

Fig. 11 Temperature dependence of (a) Helmholtz free energy (F), (b) entropy (S), and 

(c) heat capacity at constant volume (Cv) of YbC2 and YbC6 with Hubbard U = 3 eV. 

The vibration frequency of the Yb atom is apparently lower 

than that of the C atom because the Yb atom is considerably 

heavier than C atom. Thus, the phonon structures of both YbC2 

and YbC6 can be divided into two major regions. The heavy Yb 

atoms dominate low-frequency modes below 4 THz, whereas 

the light C atoms contribute significantly to high-frequency 

vibrations. Compared with YbC6, the high-frequency region of 
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YbC2 shifts upward and reaches approximately 53 THz. It is 

noteworthy that the flat regions of the phonon dispersion 

curves of YbC2 as shown in Fig. 10(a), which correspond to the 

peaks in the phonon PDOS, indicate the localization of the 

states, i.e., the high-frequency stretching of C2 units. 

The temperature variations of Helmholtz free energy, 

entropy, and heat capacity at constant volume of YbC2 and 

YbC6 are shown in Fig. 11. It is noteworthy that the Helmholtz 

free energy at 0 K does not vanish because of zero-point 

motion. Helmholtz free energies per fu of YbC2 and YbC6 are 

20.1 and 90.7 kJ/mol, respectively. As temperature increases, 

Helmholtz free energies of YbC2 and YbC6 decrease; however, 

Helmholtz free energy of YbC6 rapidly decreases, leading to 

that it intersects with the Helmholtz free energy of YbC2 at 

1350 K. The entropy of YbC6 is larger than that of YbC2, and the 

difference between the entropies of these carbides increases 

as temperature increases. The heat capacity at constant 

volume of YbC6 and YbC2 is nearly the same below 200 K. At an 

intermediate temperature range, CV is governed by atomic 

vibrations. Above 200 K, CV of YbC6 is larger than that of YbC2.  

At high temperature, CV of YbC2 becomes constant at 75 

J/mol/K, while CV of YbC6 reaches 170 J/mol/K. 

4. Conclusions 

The mechanical and thermodynamic properties of YbC, Yb2C3, 

YbC2, and YbC6 have been investigated with the GGA + U 

frameworks. The calculated lattice constants of YbC, Yb2C3, 

YbC2, and YbC6 are found to increase as Hubbard U values 

increase. The four ytterbium carbides with various Hubbard U 

values satisfy the Born−Huang laUce dynamical criteria of 

mechanical stability except tetragonal YbC2 with Hubbard U = 

5 eV. YbC6 is stiffer than the three other ytterbium carbides, 

whereas YbC2 is softest and most ductile among the four 

ytterbium carbides. The directional E and B, and shear 

anisotropic factors indicate the mechanical anisotropic 

properties of YbC, Yb2C3, YbC2 and YbC6. The phonon 

calculation reveals that YbC2 and YbC6 are thermodynamically 

stable, but NaCl-type YbC and Pu2C3-type Yb2C3 are 

thermodynamically unstable. These theoretical results are 

consistent with experimental findings. 
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