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Abstract 

Neuronal cell death from oxidative stress is a strong factor of many neurodegenerative 

diseases. To tackle these problems, phenotypic drug screening assays are a possible 

alternative strategy. The aim of this study is to develop the neuroprotective models 

against glutamate or H2O2-induced neurotoxicity by machine learning approaches, which 

helps in discovering neuroprotective compounds. Four different single classifiers (neural 

network, k nearest neighbors, classification tree and random forest) were constructed 

based on two large datasets containing 1,260 and 900 known active or inactive 

compounds, which were integrated to develop the combined Bayesian models to obtain 

superior performance. Our result showed that both of the Bayesian models 

(combined-NB-1 and combined-NB-2) outperformed corresponding four single 

classifiers. Additionally, structural fingerprint descriptors were added to improve the 

predictive ability of models, resulting in the two best models NB-1-LPFP4 and 

NB-2-LCFP6. The best two models gave Matthews correlation coefficient of 0.972 and 

0.956 for 5-fold cross validation as well as 0.953 and 0.902 for the test set, respectively. 

To illustrate the practical applications of the two models, NB-1-LPFP4 and NB-2-LCFP6 

were used to perform virtual screening for discovering neuroprotective compounds, and 

70 compounds were selected for further cell-based assay. The assay results showed that 

28 compounds exhibited neuroprotective effects against glutamate-induced and 

H2O2-induced neurotoxicity simultaneously. Our results suggested the method that 

integrated single classifiers to combined Bayesian models could be feasible to predict 
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neuroprotective compounds.  

Introduction  

Neurodegenerative disease is an umbrella term characterized by progressive loss of 

structure or function of neurons, which includes Alzheimer’s, Parkinson’s, and 

Huntington’s disease.1 Oxidative stress caused by excessive reactive oxygen species 

(ROS) production is a common culprit of many neurodegenerative diseases.2, 3  

The most common ROS are oxygen radicals, such as superoxide and hydroxyl radicals, 

and non-free radicals, such as hydrogen peroxide (H2O2). H2O2, the main form of ROS, is 

produced during the redox process and is recognized as a messenger in intracellular      

signaling cascades.4 In addition, H2O2 can cause oxidative damage to molecules such as 

carbohydrates, proteins, lipids, and DNA, and at last cell death.5 Besides, elevated levels 

of the excitatory amino acid glutamate also can lead to oxidative stress-dependent 

neuronal death. Glutamate is considered as the major excitatory neurotransmitter in the 

central nervous system (CNS), and glutamate-induced excitotoxicity is known to be a 

major contributor to pathological cell death within the nervous system.6 Consequently, 

the searching for effective treatments that prevents oxidative stress associated with 

neurodegenerative diseases is an issue of crucial importance. 

Current drug discovery strategies include both target-based7 and phenotypic-based 

approaches.8 Target-based approach generally starts with target identification relevant to a 

disease of interest. It can guide subsequent chemical optimization of lead compounds and 

toxicology studies during preclinical development.9 However, the target-based drug 
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discovery may have its limitations. Recent analysis has revealed that invalidated targets 

for disease lead to many failed drug candidates in Phase II and III clinical trials.10 

Evaluation of approved new drugs between 1999 and 2008 has exposed that the number 

of approved drugs through phenotypic screens exceeded those through the target-based 

approach.11 The rationalization for this success was the unbiased identification of the 

molecular mechanism of action (MMOA). Phenotypic screening is thus gaining new 

momentum to improve the success rate of drug approval in drug discovery. Glutamate or 

H2O2-induced cultures of nerve cell, recognized as one of phenotypic screening related to 

neurodegenerative diseases, were employed as screening systems to find neuroprotective 

agents.12, 13 

With advances in new assay technologies, significant investment has been made 

towards whole-cell phenotypic screening to find active compounds against various 

diseases.14-16 Unfortunately, the hit rates for these costly screens are disappointing, 

typically ranging from less than 1% to the low single digits.17-18 To solve this question, 

computational approaches such as machine learning tools have been widely adopted to 

enhance the hit rate in drug discovery, especially for antibacterial and antitubercular 

compounds.18-24 Singh and co-workers developed a Bayesian classification model using 

structural fingerprints and physicochemical property descriptors and employed the model 

to virtually screen an independent data set of ∼200k compounds, which showed that the 

model can screen top hits of PubChem Bioassay actives with accuracy up to ∼76%.19 

Ekins and his coworkers also constructed Bayesian models to predict the activity of 
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compounds against Mycobacterium tuberculosis (Mtb), then they computationally 

screened 82,403 compounds and selected 550 compounds for in vitro test, resulting in 

124 actives against Mtb.22 However, up to now, there is limited research on classification 

predictions towards phenotypic screening of neuroprotective agents. 

In this investigation, a workflow for the classification models, model validations, and 

their application to virtual screening of neuroprotective agents is shown in Figure 1. First, 

we present two large datasets containing 1,260 and 900 compounds, and categorize each 

dataset into a training set and a test set, respectively. The two datasets are employed to 

develop the neuroprotective models against glutamate (1,260 compounds) or H2O2 (900 

compounds) -induced neurotoxicity, respectively. Additionally, four different single 

machine learning classifiers (neural network, k nearest neighbors, classification tree and 

random forest) are integrated to develop the combined naïve Bayesian models. The 

performances of all the models were measured by 5-fold cross-validation and a test set 

validation. In order to guard against the possibility of chance correlation, Y-scrambling 

was also performed. The best combined Bayesian models as ligand-based virtual 

screening tools were used to predict neuroprotective compounds from our in-house 

database. Finally, the selected compounds were validated by cell-based bioassay. 

Material and Methods 

2.1 Data Preparation.  

Two data sets were prepared. The structures for each data set were imported into 

ISIS_Base for deleting the duplicate compounds, then 252 neuroprotective compounds 
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against glutamate-induced neurotoxicity in nerve cell were collected from ChEML 

database25 as positive data. The selection criterion is that one compound at the 

concentration of 10 μM should improve the cell viability significantly comparing with 

that of nerve cell injured by glutamate. Similarly, 200 neuroprotective compounds against 

H2O2-induced neurotoxicity were obtained. In addition, corresponding decoy datasets 

with the ratio of 4:1 to positive compounds were generated in DUD online database26 

with known neuroprotective compounds. Both the active and inactive dataset were 

randomly divided into two groups. Finally, for glutamate-induced models, the training set 

was made up of 200 active and 800 inactive compounds, and the test set contained 52 

active and 208 inactive compounds, while for H2O2-induced models the training set 

consisted of 140 active and 560 inactive compounds, and the test set included 40 active 

and 160 inactive compounds (Detailed information is available in the supporting 

information, see Table S1-S4). 

Before molecular descriptors were calculated, all of the inorganic salt atoms of 

compounds were removed, and the remaining parts were processed by the addition of 

hydrogen atoms, the deprotonation of strong acids, the protonation of strong bases, the 

generation of valid three-dimensional conformation through washing, and the 

minimization of energy using the software of Molecular Operating Environment (MOE). 

27 All active compounds are labelled as “1”, while decoys exhibiting no neuroprotective 

activity were labelled as “0”.  

2.2 Molecular Descriptors 
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Each compound was represented with three sets of two-dimensional (2D) descriptors 

using Discovery Studio 4.0 (DS 4.0) 28 and MOE 2010 software.27 The first set of 

descriptors including 256 2D descriptors was calculated by DS 4.0, which were made up 

of AlogP, estate keys, molecular properties, molecular property counts, surface area and 

volume, and topological descriptors. MOE 2010 was another software used to calculate 

the second set of descriptors containing 185 2D descriptors. The last set of descriptors 

were composed of the first two sets of descriptors, which consisted of 441 (256+185) 

descriptors.  

Molecular fingerprints in this paper were also calculated with DS 4.0, including the 

SciTegic extended-connectivity fingerprints (FCFP and ECFP) and Daylight-style 

path-based fingerprints (FPFP and EPFP). The fingerprints used here are different from 

the substructures in a binary form. They stand for a much larger set of features than 

predefined substructures. Besides, they do not need to be preselected or predefined 

because they can be generated directly from the molecules. Given that the structural 

fragments should neither be too small nor too large, two diameters, 4 and 6, were chosen 

for each fingerprint. 

2.3 Molecular Descriptor Selection 

Pearson correlation analysis29 can eliminate molecular descriptors that are not 

significantly correlated with activity and highly correlated with each other. In this study, 

the descriptors exhibiting a Pearson correlation coefficient (P< 0.1) with the activity were 

removed. If the pairwise correlation coefficient between any two descriptors was higher 
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than 0.9, the descriptor which had a lower correlation coefficient with the activity would 

be deleted. After that, genetic search in Weka 3.6 was carried out to further eliminate the 

descriptors.30 Genetic algorithms are search algorithms based on the mechanics of natural 

selection and natural genetics,31 while Weka is a collection of machine learning 

algorithms for data mining, including a number of methods for data preprocessing, 

attribute selection, classification, etc. Finally, the descriptors chosen from different sets of 

descriptors are listed in Table 2. 

2.4 Methods for Model Building 

Five different machine learning tools, including neural network (NN), k nearest 

neighbors (kNN), classification tree (CT), random forest (RF) and naïve Bayesian (NB), 

were employed with the entire computational workflow. NN, kNN, CT and RF were 

performed in Orange canvas 2.7.32 NB was performed using DS 4.0. In this paper, all 

models developed get two probability output (positive and negative probability) as well 

as estimated target values (such as 1 or 0).  

Single Classifier Model 

Neural network (NN). NN is an information processing paradigm that is inspired by the 

way biological nervous systems, such as the brain, process information.33 In Orange 

canvas 2.7, neural network learner implements a multilayer perceptron. Learning is 

performed by minimizing an L2-regularized cost function with scipy’s implementation of 

L-BFGS. The value of hidden layer neurons, regularization factor, and max iterations was 

set to 20, 1.0 and 300, respectively. 
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k nearest neighbors (kNN). The kNN algorithm is an algorithm to classify objects based 

on closest examples in the feature space.34 An object is classified by a majority vote of its 

neighbors, with the object being assigned to the class most common among its k nearest 

neighbors (k is a positive integer). In this paper, the nearness is measured by Euclidean 

distance metrics and the number of neighbors (k) was set to 5.  

Classification tree (CT). In classification tree, leaves stand for class labels and branches 

represent conjunctions of features that lead to those class labels. Orange includes multiple 

implementations of classification tree learners. In this study, the C4.5 tree induction 

algorithm was implemented. C4.5 is an algorithm used to generate a decision tree 

developed by Ross Quinlan,35 which builds decision trees from a set of training data by 

means of a hill-climbing search based on the statistical property measure called 

information gain. The parameters here were adopted with the default setting.  

Random forest (RF). RF is a classification technique that operates by constructing a 

multitude of decision trees at training time and outputting the class that is the mode of the 

classes output by individual trees. Each tree is built from a bootstrap sample from the 

training data. When developing individual trees, an arbitrary subset of attributes is drawn 

(called “random”) from which the best attribute for the split is selected. The classification 

is based on the majority vote from individually developed tree classifiers in the forest. A 

detailed descriptions of RF can be found in the original literature.36 In this work, the 

number of trees in forest was set to 10, while nodes were stopped splitting with 5 or 

fewer instances. 
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Combined Naïve Bayesian 

Combined models were developed to integrate the four single classifiers. Consensus 

scoring or data fusion is used for improving the prediction reliability of single 

classifier.37-40 Generally, varying amounts of noise from single classifier can be reduced 

by combined modelling. In previous study, we developed CC-ANN using four single 

classifiers fused by artificial neural network to predict the inhibitory effects of a 

compound toward cdk5 activity.41 The assay results showed that 9 out of 40 compounds 

exerted cdk5/p35 inhibitory activities with IC50 values ranging from 9.23 to 95.57 μM. In 

this study, the similar approach was adopted. Four single classifiers were combined by 

fusing with naïve Bayesian algorithm. 

The naïve Bayesian classification models were developed using Discovery Studio 4.0. 

Bayesian is a robust classification approach that can discriminate active compounds from 

inactive compounds. Generally, the technique is based on the frequency of occurrence of 

various descriptors which are found in two or more sets of molecules that can 

discriminate best between these sets. Bayesian classification can process large amounts of 

data, learn fast, and is tolerant of random noise. For naïve Bayesian classifier, it can 

generate the posterior probabilities based on the core of function, which are given by 

Equations 1. 

               )A,...,A(

)()A,...,A(
)A..., ,A(

n1

n1

n1

P

PP
P




            (1) 

P(A1,...,An|+) is the conditional probability of a particular compound being classified 
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as active; P(+) is the prior probability, a probability induced from a set of compounds in 

the training set; P(A1,...,An) is the marginal probability of the given descriptors that will 

occur in the training set. 

A more detailed introduction can be found in the following references.42-45 In this study, 

the probability output (PC+1 and PC-1 i=1,2,3,4) for each compound was predicted with 

four single classifiers; then, all of these probability outputs were selected as new 

descriptors to develop the combined classifiers NB (Combined-NB) model that would 

generate the final combination decision probability (PC+1 and PC-1). 

2.5 Performance evaluation of the models 

The quality of the Bayesian classifiers was measured by the quantity of true positives 

(TP), true negatives (TN), false positives (FP), false negatives (FN), sensitivity (SE), 

specificity (SP), the overall prediction accuracy (Q) and Matthews correlation coefficient 

(MCC), which are given by Equations 2-6. TP represents the number of active 

compounds that are predicted as the active. TN represents the number of inactive 

compounds that are predicted as the inactive. FP stands for the number of inactive 

compounds that are predicted as the active and FN is the number of active compounds 

that are predicted as the inactive. SE represents the prediction accuracy for active 

compounds and SP represents the prediction accuracy for inactive compounds. 
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(6)        
FP)FN)(TNFP)(TNFN)(TP(TP

FPFN-TNTP
MCC

(5)                                                                  
FNTN

TN
Q

(4)                                                                   
FPTP

TP
Q

(3)                                                                  
FPTN

TN
SP

(2)                                                                  
FNTP

TP
SE




















  

The value of MCC is the most important indicator for the measurement of the quality 

of binary classification. MCC is essentially a correlation coefficient between the observed 

and predicted binary classification. Its value ranges from -1 to 1, and a perfect 

classification gives a correlation coefficient value of 1. In addition, the receiver operating 

characteristic (ROC) curve was plotted. The ROC curve can graphically present the 

model behavior of true positive rate against false positive rate in a visual way. 

Performance was also measured by the area under the ROC curve (AUC). A perfect 

classifier gives AUC value of 1, whereas random performance gives that of 0.5. 

2.6 In Vitro cell-based for neuroprotective assay 

2.6.1 Cell culture and treatment 

PC12 cell line (rat adrenal pheochromocytoma, Institute of Materia Medica, Chinese 

Academy of Medical Science, Beijng, China) was grown in high glucose DMEM 

medium supplemented with 5% (v/v) fetal bovine serum (FBS, Gibco, USA), and 10% 

heat-inactivated horse serum (HS, Gibco, USA). At the treatment, cells were divided into 
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three groups: (1) control group: no treatment, (2) model group: cells were treated with 40 

mM monosodium glutamate46 (Sigma, USA) or 300 𝜇M H2O2,
47 (3)treatment group: cells 

were pretreated with 30 𝜇M chemicals for 2 h, and then added 40 mM monosodium 

glutamate or 300 𝜇M H2O2, respectively. The chemicals showing good anti-oxidative 

activity (cell damage inhibition rate> 40%), would be diluted for three concentrations 

(3.3 𝜇M, 10 𝜇M and 30 𝜇M) at further evaluation. 

2.6.2 MTT assay 

The MTT assay was used to assess antioxidant effects. PC12 (8 x103/well) were seeded 

in 96-well plates in 100 𝜇L of culture medium per well for 20h. When cells were at about 

80% confluence, the medium was replaced with DMEM medium. Next, cells were 

treated with medium containing different concentrations of chemicals for 2 h and then 

added 300 𝜇M H2O2 or 40 mmol/L monosodium glutamate for 22 h respectively. After 

removal of the medium, 100 𝜇L of MTT (0.5 mg/ml) dissolved in medium was added to 

each well. Following 3 h incubation, medium was replaced with 100 𝜇L of 

dimethylsulfoxide (DMSO), and absorbance in each well was assessed at 570 nm using 

an ELISA microplate reader (Spectra Max M5, Molecular Devices, USA). The values of 

cell survival were normalized against the values for the control group, which was set to 

100%. Data were evaluated for statistical significance with T-test from GraphPad Prism 6 

statistic tool. Differences were considered significant at p< 0.05 

3. RESULTS AND DISCUSSION 

3.1 Chemical space analysis.  
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The performance of binary classifiers is related to the chemical diversity of samples 

utilized in the training set and test set. In general, binary classifiers that only cover a 

small region of chemical space limit their applications. Tanimoto similarity index and 

principal component analysis (PCA) are classic methods to explore the diversity of 

compounds within a chemical data set. The tanimoto similarity analysis was performed 

with the fingerprint of ECFP_2. As shown in Table 1, for neuroprotective models against 

glutamate-induced neurotoxicity (NGN models), the tanimoto index is 0.125 for training 

set and 0.132 for test set. For neuroprotective models against H2O2-induced neurotoxicity 

(NHN models), the tanimoto index is 0.142 for training set and 0.162 for test set. 

Consequently, the entire data set was diverse enough.  

Principal component analysis (PCA) was another approach to investigate the chemical 

spaces of the training set and test set.48 For NGN and NHN models, the input variables 

were the 26 DS_MOE and 26 MOE 2D descriptors selected by Pearson correlation 

analysis and genetic search, respectively. Subsequently, 1630 FDA-approved drugs were 

downloaded from DrugBank,49 and the same properties were calculated. According to the 

chemical space defined by PCA (Figure 2), there are enough diverse chemical space 

distributions for all compounds, and most of the compounds in test set are well within the 

chemical space of the training set. At the same time, there are obvious overlaps between 

the compounds in dataset and FDA-approved drugs in chemical space, which implies that 

most of the compounds have drug potential. 

3.2 Performance of Binary Classification Models by Single Classifier. 
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A total of 24 single classifiers in this study (12 for each data set) were initially 

generated using NN, kNN, CT and RF algorithms with three sets of descriptors. 

Subsequently, the internal 5-fold cross validation was adopted to evaluate the 

performance. Additionally, the models were used to predict corresponding test set 

comprising 260 and 200 compounds. The performance of all the single classifiers is given 

in Table 3.  

Among the 12 NGN models, the MCC values of 5-fold cross validation ranged from 

0.502 to 0.743, whereas those of test set ranged from 0.647 to 0.904. The best single 

classifier was NN-c1, which was developed by neural network using 26 DS_MOE 

descriptors. Regarding to the 12 NHN models, the MCC values of 5-fold cross validation 

varied from 0.442 to 0.787, whereas those of test set varied from 0.623 to 0.941. The best 

performance was achieved by NN-b2, neural network using 26 MOE descriptors. These 

data indicated that the overall predictive accuracies of 24 single classifiers from NGN 

and NHN were not high but acceptable. The detailed performance of the 24 single 

classifiers are given in Table S5. 

To compare the performance of single models from different algorithms, the average 

MCC values divided by three sets of descriptors are given in Figure 3. For NGN single 

models (Figure 3a), the performances of models from neural network (NN) and k near 

neighbour (kNN) are superior to those from classification tree (CT) and random forest 

(RF). The best performance is achieved by NN algorithm, with the average MCC value of 

0.727 and 0.854 from 5-fold cross validation and test set, respectively. For NHN single 
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classifiers (Figure 3b), NN and kNN perform better than CT and RF, which is similar to 

NGN models. Among four different algorithms, kNN obtains the highest average MCC 

value of 0.696 from 5-fold cross validation and 0.883 from test set.   

In addition, the performances of models from different sets of descriptors are also 

compared. As given in Figure 3c, for single NGN models, the average MCC values from  

three sets of descriptors (DS, MOE, and DS_MOE) are 0.609, 0.679, and 0.688 for 5-fold 

cross validation as well as 0.755, 0.841, and 0.858 for test set. Obviously, here the four 

models derived from DS_MOE descriptors perform best and are chosen for further 

integration. However, for single NHN models, it is difficult to judge which performs 

better between models using MOE or DS_MOE descriptors. As presented in Figure 3d, 

the models using DS_MOE descriptors have a higher average MCC value of 0.852 for 

test set, whereas the models using MOE descriptors get a better average MCC value of 

0.730 in 5-fold cross validation for the training set. Considering that the models from 

MOE descriptors have both the desired MCC values (0.730 and 0.824) for 5-fold cross 

validation and test set, the single classifiers using MOE descriptors are selected for 

further analysis.  

3.3 Performance of combined naïve Bayesian Models 

As discussed above, based on the two best sets of descriptors (DS_MOE descriptors 

and MOE descriptors), 4 single classifiers (NN-c1, kNN -c1, CT-c1, and RF-c1) from 

NGN models were chosen to develop the combined naïve Bayesian model 

combined-NB-1, while another 4 single classifiers (NN-b2, kNN-b2, CT-b2 and RF-b2) 
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from NHN models were selected to build combined-NB-2. To compare the performance 

between single classifiers and combined naïve Bayesian model, the MCC values and 

AUC values via receiver operating characteristic (ROC) plot were calculated.  

As given in Figure 4a and 4b, the performance of combined-NB-1 (MCC = 0.814) is 

better than any single classifiers (MCC ranging from 0.602 to 0.743) on 5-fold cross 

validation. At the same time, the MCC value of combined NB-1 (0.923) on test set is also 

significantly higher than that of 4 single classifiers (MCC ranging from 0.790 to 0.904). 

A similar phenomenon occurs in combined-NB-2 (Figure 4c and 4d). Combined-NB-2 

model obtains MCC values of 0.836 and 0.878 on 5-fold cross validation and test set, 

respectively, which is much higher than those of single classifiers based on 26 MOE 

descriptors. 

AUC values via receiver operating characteristic (ROC) plot were also compared in 

Figure 5. As shown in Figure 5a and 5b, the combined-NB-1 model achieves the highest 

AUC value of 0.958 and 0.999 among the five models on 5-fold cross validation and test 

set, respectively. Similarly, the combined-NB-2 obtains the highest AUC values of 0.975 

and 0.999 among the five models. To sum up, after integrating different single classifiers, 

the combined NB models can improve the predictive performance obviously. 

In order to further improve the performance of combined-NB-1 and combined-NB-2, 

different molecular fingerprints, together with 8 probabilities outputted by 4 single 

classifiers, were used simultaneously as the descriptors in Bayesian analysis to build new 

prediction models. The statistical results for these Bayesian classifiers are listed in Table 

Page 17 of 51 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



4 and Table S6. For NGN models, the combined-NB models using fingerprints (No.2-13), 

have MCC values ranging from 0.818 to 0.975 on 5-fold cross validation, which are 

much higher than that of combined-NB-1 (No.1). Given the balance performance 

between training set and test set, NB-1-LPFP4 (No.12) which obtains corresponding 

MCC values of 0.972 and 0.953 on 5-fold cross validation and test set, is considered as 

the best model to predict neuroprotective activity against glutamate-induced neurotoxicity. 

For NHH models (No.14-26), except for NB-2-EPFP4 (No.17) and NB-2-FPFP4 (No.21), 

all of the other ten models using fingerprints perform better than combined-NB-2 (No.14) 

on 5-fold cross validation. Similarly, NB-2-LCFP6 (No.24) with corresponding MCC 

values of 0.956 and 0.902 on 5-fold cross validation and test set, is recognized as the best 

model to predict neuroprotective activity against H2O2-induced neurotoxicity. 

Consequently, the addition of fingerprint can improve the performance of combined 

NB-1 and NB-2 models. 

The Bayesian scores based on NB-1-LPFP4 and NB-2-LCFP6 were used to evaluate 

the discrimination of active compounds from inactive compounds via bimodal histograms 

of the training and test data sets (Figure 6). As given in Figure 6a and 6b, for 

NB-1-LPFP4 model, the p value associated with the difference in the mean Bayesian 

score of training set active versus inactive compounds is 0 at the 95% confidence level as 

well as p value of 5.12E-83 on test set, suggesting that the two distributions were 

significantly different. In a similar way, for NB-2-LCFP6 model (Figure 6c and 6d), the 

corresponding p values are 3.39E-261 and 2.17E-79 on training set and test set, implying 
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that Bayesian score can discriminate active compounds from inactive compounds greatly. 

Inspired by the two best models, we found the Bayesian score of neuroprotective agents 

tended to have more positive value, while the Bayesian score of inactive compounds 

inclined to have more negative value. The Bayesian score of a compound could be a 

quantitation standard to choose potential compounds as neuroprotective agents in virtual 

screening.  

3.4 Y-Scrambling 

As discussed above, NB-1-LPFP4 and NB-2-LCFP6 were regarding as the best 

neuroprotective models against glutamate or H2O2-induced neurotoxicity, respectively. 

Y-scrambling was performed to prove that it was not a result of chance correlation to 

have good performance for the best models. The steps are as follows. First, the activity (1 

or 0) column was randomly shuffled in the training set molecules, and a new Bayesian 

model was developed. The procedure was repeated 50 times and the new models were 

expected to have low Matthews correlation coefficient (MCC) and prediction accuracy 

(Q). The resulting MCC and Q for the test set are presented in Figure S1, from which all 

the scrambled models have a MCC less than 0.3 and Q less than 0.8, whereas the values 

of MCC and Q of NB-1-LPFP4 and NB-2-LCFP6 are significantly greater.  

3.5 Applicability domain of the generated QSAR 

An extremely important issue for classification model is the definition of the 

applicability domain (AD). The reason is that the reliable QSAR predictions are limited 

generally to the chemicals that are structurally similar to the training compounds. If the 
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test compounds are too far away from the chemical space of AD, the predictions are 

usually unreliable. There are several measures for the definition of applicability 

domain50-53. In this study, stepwise approach was used to determine the two best models’ 

AD with two domain layers (Figure S2). The first domain layer (named “parameter 

range”) was extracted based on molecular weight (MW) and log (Kow) with correct 

predicted chemicals from training set (called good fragments). The second domain layer 

was “structure domain” which was extracted by the atom-centered fragment method. The 

atom-centered fragment is a topological sphere with center a selected atom and radius 

specified in any atom distance. In this work, the parameter range for NB-1-LPFP4 is 

MW[124.17, 862.90] as well as log (Kow)[-8.63, 12.96], while that for NB-2-LCFP6 is 

MW[157.17, 1165.01] as well as log (Kow)[-12.80, 11.31]. AD analysis results for 

training set and test set is presented in Table 5. It can be easily seen that all active 

compounds of test set are located in domain although a small number of the decoy 

compounds are located out of domain. Consequently, the predictions of the two best 

models (NB-1-LPFP4 and NB-2-LCFP6) are reliable. 

3.6 Analysis of the important fragments given by naïve Bayesian classifier 

To further explore favorable structural fragments for neuroprotective compounds, the 

good fragments as well as the frequency of each fragment given by NB-1-LPFP4 and 

NB-2-LCFP6 classifiers were summarized in Figure 7, which were ranked by their 

Bayesian score. It may be useful for neuroprotective compounds design. In Figure 7a, as 

to the model against glutamate-induced neurotoxicity (NB-1-LPFP4), all of the privilege 
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fragments only contain three elements (C, H, and O), and most of fragments with oxygen 

atom belong to the family of esters. Therefore, hydrophobic interactions may be the main 

driving force for these fragments to favorably bind to the targets related to 

neuroprotection. As shown in Figure 7b, for the neuroprotective compounds against 

H2O2-induced neurotoxicity (NB-2-LCFP6), the favorable fragments are mainly 

composed of sulfonic amides, polyphenols and the fragments with unsaturated side 

chains. This is reasonable because these groups are functional groups with reducibility 

which are more likely antioxidants. It is well known most of antioxidants such as vitamin 

E have neuroprotection against H2O2-induced neurotoxity. Besides, for sulfonic amides 

and polyphenols, hydrogen bonding may play a significant role in binding to the 

neuroprotective targets. For example, there are 14 sulfonic amides out of 140 known 

neuroprotective compounds on training set, while there are 8 out of 40 known 

neuroprotective compounds on test set. 

3.7 Virtual screening of an in-house database for neuroprotective agents 

Based on the two best neuroprotective models (NB-1-LPFP4 and NB-2-LCFP6), we 

performed a virtual screening of our in-house database (27,905 compounds, National 

Center for Pharmaceutical Screening, Chinese Academy of Medical Sciences). The 

database was first filtered by the applicability domains of the two models, resulting in 

20,912 compounds for NB-1-LPFP4 and 20,832 compounds for NB-2-LCFP6, 

respectively. For NB-1-LPFP4 model, eight probability outputs (Pi+1 and Pi-1 i=1,2,3,4) 

were predicted for each compound using four single classifiers (NN-c1, kNN-c1, CT-c1, 
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and RF-c1). Together with LPFP4 fingerprint, each compound outputted the final 5 

combination decision probabilities (PC+1 and PC-1) with NB-1-LPFP4. Out of the 20,912 

compounds screened, 2,494 compounds were predicted as neuroprotective compounds 

against glutamate-induced neurotoxicity. Similarly, for NB-2-LCFP6 model, 4,341 

compounds were obtained against H2O2-induced neurotoxicity. Interestingly, 1,614 

compounds were predicted active by the two models simultaneously, and 553 out of them 

got both of the final probabilities PC+1 higher than 0.5 and were chosen for further study.  

In addition, 553 compounds were clustered into 20 groups by FCFP_6 fingerprint with 

the Cluster ligands module in Discovery studio 4.0. Clustering is based on the 

root-mean-square (RMS) difference of the tanimoto distance for fingerprinting. For each 

cluster, scaffold novelty as well as probability output was considered. Finally, 70 

compounds (Table S7) were obtained from our in-house sample library for in vitro 

neuroprotective assay. 

3.8 In Vitro neuroprotective assay results.  

The preliminary neuroprotective assay results were given in Table S8. Among 70 

compounds screened at the concentration of 30 𝜇M, 33 compounds showed the 

preliminary neuroprotective effects (cell damage inhibition higher than 40%) on 

monosodium glutamate-induced neurotoxicity on PC12 cell, while 28 out of these 33 

compounds exhibited neuroprotective effects on H2O2-induced neurotoxicity. 40 % 

compounds (28/70) showed neuroprotective activity against glutamate-induced and 
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H2O2-induced neurotoxicity simultaneously , which suggested that the prediction models 

could greatly increase the chance of identifying neuroprotective compounds.  

Further evaluation results for the 28 compounds at different concentrations were given 

in Table 6. Vitamin E was set as reference compound and displayed neuroprotective 

effects.54 Most of compounds exhibit good dose-response relationship, which means cell 

survival increases as the concentration of compound increases. Figure 8 displays 

neuroprotective effects of three representative compounds (J14572, J27152 and J27114) 

on monosodium glutamate-induced and H2O2-induced PC12 cells. Compared with 

control group, cell survival for model group injured by 40 mM monosodium glutamate or 

300 𝜇M H2O2 decreased significantly (P<0.01). After treatment with J14572 (3.3 𝜇M, 10 

𝜇M and 30 𝜇M), J27152 (10 𝜇M and 30 𝜇M) or J27114 (30 𝜇M), cell survival increased 

significantly. 

Further examination suggested five compounds (J14572, J18811, J18836, J18879 and 

J27118) could exhibited significant neuroprotective effects against monosodium 

glutamate-induced neurotoxicity at the concentration of 3.3 𝜇M, 10 𝜇M and 30 𝜇M, while 

seven compounds (J11762, J14572, J14591, J18811, J27118, J27153 and J27167) 

displayed significant neuroprotective activity against H2O2-induced neurotoxicity at the 

same three concentration. The chemical structures of these potent compounds are shown 

in Figure 9. To be exciting, three compounds (J14572, J18811, and J27118) could protect 

against glutamate-induced and H2O2-induced neurotoxicity at three concentrations, which 

showed promising prospect on neurodegenerative disease. 
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4. CONCLUSION 

In this study, the classification models were developed to discriminate neuroprotective 

compounds against glutamate or H2O2-induced neurotoxicity from inactive through 

machine learning approaches. Twenty four single models were generated based on four 

different classification algorithms (neural network, k nearest neighbors, classification tree 

and random forest), which were integrated to develop the combined Bayesian models to 

obtain superior performance. The various validations including cross validation, test set 

validation, and Y-scrambling confirmed the prediction reliability of the models. Finally, 

two best models NB-1-LPFP4 and NB-2-LCFP6 were used to perform virtual screening 

for discovering neuroprotective compounds. 

Preliminary assay results suggested that 40% (28/70) of compounds showed 

neuroprotective activity against glutamate-induced and H2O2-induced neurotoxicity 

simultaneously, and further evaluation showed that several of them could exhibit 

neuroprotective effects at different concentration (3.3 𝜇M, 10 𝜇M and 30 𝜇M). 

In short, this investigation demonstrated that in silico phenotypic-based models could 

efficiently identify novel neuroprotective compounds. This study provided useful 

suggestions for other types of rational drug discovery, and may be applied for other lead 

identification.  
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Y-scrambling result of NB-1-LPFP4 and NB-2-LCFP6 (Figure S1), extracting 

applicability domain for a QSAR model-step by step (Figure S2), the structures (in 

SMILE format) of the 1,000 compounds of the training set and 260 compounds of the test 

set for glutamate-induced models (Tables S1−S2), the structures (in SMILE format) of 

the 700 compounds of the training set and 200 compounds of the test set for 

H2O2-induced models (Tables S3−S4), the detailed performance of 24 single 

classification models for 5-fold cross validation and test set using different combinational 

of molecular properties (Table S5), the detailed performance of the 26 combined 

Bayesian classification models for 5-fold cross validation and test set using different 

combinational of output probabilities and fingerprints (Table S6), and the structures (in 

SMILE format) (Table S7) and preliminary assay result (Table S8) for 70 virtual hits on 

monosodium glutamate or H2O2-induced neurotoxicity on PC12 Cell. This material is 

available, free of charge. 
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Figure Legends 

Figure 1. Workflow for classification model building, validation, and virtual screening 

(VS) as applied to neuroprotective agents.  

Figure 2. Diversity distribution of (a) training set (n=1,000 compounds), test set (n=260 

compounds) and approved FDA drugs (n=1,670 compounds) against glutamate-induced 

neurotoxicity (NGN models), and (b) training set (n=700 compounds), test set (n=200 

compounds), and approved FDA drugs (n=1,670 compounds) against H2O2-induced 

neurotoxicity (NHN models) as described by the principal component analysis (PCA). 

Figure 3. The comparison of average MCC values made by different algorithms (a and b) 

and different sets of descriptors (c and d) against glutamate-induced neurotoxicity (a and 

c) and H2O2-induced neurotoxicity (b and d) on training set and test set.  

Figure 4. The comparison of MCC value made by four single classifiers and 

combined-NB model against glutamate-induced neurotoxicity (a and b) and 

H2O2-induced neurotoxicity (c and d) on training set (a and c) and test set (b and d). 

Figure 5. The comparison of AUC value via receiver operating characteristic (ROC) plot 

made by four single classifiers and combined-NB model against glutamate-induced 

neurotoxicity (a and b) and H2O2-induced neurotoxicity (c and d) on training set (a and c) 

and test set (b and d). 

Figure 6. The distributions of Bayesian score predicted by the Bayesian classifier 

NB-1-LPFP4 (a and b) and NB-2-LCFP6 (c and d) on training set (a and c) and test set (b 

and d). 
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Figure 7. Examples of the top 30 good fragments estimated by NB-1-LPFP4 (a) and 

NB-2-LCFP6 (b) models. The Bayesian score (Score) and the frequency of each fragment 

in active compounds are given. 

Figure 8. Cytoprotective effects of chemicals on monosodium glutamate-induced and 

H2O2-induced PC12 cells. The viability of the untreated cells was set to 100%.The values 

represent mean (%) ± SEM of three individual experiments (n = 3). #P< 0.05 and ##P< 

0.01 versus control groups; *P< 0.05 and ** P< 0.01 versus model group. 

Figure 9. Chemical structures of representative neuroprotective compounds against 

glutamate-induced (top) or H2O2-induced (bottom) neurotoxicity in PC12 cell. 
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Figure 1.  
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Figure 2.  

 

 

 

 

 

 

 

 

Page 33 of 51 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

Figure 3.  
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Figure 4.  
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Figure 5.  
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Figure 6.  
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Figure 7.  
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Figure 8.  
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Figure 9.  
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Table Legends 

Table 1. Detailed statistical description of the entire data set.  

Table 2. Molecular descriptors used in this work. 

Table 3. Performance of single classification models for the training set and test set using 

different combinational of molecular properties. 

Table 4. Performance of the 26 Bayesian classification models for the training set and 

test set using different combinational of output probabilities and fingerprints. 

Table 5. Numbers of chemicals were determined to be in domain (ID) and out of domain 

(OD) in the training set and test sets using application domain assessment methods. 

Table 6. Neuroprotective effects of compounds on monosodium glutamate or 

H2O2-induced neurotoxicity on PC12 Cells. 
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Table 1.  

Model     Training set (ECFP2)         Test set (ECFP2) 

Inhibitors decoys Total Tanimoto 

index 

Inhibitors decoys Total Tanimoto 

index 

Glutamate- 

induced 

200 800 1000 0.125 52 208 260 0.132 

H2O2-induced 140 560 700 0.142 40 160 200 0.162 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 42 of 51RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Table 2.  

No. 
Descriptor class 

Number of 

descriptors 
Descriptors 

1# 

DS 2D 12 

ES_Count_aasC, ES_Sum_dO, ES_Sum_ssCH2, 

SAscore_Complexity, HBD_Count, 

Num_AliphaticSingleBonds, Num_DoubleBonds, 

Num_RingBonds, Num_Rings6,                     

CIC, IAC_Mean, SC_3_C. 

2# 

MOE 2D 21 

a_don, a_ICM, balabanJ, BCUT_SMR_1, chi1_C, 

density, GCUT_SLOGP_1, GCUT_SLOGP_2, 

PEOE_RPC+, PEOE_VSA4+, PEOE_VSA0, 

PEOE_VSA2, PEOE_VSA3, PEOE_VSA4, 

PEOE_VSA5, PEOE_VSA_POL, PEOE_VSA_POS, 

PEOE_VSA_PPOS, SlogP_VSA4, SlogP_VSA5, 

SMR_VSA1, SMR_VSA5, SMR_VSA6 

3# 

DS 2D and MOE 

2D 
26 

ES_Sum_ssCH2, SAscore_Complexity, Num_Rings6,                     

CIC, IAC_Mean, a_don, balabanJ, BCUT_SMR_1, 

chi1_C, density, GCUT_SLOGP_1, GCUT_SLOGP_2, 

PEOE_RPC+, PEOE_VSA4+, PEOE_VSA_0, 

PEOE_VSA_2, PEOE_VSA_3, PEOE_VSA_4, 

PEOE_VSA_5, PEOE_VSA_POL, PEOE_VSA_POS, 

PEOE_VSA_PPOS, SlogP_VSA4, SlogP_VSA5, 

SMR_VSA1,  SMR_VSA6 

4# 

DS 2D 12 

ES_Count_aasC，  ES_Count_dssC, ES_Count_ssCH2, 

ES_Sum_ssCH2, QED_HBD, SAscore_Complexity, 

HBD_Count, Num_AtomClasses, Num_H_Acceptors, 

Num_Rings5, IAC_Mean, SC_3_C 

5# 

MOE 2D 26  

a_acc, a_nN, BCUT_PEOE_0, BCUT_SLOGP_1, 

GCUT_SLOGP_0, GCUT_SLOGP_2, GCUT_SMR_1, 

opr_brigid, PEOE_VSA+2, PEOE_VSA+3, 

PEOE_VSA+4, PEOE_VSA0, PEOE_VSA-5, 

PEOE_VSA-6, PEOE_VSA_FNEG, 

PEOE_VSA_FPNEG, PEOE_VSA_POL, 

PEOE_VSA_POS, SlogP, SlogP_VSA0, SlogP_VSA1, 

SlogP_VSA2, SlogP_VSA3, SlogP_VSA8,  

SMR_VSA3, SMR_VSA6. 
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6# 

DS 2D and MOE 

2D 
 24 

ES_Count_ssCH2, QED_HBD, SAscore_Complexity, 

Num_Rings5, IAC_Mean, a_nN, a_nN, 

BCUT_SLOGP_1, GCUT_SLOGP_0, GCUT_SLOGP_2, 

GCUT_SMR_1, opr_brigid, PEOE_VSA+2, 

PEOE_VSA+3, PEOE_VSA+4, PEOE_VSA0, 

PEOE_VSA5, PEOE_VSA6, PEOE_VSA_POS, SlogP, 

SlogP_VSA1, SlogP_VSA2, SlogP_VSA3, SMR_VSA3, 

SMR_VSA6. 

1-3#: neuroprotective models against glutamate-induced neurotoxicity (NGN models); 4-6# ：

neuroprotective models against H2O2-induced neurotoxicity (NHN models)                      
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Table 3.  

No.  Model  Descriptors  Training set (5-fold cross validation) Test set  

 SE SP Q+ Q- MCC SE SP Q+ Q- MCC 

1 NN-a1 12 0.695  0.966  0.837  0.927  0.711  0.788  0.962  0.837  0.948  0.767  

2 NN-b1 23 0.755  0.955  0.807  0.940  0.728  0.885  0.986  0.939  0.972  0.890  

3 NN-c1* 26 0.775  0.955  0.812  0.944  0.743  0.923  0.981  0.923  0.981  0.904  

4 kNN-a1 12 0.805  0.911  0.694  0.949  0.679  0.981  0.947  0.823  0.995  0.871  

5 kNN-b1 23 0.850  0.918  0.720  0.961  0.723  1.000  0.899  0.712  1.000  0.800  

6 kNN-c1* 26 0.870  0.919  0.728  0.966  0.740  1.000  0.933  0.788  1.000  0.857  

7 CT-a1 12 0.660  0.896  0.614  0.913  0.542  0.827  0.933  0.754  0.956  0.734  

8 CT-b1 23 0.700  0.903  0.642  0.923  0.584  0.923  0.928  0.762  0.980  0.794  

9 CT-c1* 26 0.735  0.898  0.642  0.931  0.602  0.904  0.933  0.770  0.975  0.790  

10 RF-a1 12 0.415  0.971  0.783  0.869  0.502  0.538  0.986  0.903  0.895  0.647  

11 RF-b1 23 0.615  0.973  0.848  0.910  0.667  0.904  0.976  0.904  0.976  0.880  

12 RF-c1* 26 0.690  0.949  0.771  0.924  0.666  0.904  0.976  0.904  0.976  0.880   

13 NN-a2 12 0.521  0.959  0.760  0.889  0.559  0.725  0.969  0.853  0.934  0.739  

14 NN-b2* 26 0.771  0.975  0.885  0.945  0.787  0.875  0.975  0.897  0.969  0.858  

15 NN-c2 24 0.714  0.966  0.840  0.931  0.724  0.925  0.988  0.949  0.981  0.921  

16 kNN-a2 12 0.714  0.914  0.676  0.928  0.616  0.950  0.944  0.809  0.987  0.843  

17 kNN-b2* 26 0.857  0.932  0.759  0.963  0.755  1.000  0.938  0.800  1.000  0.866  

18 kNN-c2 24 0.829  0.923  0.730  0.956  0.718  1.000  0.975  0.909  1.000  0.941  

19 CT-a2 12 0.607  0.888  0.574  0.900  0.485  0.900  0.888  0.667  0.973  0.710  

20 CT-b2* 26 0.721  0.932  0.727  0.930  0.655  0.900  0.913  0.720  0.973  0.751  

21 CT-c2 24 0.779  0.902  0.665  0.942  0.643  0.950  0.888  0.679  0.986  0.746  

22 RF-a2 12 0.371  0.964  0.722  0.860  0.442  0.525  0.981  0.875  0.892  0.623  

23 RF-b2* 26 0.771  0.946  0.783  0.943  0.722  0.900  0.950  0.818  0.974  0.821  
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1-12: neuroprotective models against glutamate-induced neurotoxicity (NGN models); 13-24：

neuroprotective models against H2O2-induced neurotoxicity (NHN models); a: models built by DS_2D 

descriptors; b: models built by MOE_2D descriptors; c: models built by DS_MOE 2D descriptors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24 RF-c2 24 0.707  0.954  0.792  0.929  0.690  0.850  0.956  0.829  0.962  0.799  
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Table 4. 

1-13:  combined naïve Bayesian models for neuroprotection against glutamate-induced neurotoxicity; 

14-26：combined NB models for neuroprotection against H2O2-induced neurotoxicity 

No.  Model   Training set (5-fold cross validation) Test set  

 SE SP Q+ Q- MCC SE SP Q+ Q- MCC 

1 NB 0.875 0.955 0.829 0.968 0.814 1.000  0.966  0.881  1.000  0.923  

2 NB+ECFP4 0.940 0.986 0.945 0.985 0.928 1.000  0.962  0.867  1.000  0.913  

3 NB+ECFP6 0.950 0.998 0.990 0.988 0.962 1.000  0.986  0.945  1.000  0.965  

4 NB+EPFP4 0.925 0.940 0.794 0.980 0.818 1.000  0.938  0.800  1.000  0.866  

5 NB+EPFP6 0.965 0.933 0.781 0.991 0.832 0.981  0.938  0.797  0.995  0.853  

6 NB+FCFP4 0.895 0.989 0.952 0.974 0.905 1.000  0.990  0.963  1.000  0.977  

7 NB+FCFP6 0.970 0.974 0.902 0.992 0.919 1.000  0.995  0.981  1.000  0.988  

8 NB+FPFP4 0.940 0.950 0.825 0.984 0.849 0.981  0.981  0.927  0.995  0.942  

9 NB+FPFP6 0.970 0.963 0.866 0.992 0.895 0.962  0.971  0.893  0.990  0.908  

10 NB+LCFP4 0.960 0.978 0.914 0.990 0.921 1.000  1.000  1.000  1.000  1.000  

11 NB+LCFP6 0.965 0.981 0.928 0.991 0.933 1.000  1.000  1.000  1.000  1.000  

12 NB+LPFP4 0.985 0.993 0.970 0.996 0.972 0.981  0.986  0.944  0.995  0.953  

13 NB+LPFP6 0.980 0.995 0.980 0.995 0.975 1.000  0.976  0.912  1.000  0.944  

14 NB 0.843 0.975 0.894 0.961 0.836 1.000  0.931  0.784  1.000  0.855  

15 NB+ECFP4 0.936 0.996 0.985 0.984 0.950 1.000  0.956  0.851  1.000  0.902  

16 NB+ECFP6 0.929 1.000 1.000 0.982 0.955 1.000  0.944  0.816  1.000  0.878  

17 NB+EPFP4 0.929 0.927 0.760 0.981 0.796 0.925  0.906  0.712  0.980  0.758  

18 NB+EPFP6 0.964 0.930 0.776 0.990 0.828 0.975  0.906  0.722  0.993  0.794  

19 NB+FCFP4 0.993 0.925 0.768 0.998 0.839 1.000  0.956  0.851  1.000  0.902  

20 NB+FCFP6 0.943 0.991 0.964 0.986 0.942 1.000  0.969  0.889  1.000  0.928  

21 NB+FPFP4 0.971 0.884 0.677 0.992 0.756 0.975  0.881  0.672  0.993  0.755  

22 NB+FPFP6 0.914 0.970 0.883 0.978 0.872 0.975  0.925  0.765  0.993  0.826  

23 NB+LCFP4 0.986 0.980 0.926 0.996 0.944 1.000  0.950  0.833  1.000  0.890  

24 NB+LCFP6 0.986 0.986 0.945 0.996 0.956 1.000  0.956  0.851  1.000  0.902  

25 NB+LPFP4 0.986 0.964 0.873 0.996 0.909 1.000  0.938  0.800  1.000  0.866  

26 NB+LPFP6 0.971 0.986 0.944 0.993 0.947 1.000  0.944  0.816  1.000  0.878  
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Table 5. 

Np: the number of positive compounds; Nnon-p: the number of decoy compounds; NB-1-LPFP4: the 

best model for neuroprotection against glutamate-induced neurotoxicity; NB-2-LCFP6: the best model 

for neuroprotection against H2O2-induced neurotoxicity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Training set Test set 

 in domain (ID) out of domain (OD) in domain (ID) out of domain (OD) 

Np Nnon-p Total Np Nnon-p Total Np Nnon-p Total Np Nnon-p Total 

NB-1-LPFP4 199 797 996 1 3 4 52 178 230 0 30 30 

NB-2-LCFP6 140 557 697 0 3 3 40 148 188 0 12 12 
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Table 6.  

Compound 

Monosodium glutamate (40mM) 

test concentration (μM) 

H2O2 (300 μM) 

test concentration (μM) 

3.3μM 10μM 30μM 3.3μM 10μM 30μM 

J10216 76.41±1.84 84.57±4.58d 81.75±3.43d 82.54±1.53 83.31±4.87 92.83±0.025c 

J10233 76.28±3.18 83.81±0.19e 108.43±1.76e 68.73±2.14 80.14±1.45 133.15±3.65c 

J11762 63.29±2.12 68.41±2.67 89.24±0.40e 91.82±0.99 c 100.03±2.58 c 123.11±0.83c 

J12146 70.05±4.61 75.97±0.34 79.18±1.73d 82.14±1.00 86.47±2.27b 82.19±2.78 

J14156 67.83±1.03 73.66±1.01 79.28±3.08d 83.04±3.35 91.16±1.62 c 100.63±0.48 c 

J14572 77.58±1.40d 78.66±1.76d 90.23±1.25e 87.12±1.17 b 93.04±1.35 c 106.28±1.20c 

J14581 71.78±0.55 73.38±0.59 77.41±0.08d 80.11±0.66  85.49±5.54  88.12±3.58b 

J14590 71.01±3.94 83.56±2.68e 92.89±2.35e --- --- --- 

J14591 71.92±1.24 77.51±0.48d 81.85±2.95d 99.66±3.28 c 100.90±1.5 c 103.70±4.83 c 

J14593 71.43±5.6 78.36±0.81d 86.35±2.88e 78.01±0.28 92.86±2.3c 84.86±1.12 

J14691 76.25±2.03 90.72±1.50e 101.70±5.7e 77.76±0.43 77.28±2.58 92.37±4.19c 

J18811 80.72±2.96d 93.91±0.78e 128.07±5.66e 86.63±1.49b 93.69±2.5c 93.06±2.49c 

J18836 85.51±3.20d 92.82±3.05e 83.62±0.91e 76.27±0.68 92.10±1.52c 62.22±0.51 

J18842 71.41±0.53 76.12±2.06 81.26±0.65d 79.74±5.83 98.89±3.04c 104.32±2.30c 

J18879 84.44±3.43d 86.11±2.05e 99.67±0.91e 59.34±5.38 66.92±4.42 78.79±4.86 

J27114 69.04±0.067 74.70±1.04 84.33±0.91e 80.78±0.015 83.85±1.38 98.38±0.06c 

J27115 76.16±0.28 80.16±4.31 86.13±3.59d 81.97±1.16 75.01±5.90 91.12±2.52 c 

J27118 82.64±0.65d 81.09±1.78d 84.19±1.94d 90.06±2.97b 91. 65±0.87c 92.13±0.62c 

J27151 73.43±4.87 77.41±2.62 103.11±6.28e 81.64±0.28 88.62±6.16 114.63±4.03c 

J27152 77.25±3.28 86.55±1.93e 94.63±2.31e 78.08±1.31 86.15±3.80 b 94.02±3.53b 

J27153 69.65±3.11 79.43±1.70d 98.63±0.49e 94.83±2.95 c 113.56±4.94 c 110.81±4.68 c 
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J27155 72.49±3.63 81.65±2.91d 90.11±3.82e 58.63±4.67 86.97±3.23 110.04±10.33b 

J27167 67.07±6.79 59.79±0.41 85.76±3.28d 88.41±2.99b 98.29±2.3c 88.32±1.18b 

J27198 67.79±3.79 65.39±1.01 85.54±1.11e 61.55±6.34 82.29±0.43 91.26±2.60b 

J27706 80.71±1.52d 74.77±0.04 92.34±4.37e 81.32±5.78 82.40±4.15 84.12±0.27 

J27709 67.02±1.46 80.33±0.35d 80.12±2.72 87.44±0.95b 87.27±6.11 96.80±1.70c 

J32899 61.74±2.22 68.86±3.08 80.82±1.96d 83.78±3.21 91.67±1.98c 86.28±5.94 

J100313 66.93±1.91 75.12±3.58 80.31±4.01 77.44±0.43 86.07±1.00 90.83±0.95c 

Vitamin E 79.66±3.77 85.22±3.87d 92.68±5.10e 91.29±4.32b 97.67±4.44b 106.22±5.85c 

aThe data (cell viability, measured by MTT assay) were normalized and expressed as a percentage 

of the control group, which was set to 100%. Degree of damage of H2O2 was 69.24±3.09, and 

degree of damage of monosodium glutamate was 66.05±1.82 .Data expressed as means ± SEM. 

Three independent experiments were carried out. bP < 0.05, cP < 0.01 vs H2O2 group. dP < 0.05, 
eP < 0.01 vs Monosodium glutamate group. 
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Graphical abstract 

Discovery of Neuroprotective Compounds through Machine Learning Approaches 

Jiansong Fang1,2⊥, Xiaocong Pang1⊥, Rong Yan1, Wenwen Lian1, Chao Li1, Qi Wang2, Ai-Lin Liu1,3,4*, 

and Guan-Hua Du1,3,4* 

 

Highlight: the classification models were constructed to discover neuroprotective compounds 

against glutamate or H2O2-induced neurotoxicity through machine learning approaches. 
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