This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Enhancement of the Oxygen Evolution Reaction in Mn$^{3+}$-based Electrocatalysts: Correlation between Jahn-Teller Distortion and Catalytic Activity
Shigeto Hirai,a Yagi Shunsuke,b Akihiro Seno,c Masaya Fujioka,c Tomoya Ohnoa and Takeshi Matsudaa

We systematically studied the catalytic activity of the oxygen evolution reaction (OER) for the tetragonal spinel oxide Mn$_3$Co$_{1-x}$O$_4$ ($0 \leq x < 1$) and Mn$_7$Co$_{1-x}$O$_{4}$ ($0 \leq x < 1$). The OER catalytic activity of Mn$_3$Co$_{1-x}$O$_4$ ($0 \leq x < 1$) dramatically improved with an increase in Co content. We found that the OER activity of Mn$_3$Co$_{1-x}$O$_4$ ($0 \leq x < 1$) increased linearly with the suppression of the Jahn-Teller distortion. We therefore propose that the Jahn-Teller distortion plays an important role in the OER activities of compounds containing Mn$^{3+}$. Mn$_3$Co$_{1-x}$O$_4$ ($0 \leq x < 1$) provides a rare case for directly studying the effect of the Jahn-Teller distortion on OER activity.

1 Introduction
The material design of low cost and highly active catalysts for energy storage applications is crucial for solving global energy problems. The oxygen evolution reaction (OER) is used for charging rechargeable metal-air batteries1,2 and in direct solar water splitting.3,4 Although precious metal-based catalysts with high OER activities (such as RuO$_2$ and IrO$_2$) facilitate the reaction, the kinetics of the OER are rather sluggish due to its multistep proton coupled electron transfer.5 It is therefore important to explore the mechanism of the OER and to discover and develop a highly active catalyst for the process.

As demonstrated by Suntivich et al.,6 when the number of electrons in the e$_g$ orbital is close to unity for transition metals, perovskite oxides exhibit maximum OER activity. In other words, Mn$^{3+}$(t_{2g}^3 e$_g^1$ for both surface and bulk), Co$^{3+}$(t_{2g}^3 e$_g^1$ for surface), and Ni$^{3+}$(t_{2g}^3 e$_g^1$ for both surface and bulk) are OER active sites for Mn$^{3+}$, Co$^{3+}$, and Ni$^{3+}$-based perovskite oxides.$^{7-9}$ However, LaMnO$_3$ exhibits a significantly lower specific OER activity compared with LaCoO$_3$ and LaNiO$_3$ (\sim6% of LaNiO$_3$ at 1.8 V vs. RHE)10 It is therefore important to explore what causes degradation of the OER activity of Mn$^{3+}$-based (t_{2g}^3 e$_g^1$) compounds to improve their catalytic activity. Among such compounds, Mn$_3$O$_4$ (Mn$^{4+}$[Mn$^{3+}$]2O$_4$) is abundant in nature as the mineral hausmannite,11 and is an inexpensive and effective catalyst for limiting the emission of carbon monoxide and NO.12,13 Mn$_3$O$_4$ adopts a tetragonally distorted spinel structure (Fig. 1) under ambient conditions14,15 due to the Jahn-Teller active Mn$^{3+}$ (t_{2g}^3 e$_g^1$) occupying the octahedral site. The Jahn-Teller distorted Mn$^{3+}$O$_6$ octahedra consist of four shorter Mn-O bonds (0.192 nm) and two longer Mn-O bonds (0.228 nm).15 Although Mn$_3$O$_4$ contains the OER active site (i.e. Mn$^{3+}$) previous studies report a low specific OER activity (\sim40% of Mn$_3$O$_4$ at 1.8 V vs. RHE)16 similar to LaMnO$_3$.

Fig. 1 Schematic image of the crystal structure of Mn$_3$Co$_{1-x}$O$_4$ nanoparticles.

We herein attempt to improve the performance of Mn$_3$O$_4$ by controlling the degradation of its OER activity. To directly compare the OER activities of Mn$^{3+}$-based spinel oxides, Mn$^{3+}$ concentrations at the octahedral site and at the tetragonally distorted structure must be maintained. Mn$_3$Co$_{1-x}$O$_4$ ($0 \leq x < 1$), a series of tetragonally distorted spinel compounds, provide such an opportunity, as their octahedral sites remain occupied by only Mn$^{3+}$ ions.17,18 Although the OER activities of Mn$_3$Co$_{1-x}$O$_4$ (usually tetragonal phase) and Mn$_3$Co$_{1-x}$O$_4$ (0 $\leq y \leq 1$) (usually cubic phase) have been previously studied, the OER activities of Mn$_3$Co$_{1-x}$O$_4$ ($0 \leq x < 1$) have not been studied. We therefore chose to systematically study the OER performance of tetragonal Mn$_3$Co$_{1-x}$O$_4$ ($0 \leq x < 1$ and $1 < x \leq 1.5$). Nanoparticles were prepared at \sim20 °C to minimize the influence of geometric factors (e.g., morphology and surface area) and to minimize the influence of the statistical error for catalytic activity per unit mass.

2 Experimental
2.1 Preparation and Characterization
Mn$_3$Co$_{1-x}$O$_4$ ($0 \leq x \leq 1.5$) nanoparticles were synthesized at room temperature according to the following liquid phase synthetic
process. Mn(CH$_3$COO)$_2$·4H$_2$O (Wako, 99.9%) and Co(CH$_3$COO)$_2$·4H$_2$O (Wako, 99.9%) (total 2 mmol) in a stoichiometric molar ratio were dissolved in a mixture of ethanol (17 mL) and distilled water (5 mL). The solution was mixed in air for 10 min at ~20 °C to give a homogenous solution. NH$_3$·H$_2$O (9 mL, Wako, 25-28 wt.%) was then added, and mixed under air for 20 min at ~20 °C to evenly disperse the particles in the solution. The resulting mixture was centrifuged for 15 min at 8000 rpm, and the supernatant removed. The obtained wet product was washed twice with excess ethanol, and dried at 70 °C for 24 h to remove any residual ethanol and water.

The prepared Mn$_x$Co$_{1-x}$O$_4$ (0 ≤ x ≤ 1.5) nanoparticle were investigated by powder X-ray diffraction (XRD) using a Rigaku SmartLab diffractometer with Cu Kα radiation (λ= 1.5418 Å, 45 kV, 200 mA, step size = 0.02 °/s). GSAS software was used for Rietveld refinement of the crystal structure. The value of x in the Mn$_x$Co$_{1-x}$O$_4$ nanoparticles were determined on the basis of lattice constants, specifically the Jahn-Teller distortion indicator: c/2a which decreases with the increase of the Co content. First, the values of x were calculated using the initial molar ratio in the starting material. Then, the validity of x in the nanoparticles was checked by comparing the values of c/2a in this study with those obtained by neutron diffraction studies in Bordeneuve et al. (2010).

Transmission electron microscopy (TEM) was conducted on selected nanoparticle samples (x = 0, 0.3, 0.6, 0.9) using an H-9000 (Hitachi Ltd.) with an acceleration voltage of 300 kV. Transmission electron microscopy (TEM) was conducted on selected nanoparticle samples (x = 0, 0.3, 0.6, 0.9) using an H-9000 (Hitachi Ltd.) with an acceleration voltage of 300 kV. Nitrogen Brunauer–Emmett–Teller (BET) surface area measurements were conducted for the Mn$_x$Co$_{1-x}$O$_4$ (0 ≤ x ≤ 0.9) nanoparticle at 77 K with a conventional high vacuum static system.

2.1 Electrochemical measurement of the OER activity

The catalyst inks of Mn$_x$Co$_{1-x}$O$_4$ (0 ≤ x ≤ 1.5) were prepared for electrochemical measurements by the methods reported by Sun et al. (2014) and Jung et al. (2015). K$^+$ ion-exchanged Nafion was used as an immobilizing binder, enabling smooth transport of O$_2$ to the surface of the catalysts. A 3.33 wt% K$^+$ ion-exchanged Nafion suspension was first obtained from a mixture of 5 wt% proton-type Nafion$^+$ suspension (Sigma-Aldrich) and 0.1 M aqueous KOH solution in a 2:1 (v/v) ratio. This process increased the pH of the initial 5 wt% proton-type Nafion$^+$ suspension from 1 to 11. The catalyst inks of Mn$_x$Co$_{1-x}$O$_4$ (0 ≤ x ≤ 1.5) were prepared from a mixture of the as-prepared samples (25 mg), acetylene black (AB, Denka, 5 mg), and 3.33 wt% K$^+$ ion-exchanged Nafion$^+$ suspension (1.5 mL). The total ink volumes were adjusted to 5 mL by the addition of tetrahydrofuran (THF, Sigma-Aldrich), to give final concentrations of 5 mg sample/mL, 1 mg AB/mL, and 10 mg Nafion/mL in the ink. A sample of the ink (6.4 μL) was then drop-casted on a rotating ring-disk electrode composed of a glassy carbon (GC) disk (0.2 × 0.2 × π cm2) (BAS Inc., Japan) and a Pt ring (Q$_{tot}$ = 0.5 cm, Q$_{outer}$ = 0.7 cm) (BAS Inc., Japan), which was used as the working electrode after mirror polishing with 0.05 μg alumina slurry (BAS Inc., Japan). The rotating ring-disk electrode bearing the Mn$_x$Co$_{1-x}$O$_4$ (0 ≤ x ≤ 1.5) ink was then dried overnight under vacuum at room temperature.

Electrochemical measurements were conducted using a rotating ring disk electrode rotator (RRDE-3A, BAS Inc., Japan) at 1600 rpm, in combination with a bipotentiostat (ALS Co., Ltd., Japan). In addition, a Pt wire counter electrode, and an Hg/HgO reference electrode (International Chemistry Co., Ltd., Japan) filled with 0.1 M KOH (Nacalai Tesque, Inc., Japan) were used. Electrochemical measurements were conducted with O$_2$ saturation (30 min bubbling O$_2$ gas through the solution) at ~25 °C, where the equilibrium potential of the O$_2$/H$_2$O redox couple was fixed at 0.304 V vs. Hg/HgO (or 1.23 V vs. RHE). During OER current density measurements (100 cycles for x = 0, 0.3, 0.6, 0.9, 1.5, and 10 cycles for x = 1.2) for each Mn$_x$Co$_{1-x}$O$_4$ (0 ≤ x ≤ 1.5) sample, the potential of the sample-modified GC was controlled from 0.3-0.9 V vs. Hg/HgO (1.226-1.826 V vs. RHE) at 10 mV/s. For all measurements, the overpotentials of the Mn$_x$Co$_{1-x}$O$_4$ (0 ≤ x ≤ 1.5) samples were obtained from the OER current density data (up to 100 cycles).

3 Results and discussion

XRD patterns (Fig. S1) demonstrate that the prepared Mn$_x$Co$_{1-x}$O$_4$ (0 ≤ x ≤ 0.3, 0.6, 0.9, 1.2, 1.5) samples are single-phase. All XRD peaks were indexed by the distorted spinel structure with the tetragonal space group I4/mcm. The morphologies of the Mn$_x$Co$_{1-x}$O$_4$ (0 ≤ x ≤ 0, 0.3, 0.6, 0.9) samples were then examined by TEM (Fig. 2). As shown in Fig. 2, the TEM images show nanoparticles with an isotropic morphology, exhibiting average particle sizes of ~17 nm for x = 0 and ~15 nm for x = 0.3-0.9.

![TEM images of Mn$_x$Co$_{1-x}$O$_4$ nanoparticles for x = 0, 0.3, 0.6, and 0.9. All scale bars equal 100 nm.](image)

Fig. 2 Typical transmission electron microscopy (TEM) images of Mn$_x$Co$_{1-x}$O$_4$ nanoparticles for x = 0, 0.3, 0.6, and 0.9. All scale bars equal 100 nm.

In terms of site occupancy, the tetragonally distorted Mn$_x$Co$_{1-x}$O$_4$ spinel (0 ≤ x ≤ 0.3, 0.6, 0.9, 1.2, 1.5) can be divided into two groups, i.e. 0 ≤ x < 1 and 1 ≤ x ≤ 1.5. The octahedral site of the former group is occupied only by the Mn$^{4+}$ ions (Fig. S2(a)), while the octahedral site of the latter group is composed of a mixture of Mn$^{4+}$, Co$^{3+}$, Mn$^{3+}$, and Co$^{4+}$ ions17. To determine the key factor that determines the OER catalytic performance of the Mn$_x$Co$_{1-x}$O$_4$ spinel nanoparticles, we first chose to focus on the Mn$_x$Co$_{1-x}$O$_4$ (0 ≤ x < 1) group.

Fig. 3(a) shows the capacitance-corrected voltammetry curves of the oxygen evolution reaction (OER) for Mn$_x$Co$_{1-x}$O$_4$ (0 ≤ x < 1). The higher the OER current density is, the higher the OER activity of the catalyst is. Therefore, Fig. 3(a) demonstrates that the OER activity of Mn$_x$Co$_{1-x}$O$_4$ (0 ≤ x < 1) elevates with the increase in Co content. Fig. 3(b) shows the linear correlation between the logarithmic OER current density and the rε-corrected potential for Mn$_x$Co$_{1-x}$O$_4$ (0 ≤ x < 1), known as the Tafel plot26,27. The data used in Fig. 3(b) were extracted from Fig. 3(a). The smaller the slope of the Tafel plot (called Tafel slope) is, the higher the OER activity of the catalyst is. Fig. 3(b) exhibits the elevation of the OER activity with the increase...
in Co content. Fig. 3(c) shows the correlation between the OER current density at 1.76 V vs. RHE (specific OER activity) and the Jahn-Teller distortion indicator: \(c/V2a \). Specific OER activities were compared at 1.76 V vs. RHE to minimize the influence of the statistical error. Fig. 3(d) shows the durability of Mn\(_{2}\)CoO\(_{4}\) (0 ≤ x < 1) as OER catalysts. Evaluation of durability is important when putting catalysts into application for metal-air batteries. The ratio of Tafel slope of cycle 100 towards cycle 1 was used as an indicator of the durability. Longer term stability as an OER catalyst was observed for Co-enriched members (Fig. 3(d)). All these figures (Fig. 3) demonstrate that the OER performance of Mn\(_{2}\)CoO\(_{4}\) (0 ≤ x < 1) improves with the increase in Co content. In particular, Mn\(_{2}\)CoO\(_{4}\) exhibited an excellent OER performance with a high specific OER activity (1700 % of Mn\(_{2}\)O\(_{4}\)) at 1.76 V vs. RHE, along with long-term stability over 100 cycles (>3.3 h). As recently reported for perovskite oxides, \(6,7,8,9 \) when the number of electrons in the \(e_g \) orbital is close to unity for transition metal ions, they play the role of OER active sites. In the case of Mn\(_{2}\)CoO\(_{4}\) (0 ≤ x < 1), Mn\(_{2+}\) (\(t_{2g}^3 e_g^1 \)) at the octahedral site forms an antibonding \(e_g \) orbital with the oxygen-related adsorbates (O\(_2^+\) and O\(_{ad}^{-}\)). The antibonding Mn\(_{2+}\) \(e_g \) orbital has the strongest overlap with oxygen since it is at a higher energy level relative to the bonding \(t_{2g} \) orbitals of Mn\(_{3+}\). The antibonding \(t_{2g} \) orbitals of Mn\(_{2+}\) (\(e_g^3 t_{2g}^3 \))/Co\(_{3+}\) (\(e_g^3 t_{2g}^3 \)) at the tetrahedral site (Fig. 4). Therefore, Mn\(_{2+}\) becomes the OER active site for Mn\(_{3}\)CoO\(_{4}\) (0 ≤ x < 1). Since the number of Mn\(_{2+}\) \(e_g \) electrons remained constant with an increase in Co content (only Mn\(_{3+}\) \(e_g \) ions occupied the octahedral site), the higher OER activities of Co-enriched members could not be explained by the number of \(e_g \) electrons. In addition, as the surface areas of Mn\(_{3}\)CoO\(_{4}\) (x = 0.3, 0.6, 0.9) are ~1.2 times that of Mn\(_{2}\)O\(_{4}\) \(28 \) this small variation of surface area cannot be used to explain the different OER activities for Mn\(_{3}\)CoO\(_{4}\) (0 ≤ x < 1). Furthermore, the influence of electrical conductivity can be neglected as it remains almost constant for 0 ≤ x < 1 (Fig. S2(b)). Thus, it is necessary to find alternative explanations for the higher OER activities of the Co-enriched species.

Fig. 3 (a) Linear sweep voltammetry curves of the OER (cycle 10) for Mn\(_{2}\)CoO\(_{4}\) (x = 0, 0.3, 0.6, 0.9) in 0.1 M aqueous KOH at 10 mV/s. (b) Tafel plots and the variation of Tafel slopes (cycle 10) for Mn\(_{2}\)CoO\(_{4}\) (x = 0, 0.3, 0.6, 0.9). (c) Variation of the specific OER activities (cycles 1-10) for Mn\(_{2}\)CoO\(_{4}\) (x = 0, 0.3, 0.6, 0.9) towards the Jahn-Teller distortion indicator: \(c/V2a \). (d) The OER durability of Mn\(_{2}\)CoO\(_{4}\) (x = 0, 0.3, 0.6, 0.9). The ratio of the Tafel slope of cycle 100 towards cycle 1 (%) was used as an indicator of the OER durability.

In this context, we chose to examine whether the electronic state of Mn\(_{3+}\) changes in favor of enhancing the OER activities for Mn\(_{3}\)CoO\(_{4}\) (0 ≤ x < 1). Since lattice, spin and orbital degrees of freedom are strongly coupled for the Mn\(_{3+}\)-based tetragonally distorted spinel species, \(29,30,31 \) the electronic state of Mn\(_{3+}\) can be probed by the crystal structure. Therefore, we examined the electronic state of Mn\(_{3+}\) focusing on the Jahn-Teller distortion of Mn\(_{3}\)O\(_{4}\) octahedra. When 3d transition metals (M) are situated at the center of the MO\(_{3}\) octahedra, their 3d orbitals split into triply degenerate \(t_{2g} \) orbitals and doubly degenerate \(e_g \) orbitals. As Mn\(_{3+}\) has four 3d electrons, the Mn\(_{3}\) 3d orbitals split into two energy levels to lower the total energy of the Mn\(_{3}\) 3d electrons (Fig. 4). When the Jahn-Teller distortion of Mn\(_{3}\)O\(_{4}\) octahedra is suppressed (equivalent to \(c/V2a \) decreasing) due to the increase in Co content (Fig. S3), the splitting of the Mn\(_{3+}\) \(e_g \) orbitals becomes smaller and the electron occupying the Mn\(_{3+}\) \(e_g \) orbital shifts to a higher energy level (Fig. 4). Thus, the overlap of the antibonding Mn\(_{3+}\) \(e_g \) orbitals with the O 2p orbitals of the oxygen adsorbate becomes stronger. The OER activity of Mn\(_{3}\)CoO\(_{4}\) should therefore be enhanced due to the stronger binding of OER intermediates to the catalytic surface. This prediction was experimentally supported by the linear correlation between the indicator of the Jahn-Teller distortion (\(c/V2a \)) and the OER activity (Fig. 3(d)). The linear correlation becomes more pronounced when the OER activity is divided by the normalized BET surface area (Fig. S4(d)). We could therefore conclude that a correlation exists between the suppression of the Jahn-Teller distortion and the OER activity. For compounds containing Mn\(_{3+}\), not only the number of \(e_g \) electrons but also the Jahn-Teller distortion plays a crucial role in their OER activities. Minimizing the
Jahn-Teller distortion (without changing the number of e_g electrons) could further improve the OER activities of Mn$^{3+}$-based compounds. Since the suppression of the Jahn-Teller distortion (by increasing the Co content) is physically equivalent to raising the temperature of Mn$_2$O$_3$ (Mn$_2$O$_4$ becomes cubic at 1170 °C), our result suggests a future application of Mn$_{4-x}$Co$_x$O$_4$ ($0 \leq x < 1$) as an energy saving catalyst for metal-air batteries.

In contrast, the OER performance of Mn$_{5-x}$Co$_x$O$_4$ decreased with an increase in Co content for $1 < x \leq 1.5$ (Fig. 5). Lower specific OER activities (Fig. S5(a)), slightly larger Tafel slopes (Fig. S5(b)), and relatively constant overpotentials (Fig. S5(c)) were observed for Mn$_{5-x}$Co$_x$O$_4$ ($x=1.2, 1.5$) when compared to Mn$_{5-x}$Co$_{0.9}$O$_4$. This OER behavior can be explained in terms of the electrons in the e_g orbital and the Jahn-Teller distortion, as was the case for Mn$_{5-x}$Co$_x$O$_4$ ($0 \leq x < 1$). When the Co content increased above $x>1$, the octahedral site was occupied by a mixture of Mn$^{3+}$, Co$^{3+}$, and Co$^{4+}$ ions. This is in contrast with Mn$_{5-x}$Co$_x$O$_4$ ($0 \leq x < 1$) where the octahedral site is occupied only by Mn$^{3+}$ (Fig. S2(a)). When the number of electrons in the e_g orbital changes from unity for transition metal ions, they cannot remain as the OER highly active sites. Therefore, the increase of Mn$^{3+}$ ($t_{2g}^5 e_g^1$) and Co$^{3+}$ ($t_{2g}^5 e_g^2$) concentration (at the epical center of the octaheda) with the increase in Co content degrades the OER activity of Mn$_{5-x}$Co$_x$O$_4$ ($1 < x \leq 1.5$). On the other hand, the suppression of Jahn-Teller distortion with the increase in Co content (Fig. S3) elevates the OER activity. These two effects compete with each other, and the OER activities of $x=1.2$ and 1.5 drop slightly compared with that of $x=0.9$. The reduction in Mn$^{3+}$ ($t_{2g}^5 e_g^1$) concentration degrades the OER activity, but the increase of Co$^{3+}$ (OER active site: $t_{2g}^5 e_g^1$ for surface) compensates this effect. It should be noted that maintaining the concentration of cations with a single e_g electron (Mn$^{3+}$ and Co$^{3+}$ at the octahedral site) is essential to improve the OER activity. Therefore, in summary, the OER performance of Mn$_{5-x}$Co$_x$O$_4$ ($1 < x \leq 1.5$) does not contradict with the explanation for the OER performance of Mn$_{5-x}$Co$_x$O$_4$ ($0 \leq x < 1$), thus strongly supporting a correlation between the suppression of Jahn-Teller distortion and the OER activity of the material.

![Fig. 5](image-url) Linear sweep voltammetry curves of the OER (cycle 10) for Mn$_{4-x}$Co$_x$O$_4$ ($x=0, 0.6, 0.9, 1.2, 1.5$).

4 Conclusion

We systematically studied the OER performance of Mn$_{5-x}$Co$_x$O$_4$ ($0 \leq x < 1$) nanoparticles for the first time. Nanoparticles were prepared at room temperature to minimize the influence of geometric factors. With an increase in Co content, a significant improvement in the OER activity was observed for Mn$_{5-x}$Co$_x$O$_4$ ($0 \leq x < 1$). More specifically, Mn$_{2.5}$Co$_{0.5}$O$_4$ exhibited a high specific OER activity (1700% of Mn$_2$O$_3$ at 1.76 V vs. RHE) and long-term stability over 100 cycles. The OER activities of Mn$_{4-x}$Co$_x$O$_4$ ($0 \leq x < 1$) increased linearly with the suppression of the Jahn-Teller distortion. We therefore propose that Jahn-Teller distortion plays an important role in the OER activities of compounds containing Mn$^{3+}$. The OER performance of Mn$^{3+}$-based compounds can be further improved by minimizing the Jahn-Teller distortion, suggesting their future application as energy saving catalysts for metal-air batteries. Work is currently ongoing in our group synthesizing Ni$^{3+}$-based spinel oxides with suppressed Jahn-Teller distortion (using liquid phase synthesis) and exploring their OER performances.

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research (B 15H04169) from the Japan Society for the Promotion of Science, the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References

28. (Electronic Supplementary Information) Mn$_{3-x}$Co$_x$O$_4$ nanoparticles had BET surface areas of 60 m2/g ($x = 0$), 70 m2/g ($x = 0.3$), 65 m2/g ($x = 0.6$), and 74 m2/g ($x = 0.9$).
The suppression of the Jahn-Teller distortion elevates the oxygen evolution reaction activity for \(\text{Mn}_{3-x}\text{Co}_x\text{O}_4 \ (0 \leq x < 1) \).