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Synthesis and optical properties of covalently bound 
Nile Red in mesoporous silica hybrids -  
Comparison of dye distribution of materials prepared 
by facile grafting and by co-condensation routes. 

Markus Börgardts,a Kathrin Verlinden,b Manuel Neidhardt,c Tobias Wöhrle,c 
Annika Herbst,b Sabine Laschat,c Christoph Janiak,b and Thomas J. J. Müller*,a  

The fluorescence dye Nile Red (NR) can be covalently ligated to hexagonally ordered, 
mesoporous silica materials (MCM-41) via co-condensation and post grafting routes in order to 
investigate possible differences in the dye distributions. The obtained hybrid materials display 
emission properties similar to free NR but in contrast to free dye molecules even aqueous gels 
are luminescent, rendering these materials particularly interesting for biolabeling applications. 
All materials were structurally characterized by nitrogen sorption measurements, small angle 
X-ray scattering (SAXS), and transmission electron microscopy (TEM). Their optical 
properties were characterized by UV/Vis and fluorescence spectroscopy. 
 

Introduction 

After the discovery of pure inorganic mesoporous silica 
materials in 1992, research on mesoporous composite materials 
modified by organic molecules quickly evolved.1-3 By chemical 
and physical manipulation of their pore systems, the properties 
of rigid silica and various functional molecules can be 
combined and lead to unique features of the hybrid materials in 
comparison to the individual components. As a consequence 
these novel composite materials open novel applications in 
various topical fields of research, such as catalysis,4 optical 
sensing,5,6 solid state lasers,7 and drug delivery.8-10 For sensing 
applications mesoporous silica hybrids are particularly 
advantageous due to their pore structure (e.g. MCM-41) 
enabling facile mass transport at high rates, which is essential 
for quick response times to environmental changes. 
Furthermore, the shape and size of silica particles can be 
controlled by varying the synthetic conditions, thus rendering 
them also favorable for medicinal applications, such as drug 
delivery or biolabeling.11 Special sensitivity can be additionally 
introduced by modification of the silica surface with 
biochemical functionalities, such as antibodies.9 

The simplest route of doping organic dyes into sol-gel matrices 
is the adsorption and entrapping of the chromophores during 
their synthesis. However, plain adsorption inevitably causes 
leakage and migration of the dyes, although this problem can be 
circumvented by covalent ligation of the dye to free silanol 
groups in the silica framework. In this manner, a dye containing 
a reactive functionality can be grafted onto the silanol groups of 
the silica matrix in the sense of a postsynthetic 
functionalization. Alternatively and quite elegantly in a highly 
convergent fashion, a dye with pending trialkoxysilyl 
functionality can be covalently anchored in the mesoporous 

structure in statu nascendi (co-condensation).12 Yet, the 
determination of the homogeneity of the dye distribution, 
especially at low dye loading proved to be difficult and only 
little research has been dedicated to the comparison of dye 
distribution of hybrid materials synthesized by post grafting 
methods and one-pot synthesis. Especially there is barely any 
comparison between the two most feasible synthesis methods of 
hybrid materials with similar structural properties, i.e. grafting 
onto commercially available mesoporous silica and co-
condensation.13,14,15 

Taking advantage of the inherent chemical, thermal and 
dimensional stability of silica hybrid materials various 
fluorescent dyes have already been incorporated into 
mesoporous silica by adsorption or covalent ligation, thus 
enhancing the photostability of the organic components.16,17 
Most advantageously a co-condensation strategy could give rise 
to a homogenous distribution, thereby avoiding aggregation-
induced self-quenching of the dye molecules.18,19 

A typical fluorescence dye displaying emission self-quenching 
in the solid state is Nile Red (NR). NR possesses high 
fluorescence quantum yields in lipids and unpolar solvents and 
is widely used in biological applications as a lipophilic stain or 
a laser dye.20-22 Moreover, the pronounced emission 
solvatochromicity allows its use as polarity sensor in cellular 
environments.23,24 Unfortunately, NR´s water insolubility 
restricts its application to lipids and highly hydrophobic micro-
environments. But still since NR´s fluorescence does not 
interfere with the cellular autofluorescence (typically below 
550 nm), NR could be an ideal probe for biolabeling and thus 
recent work is dedicated to water-soluble, but still luminescent 
NR derivatives.25-27 As a consequence a new class of 
luminescent stains for intracellular imaging could evolve. 
Upon incorporation of NR into mesoporous silica, aggregation-
induced self-quenching in aqueous media should be supressed, 
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Sodium azide (708 mg, 10.9 mmol) and sodium iodide (154 
mg, 1.03 mmol) were placed in a Schlenk flask under nitrogen 
atmosphere and dissolved in DMSO (10 mL). Then (3-
chloropropyl)triethoxysilane (1.35 g, 5.61 mmol) was added 
and the solution was stirred at 60 °C for 18 h. n-Hexane (10 
mL) was added and the reaction mixture was stirred at room 
temp for 3 h. The solution was washed with deionized water (3 
x 5 mL) and brine (1 x 5 mL), and the organic layer was dried 
with anhydrous magnesium sulfate. The solvents were removed 
in vacuo and the residue was dried at 10-3 mbar for 4 d to give 
(3-azidopropyl)triethoxysilane (1.03 g, 74%) as a colorless oil. 
1H NMR (300 MHz, CDCl3):  = 0.64-0.71 (m, 2 H, -SiCH2-), 
1.23 (t, 3JHH = 7.0 Hz, 9 H, Si(OCH2CH3)3), 1.65-1.77 (m, 2 H, 
-SiCH2CH2-), 3.26 (t, 3JHH = 7.0 Hz, 2 H, -SiCH2CH2CH2-), 
3.82 (q, 3JHH = 7.0 Hz, 6 H, Si(OCH2CH3)3). 

13C NMR (75 
MHz, CDCl3):  = 7.6 (CH2), 18.3 (CH3), 22.7 (CH2), 53.8 
(CH2), 58.5 (CH2). GC-MS: m/z = 163 [(C3H9N3O3Si)+], 119 
[(C3H7O3Si)+], 79 [(HO)3Si+]. 
 
5-(Diethylamino)-2-nitrosophenol (2)32 
3-Diethylaminophenol (1) (6.00 g, 36.1 mmol) was dissolved in 
a mixture of deionized water (8 mL) and concentrated 
hydrochloric acid (14 mL). The solution was cooled to 0 °C and 
a solution of sodium nitrite (2.49 g, 36.2 mmol) in deionized 
water (20 mL) was added dropwise over a period of 30 min and 
the stirring was continued at 0 °C for 4 h. The solution was 
filtered and the residue recrystallized from ethanol (100 mL). 
After adding diethyl ether (80 mL) a brown solid precipitated 
and was filtered off. Drying at 50 °C and 10-3 mbar gave 5-
(diethylamino)-2-nitrosophenol (2) (5.72 g, 81%) as a brown 
solid. 
1H NMR (300 MHz, DMSO-d6):  = 1.27 (t, 3JHH = 7.1 Hz, 6 
H, -CH3), 3.82 (m, 4 H, -CH2-), 6.75 (d, 3JHH = 2.2 Hz, 1 H, 6-
H), 7.21 (dd, 3JHH = 10.4 Hz, J = 2.2 Hz, 1 H, 4-H), 7.55 (d, 
3JHH = 10.4 Hz, 1 H, 3-H). 
 
9-(Diethylamino)-2-hydroxy-5H-benz[a]phenoxazin-5-one 
(3)31 
A solution of 5-(diethylamino)-2-nitrosophenol (2) (1.00 g, 
5.60 mmol) and 1,6-dihydroxynaphthalene (0.75 g, 4.70 mmol) 
in DMF (90 mL) was heated to 155 °C for 4 h. The solvent was 
removed in vacuo and the residue was purified by 
chromatography on silica gel (n-hexane/ethyl acetate 1:1) to 
give 9-(diethylamino)-2-hydroxy-5H-benz[a]phenoxazin-5-one 
(3) (8.66 g, 66%) as a violet solid, Mp 298 °C. 
1H NMR (300 MHz, DMSO-d6):  = 1.14 (t, 3JHH = 7.0 Hz, 6 
H, -CH3), 3.45 (q, 3JHH = 7.1 Hz, 4 H,  
-CH2-), 6.11 (s, 1 H, 6-H), 6.57 (d, 4JHH = 2.6 Hz, 1 H, 8-H), 
6.74 (dd, 3JHH = 9.1 Hz, 4JHH = 2.7 Hz, 1 H, 10-H), 7.07 (dd, 
3JHH = 8.6 Hz, 4JHH = 2.5 Hz, 1 H, 3-H), 7.52 (d, 3JHH = 9.1 Hz, 
1 H, 11-H), 7.85 (d, 4JHH = 2.4 Hz, 1 H, 1-H), 7.95 (d, 3JHH = 
8.6 Hz, 1 H, 4-H), 10.41 (s, 1 H, -OH). 13C NMR (75 MHz, 
DMSO-d6):  = 12.4 (CH3), 44.4 (CH2), 96.0 (CH), 104.0 (CH), 
108.1 (CH), 109.8 (CH), 118.3 (CH), 123.8 (Cquat), 127.4 (CH), 
130.7 (CH), 133.7 (Cquat), 138.6 (Cquat), 146.3 (Cquat), 150.6 
(Cquat), 151.5 (Cquat), 160.5 (Cquat), 181.5 (Cquat). IR: ṽ / cm-1 = 
638 (m), 671 (m), 687 (m), 702 (m), 745 (m), 783 (m), 797 (m), 
818 (m), 847 (m), 887 (m), 910 (m), 953 (m), 1013 (m), 1028 
(m), 1028 (m), 1045 (m), 1074 (m), 1112 (vs), 1150 (m), 1159 
(m), 1180 (m), 1221 (m), 1258 (vs), 1288 (m), 1317 (vs), 1377 
(m), 1406 (m), 1439(m), 1474 (m), 1485 (m), 1505 (m), 1520 
(m), 1537 (m), 1562 (m), 2625 (br), 2870 (w), 2924 (w), 2963 

(w), 3046 (br). HR-MS (ESI) calcd. for (C20H18N2O3 + H)+: 
m/z = 335.13902 (100%), 336.14237 (22%); Found: 335.13893 
(100%), 336.14204 (15%). Anal. calcd. for C20H18N2O3 
(334.4): C 71.84, H 5.43, N 8.38; Found: C 71.66, H 5.52, 
N 8.09. 
 
9-(Diethylamino)-2-(prop-2-yn-1-yloxy)-5H-
benzo[a]phenoxazin-5-one (4)  
9-(Diethylamino)-2-hydroxy-5H-benz[a]phenoxazin-5-one (3) 
(334 mg, 1.00 mmol) and potassium carbonate (280 mg, 2.00 
mmol) were dissolved in DMF (5 mL). To this solution 
propargyl bromide (145 mg, 1.22 mmol) was added and the 
mixture was stirred at 80 °C for 16 h. The reaction mixture was 
diluted with diethyl ether (25 mL) and brine (25 mL). The 
organic layer was separated and the aqueous layer washed with 
diethyl ether (3 x 25 mL). The combined organic layers were 
dried with anhydrous magnesium sulfate and the solvents were 
removed in vacuo. The residue was adsorbed on celite and 
purified by chromatography on silica gel (n-hexane/ethyl 
acetate 2:1, with 5% triethylamine) to give compound 4 as a red 
solid (89.0 mg, 24%), Mp 192-194 °C. 
1H NMR (300 MHz, CDCl3):  = 1.25 (t, 3JHH = 7.1 Hz, 6 H, -
NCH2CH3), 2.58 (t, 4JHH = 2.4 Hz, 2 H,  
-OCH2CCH), 3.45 (q, 3JHH = 7.1 Hz, 4 H, -NCH2CH3), 4.88 (t, 
4JHH = 2.4 Hz, 1 H, -OCH2-), 6.28 (s, 1 H, 6-H), 6.42 (d, 4JHH = 
2.6 Hz, 1 H, 8-H), 6.62 (dd, 3JHH = 9.1 Hz, 4JHH = 2.6 Hz, 1 H, 
10-H), 7.22 (dd, 3JHH = 8.7 Hz, 4JHH = 2.6 Hz, 1 H, 3-H), 7.57 
(d, 3JHH = 9.1 Hz, 1 H, 11-H), 8.10 (d, 4JHH = 2.6 Hz, 1 H,  
1-H), 8.23 (d, 3JHH = 8.7 Hz, 1 H, 4-H). 13C NMR (75 MHz, 
CDCl3):  = 12.6 (CH3), 45.1 (CH2), 56.1 (CH2), 96.3 (CH), 
105.3 (CH), 107.2 (CH), 109.6 (CH), 118.4 (CH), 124.8 (Cquat), 
126.4 (Cquat), 127.9 (CH), 131.2 (CH), 134.0 (Cquat), 139.8 
(Cquat), 146.8 (Cquat), 150.8 (Cquat), 152.1 (Cquat), 160.1 (Cquat), 
183.1 (Cquat). IR: ṽ / cm-1 =  679 (m), 591 (m), 704 (m), 743 
(m), 756 (m), 789 (m), 807 (m), 820 (s), 845 (m), 864 (m), 880 
(m), 893 (m), 924 (m), 1005 (s), 1034 (m), 1080 (s), 1115 (s), 
1150 (m), 1179 (m), 1194 (m), 1207 (m), 1250 (s), 1267 (s), 
1292 (m), 1315 (m), 1335 (m), 1373 (m), 1404 (s), 1454 (m), 
1468 (m), 1491 (m), 1518 (w), 1530 (w), 1555 (m), 1572 (m), 
1589 (s), 1638 (w), 1687 (w), 1726 (m), 2106 (w), 2332 (w), 
2359 (w), 2872 (w), 2928 (m), 2959 (m), 3194 (m). MALDI-
TOF: m/z = 373.4 (C23H20N2O3+H)+.  
 
9-(Diethylamino)-2-((1-(3-(triethoxysilyl)propyl)-1H-1,2,3-
triazol-4-yl)methoxy)-5H-benzo[a]phenoxazin-5-one (5) 
9-(Diethylamino)-2-(prop-2-yn-1-yloxy)-5H-benzo[a]phenoxa-
zin-5-one (4) (80.0 mg, 0.210 mmol), copper sulfate 
pentahydrate (12.0 mg, 0.0500 mmol) and sodium ascorbate 
(20.0 mg, 0.100 mmol) were dissolved in DMF (1 mL). Then a 
solution of (3-azidopropyl)triethoxysilane (270 mg, 1.90 mmol) 
in DMF (2 mL) was added and the mixture was stirred at 40 °C 
for 13 h. Then diethyl ether (50 mL) and brine (20 mL) were 
added to the solution and the aqueous layer was washed with 
diethyl ether (4 x 50 mL). The combined organic layers were 
dried with anhydrous magnesium sulfate and the solvent was 
removed in vacuo. The residue was purified by chromatography 
on silica gel (n-hexane/ethyl acetate 1:1) to give compound 5 as 
a red solid (60.0 mg, 45%). 
1H NMR (300 MHz, CDCl3):  = 0.61 (m, 2 H,  
-NCH2CH2CH2Si-), 1.24 (m, 15 H, Si(OCH2CH3)3,  
-NCH2CH3), 2.05 (m, 2 H, -NCH2CH2CH2Si-), 3.47 (q, 3JHH = 
7.1 Hz, 4 H, -NCH2CH3), 3.80 (q, 6 H, Si(OCH2CH3)3, 4.39 (t, 
3JHH = 7.2 Hz, 2 H, -NCH2CH2CH2Si-), 5.42 (s, 2 H,  
-OCH2C-), 6.30 (s, 1 H, 6-H), 6.45 (d, 4JHH = 2.6 Hz, 1 H, 8-H), 
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6.66 (dd, 3JHH = 9.1 Hz, 4JHH = 2.7 Hz, 1 H, 10-H), 7.23 (dd, 
3JHH = 8.7 Hz, 4JHH = 2.5 Hz, 1 H, 3-H), 7.60 (d, 3JHH = 9.1 Hz, 
1 H, 11-H), 7.69 (s, 1 H, -CCHN-), 8.18 (d, 4JHH = 2.5 Hz, 1 H, 
1-H), 8.23 (d, 3JHH = 8.7 Hz, 1 H, 4-H). 13C NMR (75 MHz, 
CDCl3):   = 7.47 (CH2), 12.6 (CH3), 18.3 (CH3), 24.2 (CH2), 
45.1 (CH2), 52.6 (CH2), 58.5 (CH2), 62.5 (CH2), 96.3 (CH), 
105.3 (CH), 106.9 (CH), 109.6 (CH), 118.4 (CH), 122.8 (CH), 
124.8 (Cquat), 126.1 (Cquat), 127.9 (CH), 131.2 (CH), 134.1 
(Cquat), 139.8 (Cquat), 143.5 (Cquat), 146.9 (Cquat), 150.8 (Cquat), 
152.1 (Cquat), 160.9 (Cquat), 183.2 (Cquat). IR: ṽ / cm-1 = 638 (m), 
669 (m), 683 (m), 716 (m), 789 (s), 818 (s), 881 (m), 910 (m), 
953 (m), 1011 (m), 1030 (m), 1072 (vs), 1111 (vs), 1161 (m), 
1182 (m), 1194 (m), 1223 (m), 1256 (s), 1271 (s), 1314 (s), 
1346 (m), 1406 (s), 1439 (m), 1458 (m), 1470 (m), 1479 (m), 
1497 (m), 1520 (m), 1558 (m), 1582 (vs), 1620 (m), 1641 (m), 
1670 (w), 1680 (w), 2891 (w), 2928 (w), 2972 (w), 3084 (w), 
3134 (w). HR-MS (ESI) calcd. for (C32H41N5O6Si+H)+: m/z = 
620.28989; Found: 620.28975; calcd. for (C26H29N5O6Si+H)+: 
m/z = 536.19599; Found: 536.19595. 
 
Synthesis of Hybrid Materials  
 

Grafted NR MCM hybrids (6a-f) 
Six NR-functionalized silica hybrid materials were synthesized 
by postsynthetic grafting. For employing small amounts of the 
precursor 5 four different stock solutions of c1(5) = 49.0 M, 
c2(5)  = 0.610 mM and c3(5) = 5.00 mM, C4(5) = 5.72 mM in 
ethanol were prepared. The solution of dye 5, MCM-41, and 
ethanol were subsequently added to the reaction vessel and 
stirred at room temp for 20 h, followed by stirring at 80 °C for 
24 h (for experimental details, see Table 5). The obtained 
suspensions were centrifuged (10 min, 4000 rpm), decanted and 
resuspended in ethanol (20 mL) and 2 M aqueous hydrochloric 
acid solution (1 mL), upon which the red suspensions turned 
blue. After heating to 80 °C for 24 h the reaction mixtures were 
centrifuged, the solids transferred into a Soxhlet extraction 
thimble and extracted with ethanol over a period of 48 h. The 
obtained powders were washed with triethylamine (2 mL) and 
ethanol (20 mL), which led to a color change back to red. The 
solids were washed with ethanol (3 x 20 mL) and centrifuged 
each time as described until the supernatant reached pH 7. The 
obtained violet powders were dried at 60 °C and 10-3 mbar for 3 
d to mass constancy. 

Table 5. Experimental details of the synthesis of NR grafted MCM-41 hybrid materials 6. 

Sample 
Applied loading 
of hybrid with 5 

[mol·g-1] 

Determined loading of 
hybrid with 5 

[mol·g-1] 

Volume of stock 
solution [mL] 

Mass of 
MCM-41 [g] 

Volume of 
ethanol [mL] 

Yield of NR grafted 
MCM-41 hybrid 
materials 6 [g] 

6a 1.0 0.6 8.91 of c1(5) 0.437 6.10 0.408 
6b 2.5 1.5 0.50 of c3(5) 1.00 14.5 0.560 
6c 5.0 2.9 14.3 of c2(5) 1.75 0.70 1.64 
6d 10 5.9 2.00 of c3(5) 1.00 13.0 0.624 
6e 15 8.8 3.00 of c3(5) 1.00 12.0 0.752 
6f 20 12 3.50 of c4(5) 1.00 11.5 0.802 
6g 20 12 14.3 of c2(5) 0.437 0.70 0.396 
6h 30 18 5.24 of c4(5) 1.00 9.76 0.804 
6i 40 23 6.99 of c4(5) 1.00 8.01 0.892 

 
Co-condensed NR MCM-hybrids (7a-h)43 
For the synthesis of the co-condensed NR-functionalized silica 
hybrids a solution of tetraethyl orthosilicate (TEOS), variable 
amounts of precursor 5, hexadecyl-trimethyl-ammonium 
bromide (C16TMABr), ethylamine, methanol, and deionized 
water was prepared with molar ratios of 1.00 : x : 0.140 : 2.40 : 
2.00 : 100 / (molar ratios x of precursor 5 are given in Table 6). 
First the template C16TMABr was dissolved in deionized water 
and ethylamine, which was employed as a 70 wt % aqueous 
solution before TEOS and the molar amount x of precursor 5 in 
methanol were added. For the syntheses of materials 7f-h 10 
molar equivalents of methanol were used. The mixtures were 
stirred at room temperature for 24 h with a speed of 750 rpm 
before they were heated to 100 °C for 24 h. The obtained 

suspensions were centrifuged (10 min, 4000 rpm), decanted and 
washed with ethanol before they were centrifuged again. Then 
the residues were suspended in ethanol (80 mL) and 
concentrated aqueous hydrochloric acid solution (2 mL) and 
stirred at 80 °C for 24 h. The mixtures were centrifuged, and 
the solids were transferred into a Soxhlet extraction thimble and 
extracted with ethanol over a period of 48 h. The obtained 
powders were washed once with triethylamine (2 mL) and 
ethanol (80 mL) upon which they turned red again. The solids 
were washed with ethanol (3 x 80 mL) and centrifuged as 
described above till the supernatant reached pH 7. The obtained 
violet powders were dried at 60 °C and 10-3 mbar for 3 d to 
mass constancy. 

 
Table 6. Experimental details of the synthesis of co-condensed NR hybrid materials 7. 

Sample 
Applied loading of hybrid 

with 5 [mol·g-1] 
Determined loading of hybrid 

with 5 [mol·g-1] 
Molar ratio x of 

precursor 5 
Yield of co-condensed NR 

hybrid materials 7 [g] 
7a 0.1 0.04 2.08 · 10-5 2.23 
7b 0.5 0.2 1.04 · 10-4 2.01 
7c 1.0 0.4 2.08 · 10-4 2.86 
7d 2.5 0.9 5.20 · 10-4 2.83 
7e 5.0 1.9 1.04 · 10-3 2.87 
7f 20 7.4 4.16 · 10-3 1.23 
7g 40 11 6.24 · 10-3 1.47 
7h 30 15 8.32 · 10-3 1.41 
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