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Abstract 14 

The bacterial DNA gyrase is not expressed in eukaryotes. It is a promising target for 15 

broad-spectrum antibiotics. This paper reports new DNA gyrase inhibitors as 16 

broad-spectrum antibacterial agents discovered by means of target-based in silico and 17 

in vitro models. Two machine learning methods (naïve Bayesian and recursive 18 

partitioning) were employed to build the in silico models based on physicochemical 19 

descriptors and structural fingerprints. For both training and testing sets, the overall 20 

predictive accuracies of the best in silico models were greater than 80%. The best 11 21 

models were used to virtually screen a molecular database to identify DNA gyrase 22 

inhibitors. The in vitro models were used to verify the virtual hits activities against 23 

Escherichia coli, methicillin-resistant staphylococcus aureus and other bacteria, and 24 

DNA gyrase. The MIC values of the confirmed DNA gyrase inhibitors range 1~32 25 

µg/mL and, the relatively inhibition rates of the inhibitors range 42%~75% at 1 µM. 26 

Cell-based cytotoxicity assays demonstrated that the confirmed DNA gyrase 27 

inhibitors were not toxic. In silico studies indicated that the new DNA gyrase 28 

inhibitors have the similar binding modes of the reported inhibitors. 29 

 30 

Keywords: Antibiotic, DNA gyrase inhibitor, machine learning, virtual screening.  31 

 32 

1. Introduction 33 
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Growing multidrug-resistant bacteria and declining available antibacterial agents 34 

are threating public health.
1-3

 New agents against drug-resistant bacteria are 35 

demanded.
4,5

 DNA gyrase is a promising antibacterial drug target because it is 36 

required for all bacteria, and absent in eukaryotes. DNA gyrase is a type II 37 

topoisomerase that mediates negative supercoiling to the relaxed closed circular 38 

DNA
6,7

 and well-studied as an anti-bacterial target.
8, 9

 However, only one compound 39 

(ETX0914) is in clinical trials. Others DNA gyrase inhibitors were failure due to side 40 

effects or poor bioavailability. 41 

DNA gyrase is a hetero tetramer made up of two GyrA and two GyrB subunits.
8
 42 

GyrA consists of two stable fragments GyrA33 and GyrA64.
10

 GyrA64 catalyzes 43 

supercoiling reaction while the GyrB exists and, associates with DNA cleavage and 44 

ligation under the condition of holoenzyme. GyrA33 directly effects on DNA and 45 

forms DNA-enzyme complex that catalyzes supercoiling reaction together with 46 

GryA64 and GyrB.
11,12

 In the same way, GyrB consists of fragments GyrB43 and 47 

GyrB47. The N-terminal of GyrB43 hydrolyses ATP. As a part of GyrB43, GyrB24 48 

binds DNA gyrase inhibitors such as novobiocin,
13

 aminocoumarin
13,14

 and 49 

cyclothialidine;
15,16

 The C-terminal GyrB47 catalyzes supercoiling DNA to relaxed 50 

DNA in the presence of GyrA (Figure 1).
17,18

 51 

 52 

Figure 1.The hetero components of DNA gyrase. 53 

DNA gyrase inhibitors (such as, GSK299423, NXL101 and gyramide) contain 54 

either have quinolone scaffold (A)
19,20

 or aminocoumarins scaffold (B)
21

 (Figure 2). 55 

Quinolones may inhibit supercoiling activity or, induce DNA double-strand breaking. 56 

As examples of scaffold A, fluoroquinolones (FQ) are bacterial topoisomerase 57 

inhibitors.
22

 The aminocoumarins (such as aminopyrazinamides, hiazolopyridine 58 

ureas, and pyrrolamides) are the competitive inhibitors of ATP hydrolysis, and inhibit 59 
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DNA supercoiling activities.
23-25

 60 
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Figure 2. Chemical scaffolds of quinolones (A) and aminocoumarins (B) 62 

 So far, only three anti drug-resistant bacteria agents (daptomycin, linezolid and 63 

bedaquiline) were reported since 1960. DNA gyrase (an anti drug-resistant bacteria 64 

drug target) has only one compound (ETX0914 ), which is under Phase II clinical 65 

trials.
25

 It is demanded for new DNA gyrase inhibitors. Known DNA gyrase inhibitors 66 

have diverse scaffolds (Figure 3), which mean that the active sites of the target can 67 

adopt diversified ligand shapes. The relations between structures and DNA gyrase 68 

inhibitory activities cannot be assumed as being linear or other continuous functional. 69 

Hence, we employ two machine learning approaches, naïve Bayesian (NB) learning 70 

and recursive partitioning (RP) approaches to generate virtual screening models from 71 

target-based DNA gyrase inhibitory data.
26

 To assure the robustness of the models, we 72 

evaluated the models by means of 5-fold cross validations. An external testing data set 73 

was also used to test the models. Then, the models were used to virtually screen an 74 

in-house compound library, which consisted of 488 tangible compounds.
27, 28 

The 75 

virtual hits were validated with cell-based and target-based microbial assays, and 76 

following with cytotoxicity assays. The binding modes of confirmed DNA gyrase 77 

inhibitors were investigated. 78 
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 79 

Figure 3.The structures of known DNA gyrase inhibitors. 80 

 81 

2. Materials and Methods 82 

2.1 Data for generating virtual screening models 83 
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The DNA gyrase inhibitor bioassay data were extracted from the ChEMBL
29

 and 84 

BindingDB databases by taking target-based Escherichia coli strain bioassay data. 85 

Duplicated records or records without IC50 values were removed. This resulted in 137 86 

DNA gyrase inhibitors with IC50 values ranging from 0.9 to 1,000,000 nM. These 87 

compounds were categorized into positives and negatives based upon their IC50 values 88 

(the compounds with IC50 values less than or equal to 5 µM were marked with “1” for 89 

positives. Others were marked with “0” for negatives). The entire data set was 90 

randomly divided into four portions. A training set was made of the three portions 91 

containing 103 compounds. The remaining portion was used as a testing set 92 

containing 34 compounds.
30

 This process was done with DS (Discovery Studio 3.5, 93 

Accelrys, San Diego, USA).The detailed process can be examined in Supporting 94 

Information. 95 

2.2 Molecular descriptor calculation and selection 96 

The molecular descriptors of the data set were computed with MOE 2013.08 (CCG, 97 

Montreal, Canada) and DS, resulting in 192 MOE molecular descriptors and 252 DS 98 

molecular descriptors for each compound in the data set. 99 

With Pearson correlation analyses, the redundant molecular descriptors (selective 100 

ratio > 0.9) were removed, the molecular descriptors (selective ratio < 0.1), which 101 

were unrelated to the DNA gyrase inhibitory activities, were excluded.
27,28,31

 This 102 

resulted in 36 MOE descriptors and 15 DS descriptors (Table 1). 103 

 104 

Table 1.Selected molecular descriptors 105 

Class Number Descriptor 

MOE 36 

GCUT_PEOE_0，GCUT_SLOGP_0，GCUT_SLOGP_1，

GCUT_SLOGP_2，GCUT_SLOGP_3，GCUT_SMR_0，

GCUT_SMR_1，GCUT_SMR_2，PEOE_VSA+0，PEOE_VSA+1，

PEOE_VSA+2，PEOE_VSA+3，PEOE_VSA+4，PEOE_VSA+5，

PEOE_VSA+6，PEOE_VSA-0，PEOE_VSA-2，PEOE_VSA-3，

PEOE_VSA_FPOS，SMR_VSA2，SMR_VSA3，SMR_VSA6，

SMR_VSA7，SlogP，SlogP_VSA4，SlogP_VSA8，a_ICM，

ast_violation_ext，b_max1len，b_rotR，mutagenic，petitjeanSC，

reactive，rsynth，vsa_acc，vsa_hyd 
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DS 15 

E_DIST_equ，SIC，CHI_V_3_P，JX，HBA_Count，HBD_Count，

NPlusO_Count，Num_Hydrogens，Num_RingBonds，

Num_AromaticBonds，Num_RingAssemblies，Num_Rings6，

Num_AliphaticDoubleBonds，Num_TerminalRotomers，

Num_TrueStereoAtoms 

 106 

2.3 Structural fingerprints calculation 107 

Structural fingerprints were calculated using DS software. The fingerprints consist 108 

of Daylight-style path-based fingerprints and SciTegic extended-connectivity 109 

fingerprints. 110 

2.4 Machine learning approaches 111 

Two machine learning methods, NB and RP, were applied through DS software. 112 

2.4.1 NB method 113 

NB method is a supervised learning approach, and directly calculates the overall 114 

distribution based on the prior distribution of parameters and the posterior distribution 115 

of parameters obtained from the sample data. The method is based on the Bayes’ 116 

theorem and the maximum posteriori hypothesis,
32

 requires the training objects are 117 

marked with positives or negatives.
33

 118 

2.4.2 RP method 119 

RP (or decision tree) is a statistical method for multivariable analysis and, based on 120 

hierarchical rules. It creates a decision tree to describe the relationship between an 121 

active and a set of properties/descriptors of objects.
34, 35

 122 

2.5 Decoys generation 123 

The decoy data were generated from DUD-E
36

 (http://dude.docking.org/) through 124 

the Pipeline Pilot 7.5 module of DiscoveryStudio . 10 diverse compounds were used 125 

as reference compounds, which were randomly selected from the positives in the 126 

input data set. The decoys were selected from DUD-E based upon the dissimilarity to 127 

the reference compounds. 80 decoys, which were regarded as negatives, were selected 128 

for external tests. 129 

2.6 Method for model performance evaluation 130 

A 5-fold cross validation was used to evaluate the performances of NB and RP 131 

models. True positives (TP), true negatives (TN), false positives (FP), false negatives 132 

(FN), sensitivity (SE), specificity (SP), overall predictive accuracy (Q), the Matthews 133 
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correlation coefficient (C) and the receiver operating characteristic (ROC) curve were 134 

defined as follows to measure the performance:
37

 135 

  SE = 	 ��
����	

   136 

			SP = 	 �	
�	���

   137 

			Q = ����	
����	��	���

   138 

							� =
TP × TN − FN × FP

��TP + FN��TP + FP��TN + FN��TN + FP�
 

2.7 Compound library for virtual screening campaigns 139 

The in-house tangible compound library, which contains 488 natural products or 140 

chemically modified natural products, were virtually screened with the best machine 141 

learning models. 142 

2.8 In vitro antimicrobial assay 143 

Minimum inhibitory concentration testing. The test was performed to determine 144 

the minimum concentration of the indicated agent necessary to inhibit visible growth 145 

of bacteria. In this study, our compounds were tested against bacteria including 146 

MRSA ST239, MRSA ST5, MRSA 252, Staphylococcus aureus, Fecal bacteria, 147 

Staphylococcus epidermidis, Pneumonia, ATCC 25922 and Shigella flexneri. 148 

Ampicillin and vancomycin sodium were used as positive control agents. The MIC 149 

values were determined using Mueller-Hinton broth method based on national 150 

committee for clinical laboratory standard
38,39

. Each compound was tested for 11 151 

concentrations (256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.25 µg/mL). 90 µL bacterial 152 

culture medium was added into the first column of wells of flat bottomed 96-well 153 

tissue culture plates, and other wells were added with 50 µL same medium, and then 154 

10 µL solution of compound was added into the first column of wells. Then, 50 µL 155 

mixture extracted from the first column wells were transferred to the second column 156 

of wells, and repeated this operation column by column till the second last column of 157 

wells. After this step, the 50 µL bacterial culture solutions in last column of wells 158 

were discarded. Finally, 50 µL bacterial solution was diluted by culture medium, and  159 

added into all wells in the 96-well plate. The last row wells were for positive controls, 160 

and the last column wells were for negative controls. The plates were incubated at 161 

37°C overnight in electro-heating standing-temperature cultivator before the 162 

measurement of the absorbance value. We used a multifunction microplate reader to 163 

measure the optical density values at 600 nm. Each antimicrobial assay was replicated 164 
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four times. 165 

2.9 DNA gyrase expression and purification 166 

The recombinant protein was expressed with plasmids pET-15-GyrA and 167 

pET-15b-GyrB in E.coli, and purified using Ni-NTA column. After the SDS-PAGE  168 

verification, we mixed GyrA and Gry B at 1:1 molar ratio, and incubated on ice for 30 169 

min before DNA supercoiling assay.
39

 170 

2.10 DNA gyrase-mediated pHOT-1 supercoiling assay 171 

The DNA supercoiling assay was conducted to test the inhibitory activity on the 172 

enzyme reaction. Firstly, 4 µL 5×DNA gyrase assay buffer, 0.1U relaxed pHOT-1 173 

DNA and 12.9 µL ddH2O were mixed.
38

 Then, 17 µL mixture mentioned above, 2 µL 174 

compounds and 1µL reconstituted DNA gyrase were mixed, and incubated at 37 °C. 175 

After 1 h, 4 µL 5×stop buffer was added to stop the reaction. Novobiocin was used as 176 

positive control, and 1% DMSO was employed as blank control. To separate the DNA 177 

products, electrophoresis on a 1% agarose gel run used. The gel was stained for 20 178 

min in ethidium bromide, decolored for 15 min in water and visualized with UV light. 179 

The optical density of the bands for supercoiling and relaxed DNA was quantified 180 

using the Quantity One software. The inhibition rates were used to calculate the IC50 181 

values with GraphPad Prism 5. The IC50 values were measured with 7 concentration 182 

points, and repeated for three times. 183 

2.11 Cytotoxicity Assay 184 

HEK-293, a human embryonic kidney normal cell line, was used to evaluate the 185 

cytotoxicity of the compounds. HEK-293 cells were inoculated in 96-well plates with 186 

DMEM medium containing 10% fetal bovine serum at 37 °C in 5% CO2 incubator. 187 

Then, the cells were intervened with different compounds at 20 µM for 24h after cells 188 

were adherent and each compound was added into three parallel double wells. Blank 189 

control group and empty wells were prepared. Then 20 µL 2.5 mg/mL MTT was 190 

added to each well and incubated for 4h, and 100 µL DMSO was added every well 191 

lastly. Absorption values were measured at 492 nm after 20 minutes’ oscillation. The 192 

inhibition rate of each compound against 293T cell lines was calculated with the 193 

following formula: Inhibition of cell (%) = 1- (Aexperimental group - Ablank) / (Acontrol group - 194 

Ablank) ×100%.
40

  195 

2.12 Molecular docking 196 

The intact DNA gyrase (PDB code: 3G7E)
25

 was used as the template to explore 197 
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the binding modes of the confirmed DNA gyrase inhibitors. The structure data was 198 

processed using a protocol from Schrödinger software 2013.01(Schrödinger Inc., New 199 

York, USA). The active compounds were prepared by Ligprep module in the 200 

Schrödinger software. The extra precision Glide 5.9
41-43

 of Schrödinger software was 201 

used to dock the active compound structures into the binding pocket of the DNA 202 

gyrase. The active compounds were also superimposed with the native ligand using 203 

WEGA algorithm
44

 to ensure the correct docking pose. 204 

 205 

3. Results 206 

3.1 Classifiers derived from molecular descriptors or structural fingerprints 207 

Figure 4 indicates that the size (the diameter of a fingerprint) of a structural 208 

fingerprint or the type (ECFP, etc.) of a structural fingerprint can change the model 209 

performance (MCC value). But, there is no general trend. SciTegic 210 

extended-connectivity fingerprints resulted in better performance in general. 211 

 212 

Figure 4. The relations among MCCs and fingerprint sizes or types. 213 

Table 2 lists the performance parameters of top-10 machine learning models 214 

running on training set and testing set. The top-10 models were all generated from NB 215 

method with overall predictive accuracies greater than 94.1% for both training set and 216 

test set. For the testing set, the models using FCFP_6, FCFP_8 and FCFP_10 217 

fingerprints achieved better performances with the sensitivity of 95.4%, the specificity 218 
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of 100.0%, overall prediction accuracies of 97.1%, and the AUC value of 0.992. 219 

 220 

Table 2.Performances of top-10 models using descriptors* or fingerprints 221 

Models Training set   

 TP FN TN FP SE SP C AUC Q  

FCFP_6 56 6 38 3 0.903 0.927 0.821 0.918 0.913  

FCFP_8 57 5 39 2 0.919 0.951 0.861 0.914 0.932  

FCFP_10 58 4 40 1 0.935 0.976 0.902 0.911 0.951  

ECFP_4 57 5 38 3 0.919 0.927 0.840 0.926 0.922  

ECFP_6 58 4 39 2 0.935 0.951 0.880 0.923 0.942  

ECFP_8 60 2 39 2 0.968 0.951 0.919 0.92 0.961  

ECFP_10 60 2 40 1 0.968 0.976 0.940 0.919 0.971  

ECFP_12 60 2 40 1 0.968 0.976 0.940 0.919 0.971  

EPFP_4 57 5 37 4 0.919 0.902 0.819 0.893 0.913  

FPFP_4 56 6 39 2 0.903 0.951 0.843 0.889 0.922  

Models Testing set   

 TP FN TN FP SE SP C AUC Q  

FCFP_6 21 1 12 0 0.954 1.000 0.939 0.992 0.971  

FCFP_8 21 1 12 0 0.954 1.000 0.939 0.992 0.971  

FCFP_10 21 1 12 0 0.954 1.000 0.939 0.992 0.971  

ECFP_4 20 2 12 0 0.909 1.000 0.883 0.992 0.941  

ECFP_6 20 2 12 0 0.909 1.000 0.883 0.989 0.941  

ECFP_8 20 2 12 0 0.909 1.000 0.883 0.989 0.941  

ECFP_10 20 2 12 0 0.909 1.000 0.883 0.989 0.941  

ECFP_12 20 2 12 0 0.909 1.000 0.883 0.989 0.941  

EPFP_4 20 2 12 0 0.909 1.000 0.883 0.989 0.941  

FPFP_4 20 2 12 0 0.909 1.000 0.883 0.973 0.941  

* The models using descriptors are not listed in this table because they are not 222 

ranked in the top-10 models. 223 

 224 

3.2 Performance of models using combined molecular descriptors and structural 225 

fingerprints 226 

Descriptors (physiochemical properties) and fingerprints (substructures) represent 227 
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different attributions of compound structures. We thought the models using both 228 

might result in better performances. 54 NB models and 324 RP models generated 229 

from the combinations of descriptors and fingerprints (detailed modeling data can be 230 

found in Supporting Information Table S4/S5 and Figure S4/S5). The top-10 models 231 

are listed in Table 3. 232 

 233 

Table 3. Top-10 models using combined descriptors and fingerprints 234 

Models 
Training set 

TP FN TN FP SE SP C AUC Q 

MOE
a
+ECFP_4-4* 28 13 56 6 0.683 0.903 0.610 0.793  0.816 

MOE+FPFP_4-4* 28 13 56 6 0.683 0.903 0.610 0.793  0.816 

MOE + EPFP_8 58 4 36 5 0.935 0.878 0.817 0.915 0.913 

FCFP_6 56 6 38 3 0.903 0.927 0.821 0.918 0.913 

FCFP_8 57 5 39 2 0.919 0.951 0.861 0.914 0.932 

FCFP_10 58 4 40 1 0.935 0.976 0.902 0.911 0.951 

DS
b
+EPFP_4-5* 27 14 61 1 0.659 0.984 0.707 0.8226 0.854 

DS + EPFP_4 57 5 38 3 0.919 0.927 0.840 0.894 0.922 

DS + FPFP_4 54 8 39 2 0.871 0.951 0.808 0.892 0.903 

MOE + EPFP_4 59 3 37 4 0.952 0.902 0.858 0.894 0.932 

Models 
Test set   

TP FN TN FP SE SP C AUC Q 

MOE+ECFP_4-4* 22 0 1 0 2.000 1.000 1.000 0.800  0.909 

MOE+FPFP_4-4* 22 0 12 0 1.000 1.000 1.000 1.000  1.000 

MOE + EPFP_8 21 1 12 0 0.955 1.000 0.939 0.992  0.971 

FCFP_6 21 1 12 0 0.955 1.000 0.939 0.992  0.971 

FCFP_8 21 1 12 0 0.955 1.000 0.939 0.992  0.971 

FCFP_10 21 1 12 0 0.955 1.000 0.939 0.992  0.971 

DS+EPFP_4-5* 22 0 11  1  1.000 0.917 0.936 0.958  0.971 

DS + EPFP_4 20 2 12 0 0.909 1.000 0.883 0.970  0.941 

DS + FPFP_4 20 2 12 0 0.909 1.000 0.883 0.973  0.941 

MOE + EPFP_4 20 2 12 0 0.909 1.000 0.883 0.985  0.941 

* RP models.  235 

a
 MOE: descriptors calculated from MOE software. 236 
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b
 DS: descriptors calculated from DS software. 237 

Comparing tables 2 and 3, we find that NB models using combined molecular 238 

descriptors and structural fingerprints are actually worse than the NB models using 239 

molecular descriptors or structural fingerprints. However, the RP models using 240 

combined molecular descriptors and structural fingerprints can result better 241 

performance than the ones of using non-combined descriptors or fingerprints. 242 

 243 

3.3 Determining and external testing final models 244 

Combining tables 2 and 3, we get top-11 models after removed duplicated models. 245 

The 11 final models were tested with the external testing data set. Table 4 lists the 246 

results. 247 

Table 4.The external testing results for the top-11 final models 248 

Models 
Test set  

TP FN TN FP SE SP C AUC Q 

FCFP_10 9 2 95 14 0.818 0.872 0.506 0.927 0.867 

DS + FPFP_4 91 18 11 0 0.835 1.000 0.563 0.583 0.850 

DS+EPFP_4-5* 91 18 11 0 0.835 1.000 0.563 0.583 0.850 

FCFP_8 13 11 93 9 0.542 0.912 0.469  0.505 0.841 

ECFP_6 13 11 93 9 0.542 0.912 0.469  0.505 0.841 

MOE + FPFP_4 13 11 93 9 0.54 0.912 0.469 0.505 0.841 

MOE+ECFP_4-4* 13 11 93 9 0.54 0.912 0.469 0.505 0.841 

FPFP_4 2 17 90  4  0.105 0.957 0.105  0.764 0.814 

MOE + EPFP_8 2 17 89 5 0.105 0.947 0.081  0.501 0.805 

FCFP_6 12 6 66 29 0.667 0.695 0.275  0.505 0.690 

MOE + EPFP_4 16 3 52 44 0.842 0.553 0.296  0.666 0.602 

 249 

The overall prediction accuracies of the final models are greater than 80% (except 250 

models FCFP_6, MOE + EPFP_4). The top model (FCFP_10) was generated from 251 

NB method (see the first row in Table 4). 252 

 253 

3.4 Virtual screening DNA gyrase inhibitors with the final models 254 

Our in-house library, which has 488 tangible compounds, was virtually screened 255 

with the top-11 predictive models (Table 4), which consist of nine NB models, and 256 
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two RP models. The NB models resulted in 67 hits, and the RP models resulted in 19 257 

hits. By combining the two hit sets, we got 76 initial hits without duplicates.  The 258 

initial hits were further refined by scaffold analyzing processes, which removed 259 

known antibacterial scaffolds (such as, flavone derivatives), and resulted in 24 refined 260 

hits.. These refined hits were tested with cell-based microbiological assays. The 261 

flow-chart of discovering new DNA gyrase inhibitors using machine learning 262 

approaches is depicted in Figure 5. 263 

 264 

Figure 5. The flow-chart of discovering new DNA gyrase inhibitors using machine 265 

learning approaches 266 

3.5 Cell-based microbiological assay results 267 

Both G+ and G- strains were tested in the cell-based microbiological assays. 268 

Ampicillin sodium and vancomycin sodium were used as positive controls. 4 269 

compounds actively inhibited E. coli and MRSA strains (XGS00156, XGS00157, 270 

XGS00158 and XGS00159). As shown in Table 5, the 4 active compounds have MIC 271 

values < 10 µM. The advantages of the 4 compounds are that these compounds 272 

exhibited broader spectrum of antibacterial activities than ampicillin or vancomycin. 273 

The activities of compound XGS00159 are comparable with the ones of ampicillin or 274 

vancomycin. All active compounds share the same scaffold. Their initial SAR is 275 

established (Figure 6). 276 

Table 5.Cell-based microbiological study results (µM) 277 

          G+
a
      G-

a
 

ID 
MRSA 

ST239 

MRSA

ST5 

MRSA 

252 

ATCC 

29213 

ATCC 

29212 

ATCC 

12228 

Pneum

onia 

ATCC 

25922 

CMCC 

51572 
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XGS00

156 
16.42 15.42 15.42 15.42 - 15.42 7.71 3.85 61.67 

XGS00

157 
32.01 65.67 131.34 16.42 - 32.84 131.34 8.21 - 

XGS00

158 
10.17 20.35 10.17 10.17 - 10.50 5.09 5.09 81.4 

XGS00

159 
5.04 5.04 5.04 5.04 - 5.04 2.52 5.04 - 

Amp
b
 - - - - - 2 2 2 2 

WGc 2 2 2 2 2 2 2 - - 

a MRSA: methicillin resistant staphylococcus aureus,  278 

ATCC 29213: Staphylococcus aureus, ATCC 29212: Fecal bacteria, 279 

ATCC 12228: Staphylococcus epidermidis, ATCC 25922: Escherichia coli, 280 

CMCC 51572: Shigella flexneri; 281 

bAmp: ampicillin sodium; 282 

c
WG: vancomycin sodium, positive control. 283 

 284 

 285 

Figure 6. Initial SAR of 4 confirmed hits. 286 

3.6 DNA supercoiling assay results 287 

The 4 compounds were tested with DNA supercoiling assays. Novobiocin was used 288 

as a positive control. The results were depicted in Figure 7, and indicated that the 4 289 

compounds dose-dependently inhibited DNA supercoiling. Thus, the 4 compounds 290 

have been proved that they are DNA gyrase inhibitors. 291 
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 292 

Figure 7. DNA supercoiling assay results for the 4 compounds (XGS00156, 293 

XGS00157, XGS00158 and XGS00159). R: relaxed DNA; Sc: supercoiled DNA; M: 294 

Marker; -: negative control; S: activity of enzyme; G: 1% DMSO; N: Positive control, 295 

novobiocin. 296 

 297 
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3.7 Cytotoxicity assay results 298 

Figure 8 depicts the cytotoxicity assay results for the 4 active compounds. At 20 299 

µM, two active compounds inhibited < 5% of 293T cell lines, other two compounds 300 

inhibited < 30% of 293T cell lines. Thus, the 4 active compounds are considered as 301 

promising drug leads, and worth further lead optimization processing.
40

 302 

 303 

Figure 8. Cytotoxicity assay results 304 

3.8 Molecular docking study results 305 

The 4 compounds were docked to the crystal structure (3G7E), in which the native 306 

ligand was removed. The docking processes were executed with both the extra 307 

precision Glide and WEGA algorithm. The docking poses of the compounds were 308 

consistent. This demonstrated that the docking processes were reliable. Figure 7 309 

depicts the binding modes of the 4 active compounds. All 4 compounds have the 310 

similar interactions with the known key residues, such as WOW 408 or Asp 73, which 311 

is a hydrogen bond donor. The hydrophobic groups of the compounds interact with 312 

the receptor hydrophobic pocket (Val 43, Met 95, Ile 94, Val 123, Leu 132 and Val 313 

167).
45,46

 Thus, these active compounds binding modes support the observations of 314 

the in vitro results. 315 
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 316 

Figure 9. Molecular docking study results. (A): Binding mode of XGS00156; (B): 317 

Binding mode of XGS00157; (C): Binding mode of XGS00158; (D): Binding mode 318 

of XGS00159. The molecules in orange are the active compounds; the residues in 319 

blue donor hydrogen bonds; the residues in red provide hydrophobic interactions. The 320 

deep blue dashed lines represent hydrogen bonds. 321 

 322 

4. Conclusions 323 

DNA gyrase is a promising drug target, but, there are not many DNA gyrase 324 

inhibitors under clinic trails. Existing DNA gyrase inhibitors are structurally diverse, 325 

it would be difficult to discover novel DNA gyrase inhibitors through structure-based 326 

molecular design, or individual ligand-based modeling technology, or traditional 327 

QSAR techniques. This work demonstrates that we can discover a novel scaffold of 328 

DNA gyrase inhibitors by combining multiple machine learning methods and 329 

target-based approaches. There are many ways to build virtual screening models due 330 

to many types of structural descriptors or fingerprints. Since we did not discover 331 

specific descriptors or fingerprints were particular superior to the others for the virtual 332 
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screening campaign. To do our best to include excellent virtual screening models, we 333 

have explored 424 machine learning models derived from the combinations of the 334 

descriptors or fingerprints. The confirmed hits were generated from the top-11 335 

models. 336 
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