RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

RSC Advances

PAPER

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Linjuan Guo,^{a,b‡} Zheng Yang,^{a, b‡} Baiyi Zu,^a Bin Lu^a and Xincun Dou^{*a}

The comparison of the work function of reduced graphene oxide (rGO) and the conduction band position of TiO₂ reveals that the density of TiO₂ particles grown on rGO could affect the photodegradation efficiency of a TiO₂@rGO heterojunction. Herein, with the introduction of F-ion into the preparation route, F-doped shaped TiO₂ nanocrystals are densely and uniformly decorated on rGO sheets *via* the ice bath hydrolyzation method. Thus, more dye molecules are adsorbed on the surface of TiO₂ and the photogenerated electrons in the excited dye molecules could be efficiently utilized to improve the overall photodegradation efficiency. The as-prepared F-doped TiO₂@rGO heterojunction showed extremely high photocatalytic efficiency under UV-vis light irradiation compared with that of the commercial P25 and the mixture of F-TiO₂ and rGO. It is proved that the ice bath hydrolyzation preparation route is crucial to improve the photogenerated here the pure TiO₂@rGO heterojunction is also much more efficient than the mixture of F-TiO₂ and rGO. The present work provides new insights into efficiently utilizing the photogenerated electrons in the target organic pollutants.

1. Introduction

Photodegradation of organic pollutants has attracted extensive attention during the past decades due to its great potential in confronting energy and environmental challenges.¹⁻⁷ TiO₂ is regarded as one of the most promising candidate materials in the field of photocatalysis for its low toxicity, strong ultraviolet (UV) light absorption, excellent chemical and thermal stability and resistance to photocorrosion.⁸⁻¹⁰ Up to now, a series of TiO₂ and TiO₂-based materials have been widely applied in the photodegradation and detection of pollutants in air or water.¹¹⁻¹⁵ Especially, the composites of TiO₂ and carbon (TiO₂-C) are currently being considered as potential photocatalysts in the purification of air and water.^{2, 16-25}

RGO, owing to the large specific surface area, excellent conductivity, mechanical and chemical stability, ²⁶ has received considerable attention in many potential applications.²⁷⁻³⁵ Moreover, the functional groups of rGO could provide reactive sites for surface chemical modification, which facilitates its use in composites materials.^{2, 36, 37} Therefore, the combination of

^{a.} Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry; Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China. xcdou@ms.xjb.ac.cn

^{b.} University of Chinese Academy of Sciences, Beijing 100049, China.

⁺ Electronic Supplementary Information (ESI) available: XPS, SEM, UV-vis absorption spectrum, and the size distribution. See DOI: 10.1039/x0xx00000x

Journal Name

Scheme 1. The energy band diagram of RhB and a TiO₂@rGO system (Lines 1, 2 and 3 stand for the transfering route of the photogenerated electrons in RhB*; lines 4 and 5 stand for the recombination process of the electrons with RhB**).

photodegradation efficiency of a TiO₂@rGO system, the energy band diagram can be expressed by Scheme 1. It is shown that if the surface of rGO sheets is not fully covered with TiO_2 nanoparticles, most of the RhB molecules will be adsorbed on rGO, the photogenerated electrons in the excited RhB* cannot flow to TiO₂ (line 1 in Scheme 1) and have little contribution to the photocatalytic activity. On the contrary, if most of the RhB molecules are adsorbed on ${\rm TiO_2}$ nanoparticles, the excited RhB* could directly inject electrons into TiO₂ (line 2 in Scheme 1), thus the photogenerated electrons in RhB* could be efficiently utilized. Therefore, the dense and uniform growth of TiO_2 on rGO sheets, which is beneficial for the adsorption of the majority of dyes on the surface of TiO₂, is crucial to improve the photodegradation efficiency of the TiO₂@rGO system. However, this critical issue has been ignored for a long time and the realization and control of dense and uniform growth of TiO₂ on rGO sheet is still a great challenge.⁴⁶

Herein, the ice bath hydrolyzation method is adopted to achieve the dense and uniform growth of anatase TiO_2 nanoparticles on rGO sheets. Furthermore, F-ions are introduced to further improve the crystallinity of TiO_2 nanoparticles. The F-doped $TiO_2@rGO$ can completely photodegrade the RhB solution with a concentration of 30 mg/L within 6 min under UV-vis light irradiation, which is in sharp contrast with the F-doped TiO_2 -rGO mixture, which can only degrade 60% of the RhB. It is proved that the dense cover of TiO_2 nanoparticles on rGO sheets, no matter with or without the doping of F-ion, can help to efficiently utilize the photogenerated electrons in the target RhB molecules to enhance the final photodegradation efficiency.

2. Experimental

2.1. Catalyst Preparation

Graphene oxide (GO) was prepared using a modified Hummers' method. $^{47, 48}$ 0.55 mL of TiCl₄ kept in a refrigerator

was extracted using a 1 mL syringe and rapidly injected into the bottom of a parafilm sealed 100 mL bottle with 50 mL of Deionized (DI) water in the form of ice. After that, the bottle was firmly covered with the bottle cap and shaken continuously until the ice was dissolved. In the whole process, no white precipitation was observed. Then 9.57 mL of GO solution (4.6 mg/mL) was injected into the above bottle under stirring to disperse it well. After that, 0.21 g of NaF was added to the above TiO₂/GO solution to prepare the F-doped rGO@TiO₂ heterojunction. Then the solution was kept stirring in a water bath at 50 °C for 48 h. The color of the solution turned from transparent to gray slowly. The precipitate was collected by centrifugation after being washed with DI water and ethanol several times and then was dried completely at 70 °C. Finally, the product was kept in a ceramic crucible and annealed in a tubular oven at 500 °C for 120 min with nitrogen gas protection. For the preparation of pure TiO₂@rGO heterojunction: all the procedures were the same with that of F-doped TiO₂@rGO heterojunction without the addition of NaF in the precursor solution. The weight ratio of rGO in these two samples is 11%. The other TiO₂@rGO heterojunctions with different weight ratios of rGO were obtained by tuning the volume of the GO solution.

2.2. Catalyst Characterization

X-ray diffraction (XRD) measurement was carried out using powder XRD (Bruker D8 Advance, with Cu K_{α} radiation operating at 40 kV and 40 mA, scanning from $2\theta = 10^{\circ}$ to 80°). Transmission electron microscope (JEM-2011 TEM, 200 kV) and Raman spectroscopy (LabRAM HR Evolution, 532 nm) were used to characterize the samples. The X-ray photoelectron spectroscopy (XPS) measurement was conducted on a EscaLab 250Xi spectrometer (Thermo Scientific) using monochromatic Al K_{α} X-ray source (anode HT = 15 kV) operating at a vacuum higher than $2*10^{-9}$ mbar. Nitrogen adsorption-desorption isotherms were measured on the system (Quantachrome, USA) at -196 °C. The specific surface area and porosity property analysis was calculated by the Braunauer-Emmett-Teller (BET) method. The optical property of the present nanocomposites was measured with diffuse reflectance UV-vis spectrometer (Shimadzu, SolidSpec-

Scheme 2. The preparation route of the F-doped TiO₂@rGO heterojunction.

Figure 1 (a) X-ray diffraction (XRD) spectrum of the F-doped TiO₂@rGO heterojunction; (b) Raman spectra of the F-doped TiO₂@rGO heterojunction and GO; (c) XPS survey spectrum of the F-doped TiO₂@rGO heterojunction; (d) TEM, (e) Enlarged TEM and (f) HRTEM images of the F-doped TiO₂@rGO heterojunction.

of the

3700DUV) using an integrating sphere and adopting BaSO_4 as a reference.

2.3. Photocatalytic measurement

The photodegradation of RhB was measured under UV-vis light irradiation ($300 \le \lambda \le 2500$ nm) at room temperature. The light source is a 300 W Xe-arc lamp (PLS-SXE300, Beijing). In a typical process, 30 mg of catalyst was firstly dispersed in 42 mL DI water, and then mixed with 18 mL of 100 mg/L RhB solution. Thus, the concentration of the final RhB solution is 30 mg/L. Before irradiation, the suspension was stirred in dark for 40 min to ensure the adsorption-desorption equilibrium. At a given time interval of 1 min, 2 mL solution was taken out and immediately centrifuged to remove the catalyst completely. In the durability test of the F-doped TiO₂@rGO heterojunction in the photodegradation of RhB under UV-vis light, three consecutive cycles were tested. After each cycle, the F-doped TiO₂@rGO heterojunction was filtered, washed thoroughly with water and annealed at 400 °C for 2 h. The concentration

spectrophotometer (UV-1800, Shimadzu). The pH value of the RhB solution was measured by a pH-meter (METTLER TOLEDO,
PE20k) after completely removing the catalyst from solution (5 mL) by centrifugation.

solution was analyzed on a UV-vis

3. Results and discussion

RhB

The preparation route of the F-doped TiO₂@rGO heterojunction is illustrated in Scheme 2. Generally, ice bath is adopted to ensure a slow hydrolyzation of TiCl₄ to form TiO₂ nanocrystal seeds with extremely small size on rGO sheets. The low temperature (50 °C) growth method could retard the rapid growth of TiO₂ nanocrystals in the solution. Thus, the further growth of TiO₂ on the seeds is expected to result in the dense and uniform growth of TiO₂ nanoparticles on rGO sheets. Moreover, the introduction of F-ion could enhance the photocatalytic activity of TiO₂ by improving the crystallinity of TiO₂.

Page 4 of 8

Figure 2 (a) The liquid-phase photodegradation performances of rGO, F-doped TiO₂, the physical mixture (F-doped TiO₂ and rGO) and F-doped TiO₂@rGO heterojunction towards RhB with time under UV-vis light irradiation ($300 \le \lambda \le 2500$ nm); (b) The liquid-phase photodegradation performance of the F-doped TiO₂, mixture, F-doped TiO₂@rGO towards RhB with time under visible light irradiation ($400 \le \lambda \le 2500$ nm); (c) Cycling photodegradation towards RhB; (d) The liquid-phase photodegradation performance of F-doped TiO₂@rGO heterojunction towards RhB (40 and 50 mg/L) with time under UV-vis light irradiation.

To investigate the crystal phases of the F-doped $TiO_2@rGO$ heterojunction, X-ray diffraction (XRD) analysis was performed (Figure 1a). All the diffraction peaks are sharp, and can be indexed to anatase TiO_2 (JCPDS, 84-1286), suggesting a good crystallinity of TiO_2 nanoparticles. According to the Scherrer formula:

"D="0.89λ⁄"βcos(θ)" (1) where D is average grain size, λ is the X-ray wavelength employed, θ is the diffraction angle, and β is the line broadening at half the maximum intensity after subtracting the instrumental broadening. The particle size of the decorated TiO₂ nanoparticles could be calculated by typical XRD peaks (Table S1). Taking the (101) diffraction peak as an example, the size of the TiO₂ nanoparticles in the F-doped TiO₂@rGO heterojunction is around 12 nm. From the Raman spectra (Figure 1b), the graphitized structures (D band (\sim 1341 cm⁻¹) and G band ($\sim 1580 \text{ cm}^{-1}$)) were observed in both the F-doped TiO₂@rGO heterojunction and GO. It is shown that there is no peak position shift of the F-doped TiO₂@rGO heterojunction compared with that of GO. Furthermore, the intensity ratio of D band over G band (I_D/I_G) increases from 1.05 to 1.09, indicating the reduction of GO with the hydrothermal treatment.^{28, 49, 50} X-ray photoelectron spectroscopy (XPS) survey spectrum (Figure 1c) of the F-doped TiO₂@rGO shows that all the peaks of C, O, F and Ti can be observed, suggesting the presence of F, C and Ti species. The C 1s XPS signal shows that the three peaks at 284.6, 286.4, and 289.4 eV could be

attributed to the C-C, C-O and C=O bonds in rGO-based composites (Figure S1a). Two peaks centered at 459.0 and 465.1 eV in the Ti 2p spectrum (Figure S1b) can be assigned to Ti 2p1/2 and Ti 2p3/2, respectively, which is in good agreement with the binding energy values of Ti^{4+} in pure anatase TiO₂, suggesting the formation of TiO₂ on the rGO sheets.⁵¹

Owing to the small particle size, the supported TiO₂ nanoparticles can be hardly observed in the scanning electron microscopy (SEM) image (Figure S2). Here, the TEM image of the F-doped TiO₂@rGO heterojunction confirms that the TiO₂ nanoparticles were densely and uniformly decorated on rGO sheets (Figure 1d). Compared with the previously reported $TiO_2@rGO$ systems,^{2, 17, 52} the decorated TiO_2 nanoparticles are much more dense and uniform in the present system. It is supposed that the formation of seeds in ice bath method greatly helps the in-situ growth of the TiO₂ nanoparticles on rGO sheets, favouring the photoinduced electron transfer from TiO₂ to rGO. Both the edge of rGO and the structure of the TiO₂ nanoparticles were shown in an enlarged TEM image (Figure 1e). RGO sheet behaves as a support for TiO₂ nanoparticles, and the TiO₂ nanoparticles are shaped due to the introduction of F-ion. The average size of the TiO₂ nanoparticles in F-doped TiO2@rGO heterojunction is 13 nm (Figure S3), which is very consistent with the above calculated crystal size along (101) diffraction peak. All the observed

Figure 3 (a) The TEM image, (b) HRTEM image and (c) XRD pattern of the pure TiO2@rGO heterojunction; (d) The liquid-phase photodegradation performance towards RhB.

lattice fringes of the shaped TiO_2 nanoparticles show a d-spacing of 0.357 to 0.360 nm (Figure 1f), which can be well assigned to the (101) lattice fringes of anatase TiO_2 .

Figure 2a shows the photodegradation performance of the F-doped TiO₂@rGO heterojunction towards RhB with time under UV-vis light irradiation as a function of time. Here, C and C_0 represent the remaining concentration of dye solution with certain degradation time and after dark adsorption. And for comparison, the photodegradation performances of rGO, F-TiO₂, the mixture of F-TiO₂ and rGO, and P25 under the same condition are also shown. Before light irradiation, the RhB solutions with catalysts were maintained in dark for 40 min under stirring, this time period is proved to be long enough to reach the adsorption equilibrium as shown in Figure S4. And the remaining concentration of RhB was calibrated via the fitting curve (Figure S5). It is clearly shown that the F-doped TiO₂@rGO heterojunction possesses much better adsorption ability towards RhB compared with F-TiO₂, the mixture (F-TiO₂ and rGO), or P25 due to the present preparation route induced large surface area (Figure S6, S7 and Table S2), which can be attributed to the dense and uniform growth of TiO₂ on rGO and the little ratio of bare rGO between covered TiO₂ nanocrystals. The F-doped TiO₂@rGO heterojunction shows much better photocatalytic efficiency than F-doped TiO₂, suggesting the formation of heterojunction between F-doped TiO_2 and rGO. The photodegradation efficiency of F-doped TiO_2 increased from 25% to 100% with the formation of the heterojunction structure since it can greatly suppress the electron-hole recombination. Similarly, the performance of the

F-doped TiO₂@rGO heterojunction is more efficient than P25 for the same reason. Moreover, the performance of the mixture of the same amount of F-doped TiO₂ and rGO was much lower than that of the F-doped TiO₂@rGO heterojunction. The remaining amount of RhB at 6 min was still 44.9% when the mixture was used as the photocatalyst. It should be noted that in the whole adsorption and degradation process, the pH value maintains at a constant value of around 5.8 (Figure S8), thus, the pH value has no effect on the RhB degradation rate during the whole process. Moreover, there is no obvious change in band gap of TiO_2 by the introduction of F-ion (Figure S9), confirming that the influence of light absorption by TiO₂ can be ignored. Thus, it is considered that the dense and uniform growth of TiO₂ nanocrystals on rGO greatly favours the adsorption of the majority of dyes on the surface of TiO_2 . As a result, the final photodegradation efficiency of the F-doped $TiO_2@rGO$ heterojunction is much higher than the simple mixture. This conclusion could be further supported by the much better photocatalytic performance of F-doped TiO₂@rGO heterojunction than those of F-TiO₂ and the mixture under visible light (Figure 2b). The photodegradation efficiencies of F-doped TiO₂@rGO and the mixture under visible light are 45% and 6% at 30 min, respectively. Considering that RhB solution is stable even under UV-vis light illumination (Figure S10), and holes in TiO₂ could not be generated, the efficient utilization of the photogenerated electrons in RhB molecules by the present Fdoped TiO₂@rGO catalyst can be well confirmed. One should

Figure 4. The liquid-phase photodegradation performances of F-doped $TiO_2@rGO$ heterojunction with different weight ratios of rGO (1, 5, 13 and 15%) towards RhB under UV-vis light irradiation.

note that the photodegradation efficiency of F-doped TiO₂@rGO under visible light is only 7.2% at 6 min, which falls far behind that under UV-vis light illumination (100%), indicating that holes produced by the band-gap excitation of TiO₂ still plays a dominant role in the photodegradation process, while the dense and uniform growth of F-doped TiO₂ nanocrystals on rGO further enhances the photocatalytic efficiency by the efficient utilization of the photogenerated electrons in the target RhB molecules. Recyclability is another key factor for photocatalysts. Figure 2c shows 3 cycles of photodegradation of the F-doped TiO2@rGO heterojunction towards RhB. It is proved that the good photocatalytic activity could be maintained perfectly after 3 cycles, implying the promising practical application potential of the F-doped TiO₂@rGO heterojunction. RhB solutions with high concentrations (40 and 50 mg/L) can also be photodegradated in 12 and 16 min with 30 mg F-doped TiO₂@rGO heterojunctions under UV-vis light irradiation (Figure 2d), which further confirms the practical application capability of the present F-doped TiO₂@rGO heterojunctions.

To confirm that the dense and uniform growth of TiO₂ nanoparticles on rGO can efficiently utilize the photogenerated electrons in the target RhB molecules, pure $TiO_2@rGO$ heterojunction was also prepared to exclude the influence of F-ion on the crystallinity and morphology of TiO₂.^{53, 54} The TEM and HRTEM images of the pure TiO₂@rGO heterojunction were shown in Figure 3a and 3b, respectively. From the Figure 3a, it can be found that TiO₂ nanoparticles also were densely and uniformly decorated on rGO sheets, suggesting the crucial role of the present preparation route to the dense growth of TiO₂ on rGO. And TiO₂ nanoparticles are spherical (compared with the shaped TiO₂ nanocrystals in Figure 1e). From the HRTEM image of the pure TiO₂@rGO heterojunction (Figure 3b), it can be found that the lattice fringes of TiO_2 show a d-spacing of 0.358 to 0.364 nm, which also can be well assigned to the (101) lattice fringes of TiO2. It can be concluded that the introduction of F-ion could modulate the morphology of TiO₂. The corresponding average size of the spherical TiO₂ nanoparticles in the pure $TiO_2@rGO$ heterojunction is 7 nm

Journal Name

(Figure S11a), which agrees well with the surface and pore measurement results (Figure S11b and Table S2). All the diffraction peaks (Figure 3c) can also be indexed to anatase TiO₂ (JCPDS, 84-1286). However, the diffraction peaks are not as sharp as those of the F-doped TiO2@rGO heterojunction, suggesting the crucial role of F-ion in improving the crystallinity of TiO₂ nanocrystals. The Figure 3d shows the photodegradation performance of the pure TiO₂@rGO heterojunction towards RhB under UV-vis light irradiation. When the photodegradation time is 6 min, the remaining amount of RhB is 19%, which is still more efficient than the mixture. It is further proved that the dense cover of TiO₂ nanocrystals on rGO sheets, no matter with or without the doping of F-ion, can help to efficiently utilize the photogenerated electrons in RhB and enhance the final photodegradation efficiency. However, with the help of F-ion, the photodegradation efficiency is even better considering the higher surface area of the pure TiO₂@rGO heterojunction (263 m^2/g , Table S2).

To further confirm the influence of the density and uniformity of TiO₂ on the photocatalytic performance, F-doped TiO₂@rGO heterojunctions with different weight ratios of rGO (1, 5, 13 and 15%) were prepared, and the surface areas of them are 53, 101, 203 and 182 m²/g (Figure S12 and Table S2), respectively. It is found that these samples could degrade 64%, 29%, 95% and 88% of RhB within 6 min as shown in Figure 4, respectively. Although all these samples are much more efficient than the mixture (Figure 2a), the content of rGO can affect the photocatalytic activity of F-TiO₂@rGO remarkably. A lower content of rGO would not favour the growth of TiO₂ on rGO and there is free TiO₂ nanocrystals in the catalyst, thus, the photodegradation efficiency is low due to the inefficient separation of the electron-hole pairs. The excessive content of rGO would induce more RhB molecules adsorpted on rGO rather than on the surface of TiO₂, which would not benefit the efficient utilization of the photogenerated electrons in RhB molecules. Thus, it is considered that a proper content of rGO could realize the dense and uniform growth of TiO₂ on rGO sheets and to ensure the efficient separation of the electronhole pairs and the sufficient adsorption of RhB molecules on TiO₂.

4. Conclusions

In conclusion, an ice bath hydrolyzation method is adopted to grow dense and uniform F-doped TiO₂ nanocrystals on rGO sheets. The as-prepared F-doped TiO₂@rGO heterojunction showed extremely high photocatalytic efficiency under UV-vis light irradiation compared with that of the commercial P25 and the mixture of F-TiO₂ and rGO. It is proved that the dense and uniform growth of TiO₂ nanocrystals on rGO greatly favors to utilize the photogenerated electrons in RhB. The pure TiO₂@rGO heterojunction is also much more efficient than the mixture of F-TiO₂ and rGO, proving that the ice bath hydrolyzation preparation route is crucial to ensure the dense and uniform growth of TiO₂ nanocrystals on rGO and improve the photodegradation efficiency of the final product. The present work presents a new idea on how to efficiently utilize the photogenerated electrons in the target organic pollutants.

Acknowledgements

We thank the financial supports from the National Natural Science Foundation of China (51372273), Xinjiang Program of Introducing High Level Talents, "Hundred Talents Program" of the Chinese Academy of Sciences.

Notes and references

‡ Linjuan Guo and Zheng Yang contribute equally to this work.

- 1. G. Modugno, G. Roati, F. Riboli, F. Ferlaino, R. J. Brecha and M. Inguscio, *Science*, 2002, **297**, 2240-2243.
- 2. H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 2010, 4, 380-386.
- 3. A. Tanaka, K. Hashimoto and H. Kominami, J. Am. Chem. Soc., 2012, **134**, 14526-14533.
- C. Yang, Z. Wang, T. Lin, H. Yin, X. Lü, D. Wan, T. Xu, C. Zheng, J. Lin, F. Huang, X. Xie and M. Jiang, *J. Am. Chem.* Soc., 2013, 135, 17831-17838.
- 5. X. Fan, L. Zang, M. Zhang, H. Qiu, Z. Wang, J. Yin, H. Jia, S. Pan and C. Wang, *Chem. Mater.*, 2014, **26**, 3169-3174.
- S. Han, L. Hu, N. Gao, A. A. Al-Ghamdi and X. Fang, *Adv. Funct. Mater.*, 2014, 24, 3725-3733.
- 7. L. R. Grabstanowicz, S. Gao, T. Li, R. M. Rickard, T. Rajh, D.-J. Liu and T. Xu, *Inorg. Chem.*, 2013, **52**, 3884-3890.
- 8. X. Chen and S. S. Mao, *Chem. Rev.*, 2007, **107**, 2891-2959.
- X. Chen, S. Shen, L. Guo and S. S. Mao, *Chem. Rev.*, 2010, 110, 6503-6570.
- 10. M. Wang, J. loccozia, L. Sun, C. Lin and Z. Lin, *Energy Environ. Sci.*, 2014, **7**, 2182-2202.
- 11. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, *Chem. Rev.*, 1995, **95**, 69-96.
- 12. B. Zu, B. Lu, Z. Yang, Y. Guo, X. Dou and T. Xu, *J. Phys. Chem. C*, 2014, **118**, 14703-14710.
- 13. Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka and T. Majima, J. Am. Chem. Soc., 2014, **136**, 458-465.
- Q. Wang, M. Zhang, C. Chen, W. Ma and J. Zhao, Angew. Chem. Int. Ed., 2010, 49, 7976-7979.
- 15. C. Chen, W. Ma and J. Zhao, *Chem. Soc. Rev.*, 2010, **39**, 4206-4219.
- 16. K. Woan, G. Pyrgiotakis and W. Sigmund, *Adv. Mater.*, 2009, **21**, 2233-2239.
- 17. Y. Zhang, Z.-R. Tang, X. Fu and Y.-J. Xu, ACS Nano, 2010, 4, 7303-7314.
- I. Y. Kim, J. M. Lee, T. W. Kim, H. N. Kim, H.-i. Kim, W. Choi and S.-J. Hwang, Small, 2012, 8, 1038-1048.
- W. Gao, M. Wang, C. Ran, X. Yao, H. Yang, J. Liu, D. He and J. Bai, *Nanoscale*, 2014, 6, 5498-5508.
- 20. Z.-Y. Wu, C. Li, H.-W. Liang, J.-F. Chen and S.-H. Yu, *Angew. Chem. Int. Ed.*, 2013, **52**, 2925-2929.
- H. Hu, Z. Zhao, W. Wan, Y. Gogotsi and J. Qiu, Adv. Mater., 2013, 25, 2219-2223.
- 22. H. Sun, Z. Xu and C. Gao, Adv. Mater. , 2013, 25, 2554-2560.
- W. Guo, C. Chen, M. Ye, M. Lv and C. Lin, *Nanoscale*, 2014, 6, 3656-3663.
- W. Guo, F. Zhang, C. Lin and Z. L. Wang, *Adv. Mater.*, 2012, 24, 4761-4764.
- G. Nagaraju, G. Ebeling, R. V. Goncalves, S. R. Teixeira, D. E. Weibel and J. Dupont, J. Mol. Catal. A-Chem., 2013, 378, 213-220.

- K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos and A. Firsov, *Nature*, 2005, 438, 201.
- J. L. Gunjakar, I. Y. Kim, J. M. Lee, N.-S. Lee and S.-J. Hwang, Energy Environ. Sci., 2013, 6, 1008-1017.
- Q. Xiang, J. Yu and M. Jaroniec, J. Am. Chem. Soc., 2012, 134, 6575-6578.
- 29. B. Qiu, M. Xing and J. Zhang, J. Am. Chem. Soc., 2014, **136**, 5852-5855.
- L. Guo, B. Zu, Z. Yang, H. Cao, X. Zheng and X. Dou, Nanoscale, 2014, 6, 1467-1473.
- 31. B. Zu, Y. Guo and X. Dou, *Nanoscale*, 2013, **5**, 10693-10701.
- 32. W. Tu, Y. Zhou and Z. Zou, *Adv. Funct. Mater.*, 2013, **23**, 4996-5008.
- A. S. Cherevan, P. Gebhardt, C. J. Shearer, M. Matsukawa, K. Domen and D. Eder, *Energy Environ. Sci.*, 2014, 7, 791-796.
- Y. H. Ng, S. Ikeda, M. Matsumura and R. Amal, *Energy Environ. Sci.*, 2012, 5, 9307-9318.
- I. V. Lightcap, T. H. Kosel and P. V. Kamat, *Nano Lett.*, 2010, 10, 577-583.
- 36. G. Williams, B. Seger and P. V. Kamat, ACS Nano, 2008, 2, 1487-1491.
- P. Wang, J. Wang, T. Ming, X. Wang, H. Yu, J. Yu, Y. Wang and M. Lei, ACS Appl. Mater. Inter., 2013, 5, 2924-2929.
- P. Zhu, N. A. Sreekumaran, S. Peng, S. Yang and R. Seeram, ACS Appl. Mater. Inter., 2012, 4, 581-585.
- 39. J. Sun, H. Zhang, L.-H. Guo and L. Zhao, ACS Appl. Mater. Inter., 2013, 5, 13035-13041.
- J. Wang, P. Wang, Y. Cao, J. Chen, W. Li, Y. Shao, Y. Zheng and D. Li, *Appl. Catal. B: Environ.*, 2013, **136–137**, 94-102.
- 41. Y. Liang, H. Wang, H. S. Casalongue, Z. Chen and H. Dai, *Nano Res.*, 2010, **3**, 701-705.
- C. Yang, Z. Wang, T. Lin, H. Yin, X. Lü, D. Wan, T. Xu, C. Zheng, J. Lin and F. Huang, *J. Am. Chem. Soc.*, 2013, **135**, 17831-17838.
- 43. D. Zhao, G. Sheng, C. Chen and X. Wang, *Appl. Catal. B: Environ.*, 2012, **111**, 303-308.
- 44. J. Zhang, Z. Xiong and X. Zhao, J. Mater. Chem., 2011, **21**, 3634-3640.
- 45. Z. Xiong, L. Zhang, J. Ma and X. Zhao, *Chem. Commun.* (*Cambridge, U. K.*), 2010, **46**, 6099-6101.
- 46. H. Cui, J. Zheng, P. Yang, Y. Zhu, Z. Wang and Z. Zhu, ACS Appl. Mater. Inter., 2015, **7**, 11230-11238.
- W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339-1339.
- 48. Y. Xu, L. Zhao, H. Bai, W. Hong, C. Li and G. Shi, *J. Am. Chem. Soc.*, 2009, **131**, 13490-13497.
- 49. S. Liu, J. Yu and M. Jaroniec, J. Am. Chem. Soc., 2010, **132**, 11914-11916.
- 50. L. Xiao, D. Wu, S. Han, Y. Huang, S. Li, M. He, F. Zhang and X. Feng, *ACS Appl. Mater. Inter.*, 2013, **5**, 3764-3769.
- 51. S. K. Joung, T. Amemiya, M. Murabayashi and K. Itoh, *Chem. Eur. J.*, 2006, **12**, 5526-5534.
- T. N. Lambert, C. A. Chavez, B. Hernandez-Sanchez, P. Lu, N. S. Bell, A. Ambrosini, T. Friedman, T. J. Boyle, D. R. Wheeler and D. L. Huber, J. Phys. Chem. C, 2009, 113, 19812-19823.
- 53. J. C. Yu, J. Yu, W. Ho, Z. Jiang and L. Zhang, *Chem. Mater.*, 2002, **14**, 3808-3816.
- 54. G. Wu, J. Wang, D. F. Thomas and A. Chen, *Langmuir*, 2008, **24**, 3503-3509.

The F-doped TiO_2 densely and uniformly decorated on rGO sheet could adsorb more RhB on TiO_2 and efficiently utilize the photogenerated electrons of excited RhB to improve the photodegradation efficiency.