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Abstract: Polysaccharides is one of active component of Dendrobium officinale (D. officinale) 10 

and its content is used as one of main quality assessment criteria. The polysaccharides 11 

quantification existing methods involve sample destruction, tedious sample processing, high 12 

cost, and non-environment friendly pretreatment. The aim of this study is to develop a simple, 13 

rapid, green and nondestructive analytical method based on near infrared (NIR) spectroscopy 14 

and chemometrics methods. A set of 84 D. officinale samples from different origins was 15 

analyzed by NIR spectroscopy. The potential outlying samples were initially removed from 16 

the collected NIR data in two steps by Monte Carlo sampling (MCS) method. The spectral 17 

data preprocessing were studied in the construction of partial least squares (PLS) model. To 18 

eliminate uninformative variables and improve the performance of model, the pretreated full 19 

spectrum was calculated by different wavelength selection methods, including competitive 20 

adaptive reweighted sampling (CARS), Monte Carlo-uninformative variable elimination 21 

(MC-UVE) and interval random frog (iRF). The selected wavelengths model have met the 22 

three following points as: 1) improve the prediction performance; 2) reduce the number of 23 

variables; (3) provide a better understanding and interpretation, which proves that it is 24 

necessary to conduct wavelength selection in the NIR analytical systems. When comparing 25 

the three wavelength selection methods, the results show that CARS has the best performance 26 

with the lowest root mean square error of prediction (RMSEP) on the independent test set and 27 
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least number of latent variables (nLVs). This study demonstrates that the NIR spectral 28 

technique with wavelength selection algorithm CARS could be used successfully for 29 

quantification of polysaccharides content in D. officinale.  30 

 31 

Keywords: Dendrobium officinale, Near-infrared spectroscopy, Polysaccharides, Green 32 

analytical method, Partial least squares (PLS), Competitive adaptive reweighted sampling 33 

(CARS) 34 

1. Introduction 35 

Dendrobium officinale (D. officinale) is one of the most precious and famous traditional 36 

Chinese medicinal material in China. It is claimed to have the function of maintaining gastric 37 

tonicity, nourishing Yin and enhancing production of body fluid.
1, 2

 It also has been used as a 38 

therapeutic agent for curing cataract, throat inflammation, fever and chronic superficial 39 

gastritis.
3
 Many studies suggested that these properties were related to its polysaccharides, 40 

one main active component of D. officinale.
4-7

  41 

The content of polysaccharides is used as one of quality assessment criteria (no less than 42 

0.2500 g glucose per g dry weight) in Chinese pharmacopoeia.
8
 It varies with geographical 43 

origin and harvest time. By far, quantification of the polysaccharides in D. officinale is mainly 44 

performed by the colorimetric method, such as phenol-sulphuric acid method or 45 

anthrone-sulphuric acid method. However, those methods involve sample destruction, tedious 46 

sample processing, high cost, and non-environment friendly pretreatment, because they 47 

require severe conditions of high temperature and strong acid. Therefore, a simple, rapid, 48 

green and nondestructive analytical technique is in great demand to determine 49 

polysaccharides content in D. officinale.  50 

Nowadays, as a rapid, green, cost-effective and nondestructive analytical technique, near 51 
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infrared (NIR) spectroscopy has been widely applied to qualitative and quantitative analysis 52 

in agriculture pharmaceuticals, polymer production and food quality evaluation.
9-18

 Recently, 53 

NIR spectroscopy has been employed to study traditional Chinese herbs.
19

 Some studies on 54 

the quantitative analysis of total polysaccharides by NIR were also reported.
20-22

 NIR spectra 55 

assess chemical structures through the analysis of the molecular bonds (e.g. C-H, N-H and 56 

O-H, which are the primary structural components of organic molecules) in the NIR region, 57 

and their characteristic spectra are comprised of different overtone and combination vibrations 58 

that are attributable to the molecule’s make-up.
23

 As a powerful technique, NIR spectroscopy 59 

has gained wide acceptance in many fields by virtue of its advantages over other analytical 60 

techniques, such as high efficiency, economy, easy operation, and the most salient of its 61 

ability to record spectra for solid and liquid samples without any ample preparation. However, 62 

NIR spectroscopy usually encounters a collinearity problem because the strongly overlapped 63 

and broad absorption bands.
24

 To address this problem, partial least squares (PLS)
25

 has been 64 

proposed to make a calibration model with NIR data. Typically, the establishment of a 65 

calibration model usually covers all the measured wavelengths. It is obvious that such a full 66 

spectrum model may contain useless or irrelevant information, which may worsen the 67 

predictive ability of the developed model. Liang et al. have demonstrated the importance and 68 

necessity of wavelength selection in NIR analytical system.
26, 27

 Many papers have also 69 

proved that it is very important and essential to conduct wavelength selection to gain better 70 

prediction performance.
28-31

 The aim and significance of wavelength selection can be 71 

summarized in three points: (1) improving the prediction performance of the calibration 72 

model, (2) providing faster and more cost-effective predictors by reducing the curse of 73 
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dimensionality, (3) providing a better understanding and interpretation of the underlying 74 

process that generated the data.
32, 33

  75 

In this work, the first work is to establish the PLS calibration model between the NIR 76 

full spectrum data of D. officinale and its polysaccharides. Then compare the prediction 77 

results of wavelength selection methods and full spectrum. Three recent and often-used 78 

wavelength selection methods, including competitive adaptive reweighted sampling (CARS)
34

, 79 

Monte Carlo-uninformative variable elimination (MC-UVE)
35

 and interval random frog 80 

(iRF)
36

, were employed to compare. Finally determine the best wavelength selection based on 81 

the prediction performance and model complexity to develop a calibration model for 82 

prediction of polysaccharides in D. officinale.  83 

2. Materials and methods 84 

2.1. Samples collection and reagents 85 

A total of 84 D. officinale samples were collected from different locations of China in the 86 

period of April 2012-April 2014, which are shown in Table 1. It provided a representative set 87 

of D. officinale consumed in China, which comprised enough variations to make the 88 

quantitative model to be robust. Analytical grade D-glucose was purchased from 89 

Sigma-Aldrich (Sigma, St. Louis, MO, USA). Water was purified by a Milli-Q academic 90 

water purification system (Milford, MA, USA). Sulphuric acid of guaranteed reagent grade 91 

was purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Other 92 

reagents including phenol and ethanol were of analytical grade.  93 

 94 

Insert Table 1 95 
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 96 

2.2. Samples preparation and quantitative analysis 97 

All the samples were dried at 55 ℃ in a forced-draught oven from Shanghai Pharmacy 98 

Machine Co. (Shanghai, China). After brushing off soil dust from the surface, the samples 99 

were ground to fine pieces with a blender and screened through a 60-mesh sieve (particle size 100 

≤ 0.2 mm). These sieved powders were used for further analysis. 101 

D. officinale polysaccharides content was firstly measured with the phenol-sulphuric 102 

acid method provided by Chinese pharmacopoeia (State Pharmacopoeia Committee 2010). 103 

Glucose calibration curve was firstly prepared. The glucose (0.255 g) dried to constant weight 104 

at 105 ℃ was placed in 250 ml volumetric flask, added water to obtain 100 µg/ml solution. 105 

Accurately draw 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 ml of glucose solution in 10 ml test tube with lid 106 

respectively, added water to 1 ml. Then added 1 ml of 5% phenol solution, mixed, quickly 107 

added sulphuric acid 5.0 ml, shook, bathed in 90 ℃ water for 20 min, put in an ice bath for 5 108 

min. A BTT miniature array spectrophotometer (B&W Tek, Newark, DE, USA) equipped 109 

with glass or quartz cells of 1 cm path length was used for measurement of absorbance spectra. 110 

A Lenovo personal computer was used to control the spectrometer and collect data via a 111 

BWSpec4 Software. Absorbance unit was recorded at wavelength 488.02 nm. The calibration 112 

curve was made according to absorbance unit and glucose concentration. 113 

Polysaccharides measurement was as follow. An accurately weighted, powdered D. 114 

officinale sample (0.3 g) was loaded into a standard apparatus set, refluxed for 2 h with 200 115 

ml water. Subsequently, the sample was cooled to room temperature and transferred to a 250 116 

ml volumetric flask, added water to the scale, shook and filtered. Then 2 ml of filtrate was 117 
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precipitated by ethanol (10 ml) at 4 ℃, followed by centrifugation for 30 min at 4000 r/min. 118 

The precipitate was washed twice with 8 ml of 80% ethanol. The precipitate obtained after 119 

filtering was dissolved in water and collected in a 25 ml volumetric flask. The following 120 

operation was based on the calibration curve of glucose aforementioned. Results were 121 

expressed as grams of glucose equivalents per gram of dry weight (g glucose per g DW) 122 

through the calibration curve with glucose. Each sample was determined in triplicate, and the 123 

mean of three measurements was used for further analysis. 124 

2.3.NIR spectroscopy measurement 125 

With the Integrating Sphere module of the Antaris II Fourier transform near infrared (FT-NIR) 126 

analyzer (Thermo Scientific, Madison, USA), the NIR diffuse reflection spectra were 127 

collected from 10,000 to 4000 cm
-1

 (1557 wavelength points ). The reference spectrum is the 128 

gold foil. Each sample was scanned for 32 times with a resolution of 8 cm
-1

 using a 129 

background of the air and the average of spectrum of 32 scans was taken as one result. The 130 

environment temperature was controlled at 25±1 ℃ with an air conditioner. 131 

The standard sample cup was used to collect spectra of D. officinale samples. It was the 132 

standard accessory as sample’s holder, specifically designed by Thermo Electron Co.. About 133 

0.5 g of the sample in powder form was filled into the sample cup in the standard procedure. 134 

In order to avoid errors from uneven samples, the sample cup was rotated 120° to record 135 

another spectrum after each record. Each sample was collected three times. The mean of three 136 

spectra which were collected from the same sample was used for the following analysis. 137 

A set of 84 D. officinale samples from different origins in China was analyzed by NIR 138 

spectroscopy. The generated spectra of 84 samples are shown in Fig. 1(a). 139 
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Insert Fig. 1 140 

2.4. Outlier detection and spectral data preprocessing 141 

Constructing a high-quality model depends on the execution of several steps. One important 142 

step is outlier detection. The step of outlier detection should be prior to establish the 143 

calibration model. Outliers are abnormal ones in some sense. They may present 144 

non-representative samples that could introduce great errors to a model. In this work, a novel 145 

strategy which was termed as the Monte Carlo sampling (MCS) method was used for the 146 

outlier detection. According to the method, there may be three types of outliers.
37

 The first 147 

one is the outliers in the dependent variable y direction. It breaks away from the normal 148 

distribution of y and will cause a large error sum of squares. The second one is the outliers in 149 

the predictor or independent variable X direction. This sort of outliers is far away from the 150 

main body of the samples. The third type of outliers, so called outliers towards the model, can 151 

be found only after building the regression model. They represent a different relationship 152 

between X and y. In the MCS method, the number of latent variables (nLVs) was firstly 153 

determined using cross-validation in PLS. With the help of the MCS method, the whole data 154 

set was randomly divided into two parts, the calibration set and independent test set, 155 

respectively. After that the calibration set was used to establish the model using the optimal 156 

nLVs. The independent test set was used for prediction. The prediction error would be 157 

obtained for each test sample. This cycle was executed in 1000 times. Finally, the prediction 158 

error distribution for each sample was obtained. The histograms of these distributions were 159 

plotted and their statistic features were used to detect the outliers. 160 

In addition to useful information, spectral signal contains systematic noise, such as 161 
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baseline variation, sample background, light scattering and so on.
38

 In order to build a robust 162 

and reliable model, some preprocess must be taken to weaken and eliminate interference in 163 

spectra. In this study, eight different signal pre-treatment methods were evaluated and 164 

compared, including multiplicative scattering correction (MSC), standard normal 165 

transformation (SNV), first and second derivatives computed by Savitzky-Golay (S-G) 166 

method, and the combinations of MSC (or SNV) with the derivatives. MSC is an important 167 

procedure for the correction of scatter light caused by different particle sizes. It is also used to 168 

correct the additive and multiplicative effects in the spectra. SNV is a mathematical 169 

transformation method of the log (1/R) spectra used to remove slope variation and to correct 170 

for scatter effects.
39, 40

 Compared to SNV, first and second derivative are used to reduce peak 171 

overlap and remove constant and linear baseline drift, respectively. Thus, they are often used 172 

to eliminate baseline drifts and enhance small spectral differences between samples.
41

  173 

2.5. Multivariate calibration methods 174 

2.5.1. Partial least squares (PLS) regression 175 

PLS is a commonly used multivariate calibration method. It investigates the fundamental 176 

relations between the response vector (the properties of interest), y, and the spectral data 177 

matrix, X. In this method, data is compressed into orthogonal factors, which have similar 178 

properties to PCs in principal component analysis (PCA).
42, 43

 Here, the purpose of PLS is to 179 

establish a regression model to make the prediction of chemical constituent concentrations. It 180 

extends and improves the potential application of spectroscopy technique in food industry by 181 

extracting features from spectra.
44

 182 

Three different wavelength selection methods combined with PLS, including competitive 183 
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adaptive reweighted sampling (CARS), Monte Carlo-uninformative variable elimination 184 

(MC-UVE) and interval random frog (iRF) were employed to compare and determine the 185 

effective wavelengths.  186 

CARS
34

 is a novelty variable selection algorithm, which is similar to the “survival of the 187 

fittest” principle in Darwin’s Evolution Theory. The wavelengths with large absolute 188 

coefficients that selected by CARS were defined as the key wavelengths. In each sampling 189 

run, CARS contains four successive steps: (1) use MC sampling method to select modeling 190 

samples randomly; (2) employ exponentially decreasing function (EDF) to remove the 191 

wavelengths which are of relatively small absolute regression coefficients by force; (3) adopt 192 

adaptive reweighted sampling (ARS) to realize a competitive selection of wavelengths; (4) 193 

employ cross-validation to evaluate the subset and finally to choose the subset with the lowest 194 

root mean squared error of cross validation (RMSECV). For CARS, the number of sampling 195 

run was set to 100. 196 

MC-UVE
35

 is a useful variable selection algorithm, which combined Monte Carlo (MC) 197 

strategy with uninformative variable elimination (UVE) method. The MC-UVE method builds 198 

a large number of PLS sub-models with randomly selected calibration samples at first, and 199 

each variable is evaluated with a stability of the corresponding regression coefficient. 200 

Variables with poor stability are known as uninformative variable and eliminated. The number 201 

of MC sampling run was set to 1000 in this study.  202 

iRF
36

 is a wavelength interval selection method that considers the continuity of spectra. 203 

It is based on random frog
45

 that employs reversible jump Markov Chain Monte Carlo 204 

(RJMCMC)-like search algorithm in the model space through both fixed-dimensional and 205 
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trans-dimensional between different models. The objective function is to find the subset 206 

which has the maximum regression coefficient. Spectra are first divided into sub-intervals on 207 

the whole spectra by a moving window of a fixed width and thus it can obtain all the possible 208 

continuous spectral intervals. Each interval is regarded as the variable and then is input into 209 

the RJMCMC algorithm. A pseudo-MC MC chain is used to compute selection probability of 210 

each interval, and then rank all the intervals based on the selection probability. Afterwards, 211 

choose the best intervals with the lowest RMSECV. In this work, with 1557 full spectral 212 

points, the width of the interval is set to 20 resulting in 1538 intervals in total and each 213 

interval has 20 variables.  214 

2.6. Data division and model performance evaluation 215 

After sample outlier detection and the best pretreatment selection, the next step was to divide 216 

the whole data set into calibration and independent test set, which are used to build and 217 

validate the model, respectively. To assure that the division of calibration set and independent 218 

test set was well proportioned, a procedure based on the Duplex algorithm was used to split 219 

the data set. 
46, 47

 220 

In this work, selection was performed using a splitting ratio of 2:1 (50 samples were 221 

taken into calibration set, and the remaining 25 samples served for the independent test set). 222 

The statistical values of the polysaccharides content in calibration and independent test sets 223 

are listed in Table 2. After the division, the content values in the calibration and independent 224 

test sets covered a wide range, which is helpful to develop a robust model. 225 

The calibration set is used for building a PLS model and wavelength selection, and the 226 

independent test set is used for external validation. The optimal nLVs on the calibration set 227 
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was determined by 10-fold cross validation as the maximum nLVs was set to 15. The built 228 

model was then used to predict the calibration set and test set, generating with a root mean 229 

squared error of fitting on the calibration set (RMSEC) value and a root mean squared error of 230 

prediction on the independent test set (RMSEP) value. Thus, RMSEC, 
2
Rcal , RMSEP and 231 

2Rpre  (R
2
 on the test set), were employed to assess the performance of the generated model. 232 

RMSECV and 
2

Rcv  were used to determine spectral data preprocessing method.  233 

2.7.Software 234 

NIR spectra were collected using an Antaris II FT-NIR spectrometer. The instrument was 235 

equipped with the spectral acquisition software, called ‘‘Results’’. After NIR spectra were 236 

collected, spectra were imported directly into MATLAB (Version 2013A, the MathWorks, 237 

Inc) on a general-purpose computer with Intel® Core® i5 3.2GHz CPU and 3GB RAM, with 238 

operating system Microsoft Windows XP. The spectral data preprocessing and multivariate 239 

calibration were implemented by the written codes in MATLAB, which can be downloaded 240 

freely in the website: http://www.libpls.net/. 241 

3. Results and discussion 242 

3.1. Polysaccharides content measurement 243 

The polysaccharides content in all 84 samples were determined by the reference method (see 244 

Section 2.2). The glucose calibration equation was Y=0.0094X+0.0016, R
2
=0.9998, which 245 

showed a good linear relationship between 0.0 and 0.1 mg/ml glucose content and absorbance 246 

unit. After the outlier removal (see Section 3.2.1), there are 75 samples for PLS modeling. 247 

The polysaccharides contents in the 75 D. officinale samples were calculated according to 248 

glucose calibration equation and absorbance unit, and were shown in Table 2. It was 249 
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0.4006±0.1329 g glucose per g DW. The polysaccharides content of some samples were less 250 

than 0.2500 g glucose per g DW, the threshold value restricted by pharmacopoeia. Therefore, 251 

it was necessary to monitor the quality of D. officinale. 252 

 253 

Insert Table 2 254 

3.2. Model building 255 

3.2.1. Deletion of outlying samples 256 

The results of outlier detection by the MCS method are shown in Fig. 2. From Fig. 2(a), the 257 

three samples (12, 28, 29) in top left area are outliers in X direction which have a large 258 

standard deviation of prediction errors, and the lower right one gives two outliers (57,70) in y 259 

direction, which have a large mean value of prediction errors. As mentioned above, the 260 

division of samples is based on MCS method, so the first result may be not really show all the 261 

outliers. In order to further detect the potential outliers, the MCS method was run for the 262 

remaining samples once again after the last outlier detection. Similar to Fig. 2(a), Fig. 2(b) 263 

shows the result for the data set including two different types of outliers. From this plot, it can 264 

be seen that the entire datum is clearly divided into three parts, and different type of outliers 265 

compactly clustered together, respectively. The result shows that two samples (69, 71) in the 266 

lower right area are outliers in y direction, and the top right two samples (27, 47) are outliers 267 

both in the X and y directions. From Fig. 2(b), the four samples which are not shown 268 

significantly in the first step are far away from the main body of the data with higher mean 269 

values or higher deviations of prediction errors. The MCS method was first used in two steps 270 
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to reveal the potential outliers in this study. After the removal of outliers, the remaining 75 271 

samples were used for the following analysis. 272 

Insert Fig. 2 273 

 274 

3.2.2. Selection of spectral data preprocessing methods 275 

PLS full spectrum model were developed with different data preprocessing methods. A 276 

10-fold cross-validation was used to select the nLVs and the most suitable spectral data 277 

preprocessing using the whole samples (75 samples). The spectral preprocessing was 278 

optimized based on the lowest RMSECV, highest 
2Rcv  and few nLVs. According to the Table 279 

3, the best one was found to be built with data pretreated by SNV combined with the SG 1st 280 

derivative (11 points, 3rd order polynomial) and as it has the lowest RMSECV, 0.0543 highest 281 

2Rcv , 0.8309 and only 6 nLVs, which is consistent with the work from.
21

 When there are 282 

overlapping peaks in the original NIR spectra, the SNV 1st derivative for data pretreatment is 283 

usually useful to enhance the resolution, correct for scatter effects and for the baseline 284 

correction. The reason might be that the SG 1st derivative calculation removed both additive 285 

and multiplicative effects in the spectra. The preprocessed spectra are shown in Fig. 1(b). It 286 

can be seen that most absorbance values were zero approximately, and the overlapping peaks 287 

and baseline effect were removed. The spectral differences of the samples were observed in 288 

several different regions of around 4000-4300 cm
-1

 and 5750 cm
-1

. 289 

 290 

Insert Table 3 291 

 292 
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3.2.3. Full spectrum and wavelength selection models 293 

There are 1557 variables in the NIR full spectral data. The full spectrum calibration model on 294 

the calibration set was developed and then used to make a prediction for validation on the 295 

independent test set. In addition, iRF, CARS and MC-UVE were employed to select 296 

wavelengths. All methods were conducted 100 times to get the best one because Monte Carlo 297 

sampling they used would lead to different results in each time.  298 

When compared to the full spectrum model, the selected wavelengths model should meet 299 

the three following points as: 1) improve the prediction performance; 2) reduce the number of 300 

wavelengths; (3) provide a better understanding and interpretation. The calibration and 301 

validation results of full spectrum and wavelength selection methods are shown in Table 4. 302 

For the prediction of the full spectrum model, RMSEP and 2Rpre  are 0.0542 and 0.7978, 303 

respectively. The nLVs is 10. It can be observed that all the wavelength selection methods 304 

perform better than full spectrum PLS model based on the RMSEP, 2Rpre  and nLVs, which 305 

satisfies the first point that improve the prediction performance and. Moreover, the number of 306 

selected wavelengths by the CARS, MC-UVE and iRF, are 39, 339 and 364, which are also 307 

much less than full spectrum with 1557 wavelengths. Thus, it demonstrates that the model can 308 

obtain good prediction performance when eliminating the variables that are uninformative and 309 

have irrelevant information.  310 

CARS and MC-UVE are the discrete wavelength selection methods, while iRF is 311 

wavelength interval selection method. All of them are based on the PLS regression coefficient. 312 

Here we do not aim to prove that whether discrete wavelength selection or wavelength 313 

interval selection method is better. The performances of all the wavelength selection methods 314 
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are data dependent. In this work, for the determination of the polysaccharides content in D. 315 

officinale, when in comparison of three wavelength selection methods, the overall results 316 

indicated that CARS obtains the best prediction performance with the lowest RMSEP and 317 

2Rpre . The least nLVs also indicate that CARS can establish the most parsimonious PLS model. 318 

The reason may be that there are too many irrelevant variables in the full spectral data. CARS 319 

is an effective procedure to eliminate uninformative variables and improved the predictive 320 

precision of the model. Based on exponentially decreasing function, CARS firstly eliminated 321 

large number of wavelengths in the first stage and then in a refined way to select wavelength. 322 

Although CARS runs fast, it is not stable. Thus, CARS should be conducted many times to 323 

obtain the best one.  324 

As Polysaccharides belong to carbohydrates, it contains aliphatic cyclic groups with 325 

attached OH groups and either linkages. In order to understand and interpret the selected 326 

wavelengths by all the wavelength selection methods for polysaccharides, they are displayed 327 

in Fig. 3. The wavelengths selected by MC-UVE are very scattered, resulting in that 328 

MC-UVE performs a little better than full spectrum model. CARS and iRF have a lot of 329 

common selected regions. As CARS performs the best in this work, the interpretation of 330 

selected wavelengths focuses on CARS. We can see that the selected wavelengths by CARS 331 

are mostly concentrated on the region of 4000-4200 cm
-1

, 4300-4450 cm
-1

, 4700-5250 cm
-1

, 332 

5750-7300 cm
-1

, 7900-8950 cm
-1

, 9000-10000 cm
-1

. The absorption at 4000-4200 cm
-1

 is 333 

related to C-H stretching and C-C and C-O-C stretching combination.
48

 4300-4450 cm
-1

 is 334 

corresponding to C-H stretching and CH2 deformation combination, while 4700-5100 cm
-1

 is 335 

corresponding to O-H bending, O-H stretching, C-O stretching combination and HOH 336 
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bending combination. 
48

 5750-7300 cm
-1

 is related to the first overtone of C-H stretching. 
48

 337 

7900-8950 cm
-1

 could be attributed to the first overtone of O-H in polysaccharides. 
49

 338 

9000-1000 cm
-1

 is corresponding to the second overtone of O-H. 
50

  339 

From the above points, it can be proved that wavelength selection is necessary and 340 

essential in multivariate calibration for the NIR analytical system.  341 

 342 

Insert Fig. 3 343 

Insert Table 4 344 

 345 

Fig. 4 shows the correlation between the values determined by phenol-sulphuric acid 346 

method and the valves predicted by the NIR full spectrum model (Fig. 4a) and CARS (Fig. 347 

4b). The blue and red circles correspond to the calibration and independent test set, 348 

respectively. The diagonal line represents the ideal results. The closer the points are to the 349 

diagonal line, the better the model is. It can be found that the samples are distributed more 350 

closely to the diagonal line in Fig. 4b, which shows a good spectral analysis performance of 351 

CARS. The results demonstrate the feasibility to use NIR spectroscopy combined with CARS 352 

for determination of the polysaccharides content of D. officinale. 353 

 354 

Insert Fig. 4 355 

 356 

4. Conclusions 357 

In this study, a rapid, cost-effective and non-destructive technique, namely NIR, coupled with 358 
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multivariate calibration method, PLS, for the determination of the polysaccharides content in 359 

D. officinale was demonstrated. The integrated step including outlier detection, data 360 

preprocessing and establishment of calibration model were introduced. Comparing with the 361 

full spectrum model, three recent and often-used wavelength selection methods, including 362 

MC-UVE, CARS and iRF, were employed to demonstrate the good prediction performance, 363 

reduction of the number of variables and a better understanding and interpretation of selected 364 

wavelengths. Thus, wavelength selection is necessary in the multivariate calibration model in 365 

NIR analytical system. When comparing the three wavelength selection methods, CARS 366 

performs the best with the lowest RMSEP, highest 2Rpre  and fewest number of latent 367 

variables.  368 

Therefore, NIR could provide a fast and green alternative to classical reference methods, 369 

as it dramatically reduces analysis time without any chemical reagents. The established 370 

method will significantly improve the efficiency of quality control. Furthermore, the future 371 

work is to develop similar NIR spectroscopy calibration models coupled with CARS 372 

algorithm for predicting additional components in D. officinale, such as alkaloid, 373 

sesquiterpenoid and aromatic compound. It should be noted that more work should be paid 374 

attention to robustness of calibration models by collecting more samples and introducing 375 

more wavelength selection methods.  376 
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Tables 441 

Table 1. D. officinale samples information. 442 

Sample no. Origin Collected time 

1-6 Yunnan Feb.,2013-Mar.,2013 

7-12 Zhejiang Apr.,2012-Oct.,2012 

13-14 Hunan Sep.,2012-Jul.,2013 

15-16 Zhejiang Jul., 2013-Aug.,2013 

17-20 Henan Jul.,2013-Aug.,2013 

21-32 Hunan Dec.,2013 

33-49 Hunan Feb.,2014 

50-53 Yunnan Feb.,2014 

54-61 Yunan Mar.,2013 

62-67 Zhejiang Apr.,2012-Jul.,2012 

68-84 Hunnan Apr.,2014 

 443 

444 
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Table 2. The D. officinale polysaccharides content measured with the phenol-sulphuric acid 445 

method and the number of D. officinale samples used in dataset. 446 

 447 

Data set Number Max 

(g glucose per g DW
b
) 

Min 

(g glucose per g DW) 

Mean±S.D
a
 

(g glucose per g DW) 

Total 75 0.7063 0.1863 0.4006±0.1329 

Calibration set 50 0.7063 0.1863 0.4111±0.1302 

Test set 25 0.6952 0.1925 0.3796±0.1385 
a
S.D is standard deviation. 448 

b
DW is dry weight. 449 

450 
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Table 3. The 10-fold cross-validation results by PLS with different data preprocessing 451 

methods. 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

460 

Pretreatment nLVs RMSECV 2
cvR

 

Original 14 0.0558 0.8211 

Smooth+MSC 11 0.0539 0.8330 

Smooth+SNV 6 0.0585 0.8036 

SG 1st 12 0.0540 0.8330 

SG 2nd 4 0.0651 0.7571 

MSC+SG 1st 6 0.0543 0.8308 

MSC+SG 2nd 6 0.0619 0.7800 

SNV+SG 1st 6 0.0543 0.8309 

SNV+SG 2nd 6 0.0619 0.7802 
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Table 4. Results of D. officinale polysaccharides content by PLS models based on different 461 

wavelength selection methods. 462 

 463 

 464 

 465 

 466 

 467 

 468 

a
N.W is the number of wavelengths. 469 

  470 

 Full spectrum CARS MC-UVE iRF 

N.W
a
 1557 39 339 364 

nLVs 10 8 10 9 

RMSECV 0.0549 0.0156 0.0260 0.0423 
2
cvR

 0.8397 0.9872 0.9640 0.9048 

RMSEC 0.0101 0.0096 0.0010 0.0025 
2
calR  0.9946 0.9952 0.9999 0.9997 

RMSEP 0.0542 0.0468 0.0533 0.0486 
2Rpre

 0.7978 0.8495 0.8044 0.8373 
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Figure Captions 471 

Fig. 1. (a)The raw NIR spectra of 84 D. officinale samples; (b) Preprocessed spectra by 472 

SNV+SG 1st derivative of 75 D. officinale samples. 473 

Fig. 2. The results of variance of residuals versus mean of residuals on the 474 

polysaccharides content of D. officinale samples. (a) The first step of MCS; (b) The second 475 

step of MCS. 476 

Fig. 3. The distribution of the selected variables obtained by different wavelength 477 

selection methods. 478 

Fig. 4. The correlation between predicted value and measured value of polysaccharides 479 

content based on (a) The full spectra PLS model; (b) 39 selected wavelengths by CARS. 480 

  481 
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Fig. 1. (a)The raw NIR spectra of 84 D. officinale samples; (b) Preprocessed spectra by 485 

SNV+SG 1st derivative of 75 D. officinale samples. 486 

  487 
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 Fig. 2. The results of variance of residuals versus mean of residuals on the polysaccharides 489 

content of D. officinale samples. (a) The first step of MCS; (b) The second step of MCS. 490 
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 492 

Fig. 3. The distribution of the selected variables obtained by different wavelength 493 

selection methods. 494 
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 497 

Fig. 4. The correlation between predicted value and measured value of polysaccharides 498 

content based on (a) The full spectra PLS model; (b) 39 selected wavelengths by CARS. 499 

 500 
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Graphic Abstract 

NIR spectroscopy method for the quantification of polysaccharides in 

Dendrobium officinale by PLS calibration model. 
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