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ABSTRACT  

Non-small-cell lung cancer (NSCLC) comprises ~75% of all lung cancer and consists 

of several subtypes. Identification of lung cancer cell subtypes is important for 

choosing the appropriate therapy plan and reducing the mortality. In this study, we 

have been able to identify and distinguish three subtypes of NSCLC cells (H1229, 

H460 and A549) and leukocytes on the single-cell level by combining 

surface-enhanced Raman scattering (SERS) spectroscopy and multivariate statistical 

methods. After the evaluation of three statistical methods, support vector machines 

(SVM) shows the best classification performance compared to hierarchical cluster 

analysis (HCA) and principal component analysis (PCA) method based on a large 

amount of cell SERS spectra from Au nanoshells as intracellular nanoprobes. The 

SVM classification model provides a predication accuracy of 88.75% for “unknown” 

independent cell types and an accuracy of ~95% for the two subtypes mixed samples 

on a single-cell level. This method combining SERS and SVM could potentially be 

adapted to the distinction of other types of cancer cells and be applied for conducting 

non-invasive downstream cells identification after the captures of circulating tumor 

cells. 
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1. Introduction 

Lung cancer becomes a leading one of cancer cases worldwide with two main 

categories: small cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC).1   

The latter comprises ~75% of all lung cancer and consists of adenocarcinoma, 

squamous cell carcinoma, large cell carcinoma, and rare types.2-4 As there is a 

significant difference in the diagnosis and treatment in each subtype,5 identification of 

lung cancer subtypes is important for choosing an appropriate treatment plan, 

reducing the mortality and increasing the lifetime of patients. Currently, the evaluation 

of lung cancer subtypes via an invasive procedure that requires tissue specimens is not 

always feasible, because it is difficult to access the small lung tumor and the 

sensitivity might be limited due to small tumor size. 6  

At present, there are mainly two types of method to separate and identify cancer cells 

from blood: one based on physical properties such as size, density and deformability; 

the other based on biological properties such as protein expressions.7, 8 However, the 

methods in the former type including density gradient centrifugation and membrane 

filtration are difficulty to realize the identification and distinguishing of different 

types of cancer cells. The methods in the latter type, such as immunomagnetic 

separation, can only distinguish cancer cells with specific biomarkers and are limited 

by the spectral overlapping of fluorescent tags.9 Therefore, the development of new 

method for the non-invasive, highly sensitive and label-free identification and 

distinction of closely related cell phenotypes is in urgent need.10 

Recently, surface-enhanced Raman scattering (SERS) spectroscopy, as a label-free 
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and ultra-sensitive technique for chemical and biomedical analysis,11, 12 is emerging as 

a new powerful tool for the analysis of individual cells, mainly due to its fingerprint 

spectral characteristic.10, 13-15 As SERS can enhance the Raman signals of molecules 

close to metal surface by as much as 6 to 14 orders of magnitude,16 we can use 

near-infrared (NIR) light as excitation laser with low laser power and reduced 

photo-damage to analyze living cells.17, 18 In SERS, Au nanoparticles are usually used 

as optical enhancing materials because of their chemical stability, good 

biocompatibility and strong enhancement capabilities. Au nanoparticles have been 

employed as intracellular probes facilitating cancer detection in blood plasma,19, 20 

cells,21, 22 and tissues.23, 24 

The SERS spectra of cells are derived from cells themselves and no external label is 

required.25 SERS spectra of cells can be very complicated, containing spectral 

information from numerous biological molecules.26 Various types of cells have 

different SERS spectra due to their different biomolecular composition and structure, 

thus it can be used as the basis for distinguishing at a single-cell level.27, 28 Since the 

spectral differences are often minute and difficult to identify, multivariate statistical 

methods such as principal component analysis (PCA) and hierarchical cluster analysis 

(HCA), have been applied to extract characteristic biochemical information presented 

in the spectra of different types of cells.10, 15, 28-31 However, few studies were reported 

about the application of Au nanoparticles as intracellular SERS probes with 

multivariate statistical methods for the identification and distinction of NSCLC cells 

with different subtypes.  
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In this study, the superparamagnetic Au nanoshells with strong NIR SERS effect were 

used as intracellular SERS nanoprobes, so that we can get strong signals from cells 

with lower laser power and less photo-damage. We combine SERS spectroscopy and 

multivariate statistical methods including HCA, PCA and support vector machines 

(SVM) to identify and distinguish three closely related NSCLC cell types (A549, 

H1299 and H460) and leukocytes. We have shown successful segregation of different 

types of cells using SVM analysis at a single-cell level, while HCA and PCA approach 

are more difficult to realize. A SVM classification model was built and tested for four 

independent cell types and mixture samples (two subtypes of NSCLC). The high 

prediction accuracies indicate that SERS spectra in combination with the SVM 

method can be a highly sensitive method for the distinction of NSCLC cells with 

different subtypes. Furthermore, if this method is combined with bio-chips, it will 

have potential to capture, detect and classify circulating tumor cells.  

2. Materials and methods 

2.1 Cell culture and sample preparation 

The human NSCLC cell lines H1229, H460 and A549 were obtained from American 

Type Culture Collection (ATCC), and all reagents for the cell culture were purchased 

from Gibco. The cells were cultured in RPMI 1640 medium supplemented with 10% 

fetal bovine serum, 100 U/mL penicillin, and 100 µg/mL streptomycin at 37°C in a 

humidified atmosphere containing 5% CO2. For Raman measurement purposes, the 

cells were grown on quartz coverslips to 80% confluence, and then incubated with Au 

nanoshells (Fe3O4@SiO2@Au) with a final concentration of 0.02 nM for six hours. 
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The quartz coverslips were pretreated with 75% ethanol and then washed with sterile 

water, and Au nanoshells were just washed with sterile water before the incubation 

with cells. Fe3O4@SiO2@Au nanoparticles were synthesized with an average 

diameter of 180 nm and the detailed procedure was described in our previously 

published work.32 We separated leukocytes from peripheral blood of healthy donors 

following erythrocytes lysis as published before.33 Since the isolated leukocytes can’t 

be cultured or adhere to the coverslips, the leukocytes suspensions were incubated 

with Au nanoshell particles with a final concentration of 0.02 nM for six hours.32 

Following the incubation, the cultured cells and leukocytes were washed extensively 

with phosphate buffered saline (PBS) and fixed with 4% paraformaldehyde for 10 min 

at room temperature. Then the excess paraformaldehyde was removed by deionized 

water. The leukocytes were transferred to quartz coverslips and air-dried together with 

other cultured cells for SERS measurements. For the mixed cell experiments, A549 

were pre-incubated with Au nanoshells, then they were trypsinized and separated by 

an external magnetic field (Magical Trapper, Toyobo, nearly 200 mT) for 2 min after 

excess Au nanoshells were removed. For Raman experiments, the Au nanoshells 

labeled A549 were mixed with blank H1299 at two different ratios of 1:1 and 1:9; 

then they were cultured on the coverslips and fixed with 4% paraformaldehyde.  

2.2 SERS measurement  

Raman spectrometer (SR-500, Andor, Northern Ireland) with 785 nm single mode 

diode laser (Innovative Photonic Solutions, America) was used to collect SERS 

spectra from the fixed cells on quartz coverslips. The laser power was 4.5 mW on the 
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sample with a 50x/NA 0.5 objective (Leica, Germany). The scattered Raman signal 

was detected on a peltier-cooled, back-illuminated, deep-depletion CCD detector 

(Andor, Northern Ireland). Raman spectra of all individual cells were recorded over a 

spectra range of 550-1800 cm-1. For each Raman spectrum the collection time was 3 s. 

For all cells, three Raman spectra were obtained from three different parts of each cell 

and then averaged.  

2.3 Data processing and Analysis 

Spectral data from our experiments were pre-processed and analyzed using MATLAB 

R2011b, Statistical analysis system (SAS), and R-Programme. For all analytical 

methods, the averaged Raman spectra from each individual cell were used. Statistical 

analysis system was used for HCA. HCA is a kind of cluster analysis method which 

aims to build a hierarchy of clusters in data mining and statistics.34 In our experiments, 

the hierarchy is built from the individual cell by progressively merging clusters. We 

analyzed the spectral data in the region 550-1800 cm-1 and the data were vector 

normalized. Then we used Euclidean distance method and Ward’s algorithm to 

calculate the spectral differences and form clusters.26 

For PCA the same dataset with same pre-process was used. PCA was used to highlight 

the major variability existing in the spectral dataset. In this study, the PCA model was 

also calculated within the spectral region 550-1800 cm-1. Then PCA was used to 

reduce the dimension of the dataset and the first 7 principal components (PCs) 

described 95.01% of the variance of the dataset.   

SVM with a linear kernel was used to build a differentiation model for the four 
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different cell types. SVMs are a set of related methods for supervised learning, 

applicable to both classification and regression problems.34 Here, all individual 

spectra from 200 cells (50 leukocytes, 50 H1299, 50 H460, and 50 A549) were 

background corrected using the daubechies wavelet transform (10 daubechies, 7 

transform levels, 10 iterations) and vector normalized. SVM algorithm was trained 

and tested by using leave-one-out cross validation. This procedure was repeated with 

each omitted spectrum, discriminating each spectrum in turn. Finally, a probability of 

prediction was calculated and expressed as a sensitivity and specificity for each group. 

All 200 spectra could be classified correctly, giving a prediction accuracy of 100%.  

3. Results and discussion 

 

Figure 1 (A) Extinction spectrum of Au nanoshells (Fe3O4@SiO2@Au) in water, and 
the insets show TEM image and optical image of Au nanoshells in water. The scale 
bar is 100 nm. (B) The general procedures for the preparation of cell samples and the 
SERS measurement of cells.  

Figure 1A shows the extinction spectrum of Au nanoshells in aqueous solution with a 

strong and broad peak (dipolar resonance mode) centered at ∼780 nm and a shoulder 

(quadrupolar resonance mode) at ∼610 nm. The TEM image (inset in Figure 1A) 

shows that the average diameter of Au nanoshells is ∼180 nm. The Au nanoshells 

Page 8 of 22RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



9 

 

have shown the strong NIR SERS effect due to the large electric field enhancement at 

the dipolar plasmon resonance of the Au shells.32 In our study, the cells were grown 

on quartz coverslips due to the low background interference. After the cells were 

grown to 80% confluence, they were incubated with Au nanoshells with a final 

concentration of 0.02 nM for six hours, and then the Raman measurements were taken 

(see Figure 1B). After the Au nanoshells are internalized by cells, they can greatly 

enhance the Raman signals of cell components near the shell surface. As various types 

of cells have different molecular compositions and structures, the SERS spectra can 

be used for distinguishing different cell types.27, 28, 35 

Figure 2A shows the bright field images of representative examples of four types of 

cells (from top to bottom: H460, A549, H1299, and leukocytes) with SERS 

nanoprobes inside. In the bright field images, we could easily identify the nanoprobes 

with black colors in the cells. SERS nanoprobes were mainly located in the cytoplasm, 

and these results are consistent with previous reports about the cellular location of Au 

nanoparticles.26, 36 Three closely related subtypes of NSCLC cells (H460, A549, and 

H1299) were adherent on the quartz coverslips, so they were slightly stretched. As 

leukocytes can’t adhere to the coverslips, they were directly dropped onto the 

coverslip and appeared more or less round. On average the leukocytes are slightly 

smaller in size than the other cells. However, cancer cells have large heterogeneity 

including both size and morphology, and they are not universally larger than all 

leukocytes.37, 38 Besides that, cells in blood are all suspended and their size difference 

will become smaller, therefore the size is not a reliable criterion used for 
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classification.38 

 

Figure 2 Bright-field images (A), and averaged and normalized SERS spectra (B) of 
four different types of cells (from top to bottom: H460, A549, H1299, leukocytes). 
The shaded areas represent the standard deviations of the means. SERS spectra were 
obtained from 550 to 1800 cm-1. All scale bars in the bright-field images are 50 µm.  

Averaged SERS spectra of four types of cells are depicted in Figure 2B. The shaded 

areas represent the standard deviations of the means. The SERS spectra were obtained 

with lower laser power (4.5 mW) and shorter integration time (3s) compared with 

normal Raman measurements.30 This can greatly reduce the photo-damage of cells, so 

that the constituents and viabilities of native cells themselves can remain almost 

unchanged.17 Therefore SERS has great potential to be used in live cell analysis. In 

this study, SERS spectra derived from specific cells were used to characterize the 

cellular biochemical composition of each individual type. 200 individual cells of four 

different types (50 H460, 50 A549, 50 H1299, 50 leukocytes) were tested and all 

SERS spectra were used for further statistical analysis. For the sake of convenient 

comparison, the intensity of the averaged SERS spectra for various types of cell was 
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normalized to obtain the relative intensity from 0 to 1 10. The Raman spectra of the 

cells can act as molecular fingerprints containing information from various cellular 

components such as DNA, protein, lipids and carbohydrates.39 Molecular components 

of cells are very complex,21 and typical molecules of interest are often associated with 

RNA, DNA, carbohydrates, proteins, or lipids. With the help of SERS probes, these 

biochemical molecules may typically be assessed based on their individual Raman 

band assignments. By reference to the SERS band assignments in previous reports,10, 

26, 40, we assigned the observed SERS bands in Table 1. The bands at around 747 cm-1 

(T), 833 cm-1 (O-P-O backbone stretching), 1342 cm-1 (A, G), 1582 cm-1 (G, A) are 

assigned to nucleic acids. The bands at around 645 cm-1 (C-C twist in tyrosine), 833 

cm-1 (tyrosine), 1002 cm-1 (phenylalanine), 1158 cm-1 (C–C and C-N stretch), 1252 

cm-1 (amide III), 1307 cm-1 (C-N stretch), 1342 cm-1 (C-H deformation), 1414 cm-1 

(aspartate and glutamate), 1543 cm-1 (tryptophan) are assigned to proteins and amino 

acids. And the band at around 1252 cm-1 (=CH deformation) is assigned to lipids. 

Although the SERS spectra of different types of cells look very alike at sometimes, 

they still have differences on some peak positions and peak intensities. In order to 

better compare and distinguish them, multivariate statistical methods including HCA, 

PCA and SVM were carried out.  
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Table 1 Assignment of the observed SERS bands based on the literature.10, 26, 40  

Raman shift (cm-1) Nucleic acid Protein Lipids 

645  Tyrosine (C-C twist)  

747 T   

833 O–P–O str DNAbk Tyrosine  

1002  Phenylalanine  

1158  C–C str (and C–N str)  

1252  amide III =CH def 

1307  C-N str  

1342 A, G  C-H def  

1414  Aspartate, Glutamate  

1543  Tryptophan  

1582 G, A   

str, stretching; def, deformation; bk, backbone.  

 

Figure 3 Dendrogram from the hierarchical cluster analysis in the spectral region 
from 550 to 1800 cm-1 of different types of cells is shown (leukocytes: purple, H460: 
red, A549: green and H1299: blue).   

HCA is a kind of cluster analysis method which aims to build a hierarchy of clusters 

in data mining and statistics,34 and this method has been successfully used in 
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identification and differentiation of breast cancer cells, leukaemia cells and leukocytes 

with normal Raman measurements.26 In our study, HCA method was also used to form 

clusters according to the cell type. Euclidean distance method and Ward’s algorithm 

were used to perform HCA and the spectra in the region 550-1800 cm-1 were vector 

normalized and averaged.26 Figure 3 shows the dendrogram for all 200 cells. And we 

can see two well-separated major clusters: one for leukocytes and one for NSCLC 

cells. Within the NSCLC cell cluster, each cell type forms its own sub-cluster with 

some misclassifications. We can conclude from the dendogram that although vast 

majority of leukocytes were well separated, there were some misclassifications among 

the NSCLC cells. So the clustering result from the HCA can only separate leukocytes 

from lung cancer cells but cannot distinguish different lung cancer cells well because 

they are too closely related. The clustering result is similar to the previous study about 

lung cancer diagnosing.41 In that study, two large clusters were clearly visible in the 

dendrogram, but no sub-clustering was evident for different subtypes of lung cancer 

cells and even no cluster patterns emerged. The possible reasons are small number of 

samples and great similarity between the samples.41 Thus we speculate that HCA can 

achieve good results when distinguishing samples without high similarity, but several 

misclassifications may occur when distinguishing closely similar samples.  
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Figure 4 Principal component analysis (PCA) of four types of cells. PCA scores are 
analyzed and plotted in the spectral region of 550-1800 cm-1. Each spot represents one 
cell and each cell type is coded by different colors and shapes.  

Next, we employed the PCA method to evaluate the possibility of distinguishing 

different types of NSCLC cells and leukocytes. PCA can select less number of 

significant components through linear transformation of multiple variables. As a 

classic analysis method, PCA has been widely used in multivariate statistical analysis 

for spectra.42, 43 Herein, the spectral differences in the data sets comprising 200 

spectra of four types of cells within the same spectral region from 550 to 1800 cm-1 

(consisting of 1910 data points) were analyzed by PCA. First, we can roughly 

distinguish three types of cells (H1299, H460, leukocytes) using the PCA method with 

some overlaps between the H460 and leukocytes (see Figure S1). Figure S1 shows the 

three-dimensional plot using the first, second and third principal components (PC1, 

PC2, and PC3). Different cell types are approximately separated as indicated by 

spectra assemblies with different colors and shapes. However, when it turned to four 

types of cells (A549, H1299, H460, leukocytes) that the distinguish effect became 

much worse (Figure 4). In Figure 4, using principal component scores PC1 (83.88% 

variation), PC2 (5.95% variation) and PC3 (1.83% variation), the scatter plots of 
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SERS spectra for each cell line were projected into the two-dimensional and 

three-dimensional images. We can see that the SERS spectra are mainly divided into 

two groups, one is leukocytes and the other is NSCLC cells, which is caused by the 

intrinsic difference in biomolecular composition and concentration between normal 

and cancer cells. This result is consistent with the clustering result from the HCA as 

shown in Figure 3. However, the plots groups of NSCLC cells are adjacent to each 

other and some even were overlapped with each other, which means they cannot be 

separated well. This result is similar to the previous studies.26, 31 In those studies, PCA 

only separated normal cells from tumor cells but did not distinguish different tumor 

cells well. That means on high dimensional data of complex samples, especially when 

more samples are involved and the data have ambiguous distribution of noise features, 

PCA often cannot achieve good separation results.43    

 

Figure 5 Graphical representation of the support vector machines with linear kernel 
for classification of four cell types. Three out of six decision values are plotted.   

After the failure to discriminate subtypes of NSCLC cells using HCA and PCA 

method, SVM with a linear kernel were fed with this SERS dataset to create a 
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classification model in order to find a more suitable classification method. Figure 5 

shows the analysis result using three out of the six decision values. It can be seen that 

four cell types are successfully separated as indicated by spectra assemblies with 

different colors and shapes. 200 spectra were used to train the SVM model with 

leave-one-out cross validation and all spectra could be classified correctly, giving an 

overall accuracy of 100% on a single-cell level. The details of the prediction accuracy 

of the classification model are presented in Table S1.  

Although the SVM model with 100% accuracy was built, these cells were all involved 

in building this model. It will be more practical if this model can predict some 

“unknown” cells which were not involved in building this model but within these four 

cell types. To further demonstrate the accuracy and practicability of this SVM model, 

this trained and validated SVM model was used to predict and classify a test set 

(including additional 80 cells: 20 A549, 20 H1299, 20 H460, 20 leukocytes). It should 

be mentioned that none of the cells was included in building the SVM model. The 

detailed predicted results for the individual cell types are shown in Table 2. A 

predicted accuracy of 88.75% can be achieved on a single-cell level. If we want a 

better distinguish effect, more samples are needed both for training and testing the 

model.44 For clinical purpose, the most relevant question is to identify the cancer cells 

from body’s own healthy leukocytes.45 For this purpose the SVM model trained with 

spectra showed very good characteristics: all NSCLC cells were correctly identified as 

cancer cells with 100% accuracy.  
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Table 2 Confusion table for the predicted result of 80 cells using the SVM model.  

 Predicted labels 

Leukocytes A549 H1299 H460 

 

True labels 

Leukocytes 18 0 0 2 
A549 0 18 0 2 

H1299 0 2 18 0 

H460 0 2 1 17 

We further evaluated the performance of this SVM model when there were more than 

1 subtype of NSCLC cells in the sample. The mixtures of two subtypes of NSCLC 

cell (A549 and H1299) with different ratios were used as the test sets. It should be 

emphasized again that none of these cells was included in building the SVM model. 

Although fluorescent biomarkers can help to distinguish cells in the mixture, they may 

also produce strong Raman background in the SERS measurements. In order to verify 

the accuracy of the SVM model in mixed samples, we mixed SERS probes labeled 

A549 and blank H1299 at different ratios, thus we can recognize the cell type directly 

from the bright-field images.  

 

Figure 6 Bright-field images of the mixed two subtypes of NSCLC cells cultured on 
quartz coverslips. The ratio of A549: H1299 was (A) 1:1 and (B) 1:9. All scale bars 
are 200 µm. 
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Figure 6 shows the bright-field images from the mixtures of two subtypes of cell, 

where A549 can be recognized by SERS probes in the cells. Figure 6A represents the 

group in which A549 and H1299 were mixed at a ratio of 1:1 (A549 indicated by red 

arrows and H1299 by white arrows). Since the normal Raman signals of H1299 cells 

(no SERS probes inside) were very weak, we only detect the signal of A549 cells in 

mixed samples. Table 3A showed the predicted results based on the SVM model and 

an accuracy of 95% can be achieved on a single-cell level. Figure 6B represents the 

group in which A549 and H1299 were mixed at a ratio of 1:9, and a prediction 

accuracy of 100% can be achieved for A549 on a single-cell level (Table 3B). These 

results indicate the SVM model significantly improves the accuracy of prediction and 

classification of subtype of NSCLC cells in contrast to the HCA and PCA analysis 

methods.  

 

Table 3. Confusion table for the mixed cell samples of A549:H1299 at the ratio of (A) 

1:1 and (B) 1:9 using the SVM model.  

   Predicted labels 

A   A549 H1299 

 True labels A549 19 1 

  

  
   Predicted labels 

B   A549 H1299 

 True labels A549 5 0 

4 Conclusions 

In this study, we have used SERS spectroscopy and multivariate statistical methods 

including HCA, PCA and SVM to identify and distinguish three subtypes of NSCLC 
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cells and leukocytes on the single-cell level. With the help of statistical methods, a 

reproducible SVM model has been developed showing a much better classification 

performance compared to HCA and PCA method. The SVM classification model 

provides a predication accuracy of 88.75% for “unknown” independent cell types and 

an accuracy of ~95% for the mixed samples on a single-cell level. This predication 

accuracy can be further improved by using larger amount of samples to train the 

model. The fast identification of subtype of NSCLC cells by SERS spectra with 

multivariate analysis can assist doctors to choose appropriate treatment plans for lung 

cancer patients as soon as possible. This method could also be adapted to the detection 

and distinction of other types of cancer cell. Moreover, the SERS nanoprobes used in 

this work are composed of superparamagnetic cores, which potentially further allows 

the isolation and enrichment of cancer cells in peripheral blood. We believe that future 

promising work may involve SERS and magnetic separation method combined with 

multivariate analysis as a rapid, simple, non-destructive and accurate diagnostic tool 

in early stage cancer detection and cancer-therapy monitoring.  
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