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Abstract 

Patients with chronic, non-healing diabetic ulcers extend hospital stays and 

increase the financial burden than non-diabetics. This investigation developed 

nanofibrous growth factor-eluting poly (lactic-co-glycolic acid) (PLGA)-collagen 

hybrid scaffolds that enabled the sustainable release of recombinant human 

platelet-derived growth factor (rhPDGF) to treat diabetic wounds. RhPDGF, collagen, 

and PLGA were dissolved in hexafluoroisopropanol, and then electrospun into 

nanofibrous scaffolds. An enzyme-linked immunosorbent assay kit and an elution 

method were utilized to evaluate the rates of in vivo and in vitro release of growth 

factors from the scaffolds. High concentrations and effectiveness of rhPDGF were 

documented for over three weeks. The water contact angles of nanofibrous 

rhPDGF-eluting PLGA-collagen hybrid scaffolds were less (97.2±0.7
o
) than those of 

PLGA-collagen hybrid mesh (107.6±1.0
o
) or virgin PLGA (113±3.3

o
) (all post hoc p 

< 0.05). The nanofibers with rhPDGF-eluting PLGA-collagen hybrid scaffold also 

exhibited significantly higher water-retaining capacity than those in other groups (all 

post hoc p < 0.001). Furthermore, the scaffolds caused more re-epithelialization and 

contained more collagen I in rats with rhPDGF-eluting scaffolds than controls, as 

determined from the expressed matrix metalloproteinase 9 in the hair canals in 

developing hair follicles. These results revealed for the first time, the application of 

rhPDGF as a growth factor adjuvant, and developed a new collagen-based composite 

with potent cell infiltration and epithelialization properties. 

Keywords 

Nanofibrous scaffolds; electrospinning; release profile; diabetic wound; growth factor; 

rhPDGF 

 

Page 2 of 33RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 3 

Introduction 

Patients with chronic, non-healing ulcers may extend longer hospital stays and 

increase the financial burden on hospitals than others.
1
 Diabetes mellitus is a serious, 

lifelong metabolic condition that is a leading cause of chronic wound resulting in 

non-traumatic amputation in both developed and developing nations.
2
 Numerous 

biochemical abnormalities may accelerate neuropathy and cause vascular changes in 

wounds, including disturbances in collagen metabolism, delay in re-epithelialization, 

impairment in fibroblasts proliferation and keratinocytes migration.
3-4

 The earliest 

intervention can help promptly to heal such a wound, reducing the risk of amputation 

of the affected limb.
5
 Development of biochemical correction treatment methods to 

enhance the wounds repair is therefore urgently required. 

Collagen and its producing cells, including fibroblasts and keratinocytes, are 

important in skin development and play an essential part in the wound healing and 

tissue remodeling.
6
 In use of electrospun poly (lactic-co-glycolic acid) 

(PLGA)-collagen hybrid nanofibers as a dressing for wounds is an operative means of 

regeneration of skin that stabilizes vascular and cellar apparatuses in the wound bed to 

deactivate numerous harmful factors.
7-10

 Upon damage, platelet-derived growth factor 

(PDGF) is released from degranulated platelets into the wound fluid. Notably, 

decreased actions of PDGF and its receptors are seen in the impaired wounds 

resulting from hyperglycemia, showing that the expression of PDGF and its receptors 

is an essential component of wound healing.
11-12

 The biological activity of 

recombinant human PDGF-BB (rhPDGF-BB) is similar to that of naturally occurring 

PDGF, and can promote the chemotactic recruitment, following the formation of 

granulation tissue, the proliferation of cells and the facilitation of epithelialization that 

participate in wound repair.
13

 The rhPDGF-BB gel has been approved by the US Food 
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 4 

and Drug Administration for treating diabetic foot ulcers.
14

 But, the gel is relative 

costly and short acting, leading to poor compliance and certain uneasiness for local 

treatment by patients or nursing care.
15

 

This fact provides a new idea on using rhPDGF and collagen to promote diabetic 

wound healing. We posit that the treatment of an rhPDGF/collagen/PLGA dressing 

can improve production of collagen content, and accelerate the wound healing rate 

comparing with PLGA-collagen hybrid or virgin PLGA scaffolds. In this work, 

rhPDGF-eluting PLGA-collagen hybrid mesh was electrospun into nanofibrous 

scaffolds for diabetic wounds care. 
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Methods and Methods 

Materials 

The PLGA that was utilized herein was a commercially material (Resomer RG 

503, Boehringer, Germany) and had a ratio of lactide and glycolide (50:50). 

rhPDGF-BB and hexafluoroisopropanol (HFIP) were obtained from Future Health 

Biotechnology (Beijing, China) and Sigma-Aldrich (Saint Louis, U.S.A.), 

respectively. 

The electrospinning apparatus included a needle and syringe, an aluminum 

collection plate, a grounding electrode, and a high-voltage direct current (DC) power 

supply.
7 

Three groups, including rhPDGF-BB-eluting PLGA-collagen hybrid 

scaffolds (Group A) (PLGA, 280 mg; rhPDGF, 5 mg; collagen 140mg), 

PLGA-collagen hybrid scaffolds (PLGA, 280 mg; collagen 140mg) (Group B) and 

virgin PLGA scaffolds (PLGA, 280 mg) (Group C) were separately mixed in HFIP (1 

ml) and then fabricated. Nanofibrous scaffolds with 200 m in thickness were 

produced.  

 

Scanning electron microscopy (SEM) 

The surface of nanofibrous morphology was studied using a Hitachi S3000N 

SEM (Tokyo, Japan) following gold coating. The average fiber diameter and pore size 

of each sample were acquired from the SEM images using Image J software. 

Measurements of diameter and pore size were made at 100 random positions in each 

sample test (n=5). The nanofibrous-scaffolds porosity was also measured.
16

  

 

Mechanical propertie and Water contact angle  

The mechanical characteristics of both group A and B were tested on a Lloyd 
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 6 

tensiometer (AMETEK, U.S.A.) following the ASTM D638 standard.
17

 The water 

contact angles of nanofibrous scaffolds were recorded by a contact angle 

measurement instrument (First Ten Angstroms, U.S.A.) (n= 5). 

 

Water absorption capacity of nanofibrous scalffolds 

The water absorption volume of the three different scaffolds was obtained. The 

nanofibrous scaffolds were studied by immersing in distilled water at 28°C and 

measured for an half, one, two, three, eight, 24, and 48 hours. The water content (WC, 

%) was measured.  

 

In vivo wound healing study 

Sprague-Dawley male rats (n=18; mean body weight 306 ± 17 g; age 12 weeks) 

were prepared and randomized to three groups. All procedures related to animal were 

institutionally approved, and all animals were cared for under the direct supervision of 

a licensed veterinarian, according to the principles of the National Institute of Health 

(Taiwan). All rats were received standard rodents chow with free access to ad libitum 

drinking water, with a cycle of 12h light: 12h darkness and controlled humidity and 

temperature; they were kept in individual cages in a central animal care facility 

before ,during, and after the experiments. A single 70 mg/kg intraperitoneal injection 

of sterile streptozotocin (STZ) (Sigma, U.S.A.) in 0.1 mol/L sodium citrate buffer at 

pH 4.5 was used to induce experimental diabetes in the rates before they were treated. 

The measurement of blood sugar levels of over 300 mg/dl 72 h after STZ injection 

confirmed the diabetic state.  

After anesthesia, two circular 0.8 cm dorsal full-thickness wound were prepared. 

In the healing process, no other topical drug was used and no dressing was replaced. 
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The wound areas were analyzed using Image J image software with tracing onto glass 

microscope slides. The rate of wound closure that denotes the percentage wound 

reduction from the initial size was determined. 

Blood was sampled daily from tail veins of each rat and an OneTouch strips 

(LifeScan, Milpitas, U.S.A.) was using for measurement of its glucose content. 

Insulin glargine (Sanofi-Aventis, Frankfurt, Germany) was administered to any rat if 

they had exhibited “high” glucose levels or significant weight lost.  

On days three, seven, and 14, each wound was excised down to the layer of 

fascia along a 5 mm border of unwounded skin. Intra-dermis tapping (below the 

dressings) was performed with 19-gauge fine-needle aspiration on wounds were 

treated with rhPDGF-eluting scaffolds for in-vivo release measurement on four 

different periods. 

 

In vivo and in vitro release of rhPDGF 

Active in vivo and in vitro rhPDGF-BB concentrations were acquired by 

Quantikine PDGF-BB Enzyme-linked immunosorbent assay (ELISA) kits (R&D 

Systems, Minneapolis, U.S.A.). A multiple detection plate reader (Tecan SAFIRE, 

Durham, U.S.A.) at an absorption wavelength of 450 nm using a reference 

wavelength of 570 nm was used for sample analysis. The standards in each kit were 

used to plot standard curves.  

 

Immunofluorescence imaging 

The compounds that were carried out in the investigative procedure were 

purchased from Sigma. Type I collagen or matrix metalloproteinase 9 (MMP-9) 

(Abcam, Cambridge, MA) labeling index in dermis was tested related to DAPI 
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 8 

labeling nuclei. 

 

Statistical analysis 

All data in this study are presented as mean ± standard deviation. One-way 

ANOVA was used to find statistically significant differences among groups. For 

making multiple comparisons, as part of the ANOVA, the post hoc Bonferroni 

procedure was implemented to detect significant differences between the means of the 

two related groups. If the p value is < 0.05, results were considered to be statistically 

significant. The data were calculated using Statistical Package for Social Sciences 

software (version 17.0, Chicago, U.S.A.). 
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Results  

Figure 1 displays SEM images of the biodegradable nanofibers (3,000× 

magnification) (Fig. 1a and 1b). The pore space of the nanofibrous scaffolds in the 

two groups were comparable (Fig. 1c and 1d) (94.5±55.8 x 10
4
 nm

2
 for group A and 

85.5 ±41.0 x 10
4
 nm

2
 for group B) (P = 0.241), but the nanofibers diameters in group 

A (206.9±120.1 nm) was significantly smaller than group B (282.7±114.2 nm) (Fig. 

1e and 1f) (p < 0.001). The nanofibrous-scaffolds porosities were similar (group A 

89.9±0.9% and group B 88.5±0.7%) (p = 0.510). 

 The results in Fig. 2 display that the tensile strength of the virgin PLGA 

nanofibers (2.12±0.10 MPa) was close to that of the rhPDGF-BB-eluting (2.04±0.08 

MPa) or PLGA-collagen hybrid nanofibers (2.07±0.13 MPa) (Anova p = 0.683). 

However, virgin PLGA nanofibers had higher elongation at breakage than did 

rhPDGF-BB-eluting and virgin PLGA-collagen hybrid nanofibers (All post hoc 

p<0.001), and the PLGA-collagen hybrid nanofibers exhibited higher elongation at 

breakage (60.3±1.8 %) than did the rhPDGF-BB-eluting PLGA-collagen hybrid 

nanofibers (50.0±2.0 %) (post hoc p =0.003). 

The measured contact angles of water of group A, B, and C scaffolds were 

97.2±0.7
o
, 107.6±1.0

o
, and 113±3.3

o
, respectively (Fig. 3). Clearly, nanofibers in 

group C revealed less hydrophilicity than those in group A or B (post hoc p < 0.001 

and p =0.048, respectively). Moreover, adding rhPDGF-BB significantly reduced the 

hydrophobicity of the electrospun PLGA-collagen hybrid nanofibrous scaffolds (post 

hoc p =0.002). 

The results in Fig. 4 show that nanofibers in groups A and B had much higher 

capacities than those in group C following submersion, reaching their peak water 

absorption at 24 hours (193.3 ± 30.8 and 137.2 ± 19.7% respectively). Additionally, 
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 10 

virgin PLGA nanofibers (group C) achieved their peak values of water content (79.7 ± 

1.1%) at three hours. The water-retaining volume of group A and B surpassed that of 

group C nanofibers, mostly due to the hydrophilic characteristic of rhPDGF-BB and 

collagen in the matrix (All post hoc p < 0.001). After eight hours of immersion, the 

nanofibers in group A also exhibited significantly higher water-retaining capacity than 

those in collagen group (post hoc p < 0.001). 

The rhPDGF-BB-eluting scaffolds continuously released the growth factors 

for 21 days, with a burst release in the initial period on day one (102± 3 ng/ml), and 

release as a second peak from days five to seven (> 24 ng/ml) (Figure 5). After that, 

the concentration slowly declined (around 5 ng/ml). In vivo the levels of growth factor 

were measured. The measurements indicate that the concentration of the reached 

growth factors reached a peak on day three (89± 7 ng/ml), after which it decreased 

slowly to 3± 1 ng/ml on day 21.  

Figure 6 presents wounds on a diabetic rat in three groups on different time 

following therapy. The proportions of the wounds areas that were treated by group B 

and C fell slowly to 8.3± 1.6% and 9.2± 0.9%, respectively, by day 14 (post hoc p= 

0.500). The proportions of wound regions protected by the rhPDGF-BB-eluting 

membranes decreased to about 3.6± 0.5% by day 14. Group A promoted wound 

repairing more than that achieved by both other groups (post hoc p all < 0.001).  

The nanofibrous scaffolds were extensively developed into integrated ambient 

skin without causing any significant production of inflammatory cells (Figure 7). The 

nanofibrous groups presented thicker collagen (double arrow) following recovery in 

the layer between epidermis and subcutaneous tissue than was found in PLGA only 

group. At 14 days after operation, almost entirely healed and protected by 

re-epithelialization in epidermis in all cases and produced sparse infiltrate of 
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 11 

inflammatory cells and fibrous connective tissue both in the dermis and subcutaneous 

layer were noted in the wounds of three groups. On week two, substantial differences 

in epithelialization and healing of stratum corneum were found among the wounds in 

histology across the groups, caused by migration of keratinocytes across the wounds. 

Cell proliferation and migration of the outermost layer was most rapidly in the 

wounds in group A. After 14 days, rhPDGF-BB-eluting PLGA-collagen hybrid 

scaffolds exhibited full re-epithelialization and the highest proliferation of 

keratinocytes in the epidermis layer (arrow).  

The results in Fig. 9 suggest that the content of collagen in PLGA-collagen 

hybrid scaffolds with rhPDGF-BB-eluting group (0.93± 0.02) or without 

rhPDGF-BB-eluting group (0.75± 0.01) were considerably higher than that in PLGA 

only (group C, 0.57± 0.01) and the collagen content in rhPDGF-BB-eluting 

PLGA-collagen hybrid scaffolds group also remarkably exceeded that in 

PLGA-collagen hybrid scaffolds group on day seven (all post hoc p < 0.001).  

On day 14, MMP-9 content index in the corium of rhPDGF-BB-eluting 

PLGA-collagen hybrid scaffolds (0.65± 0.02) was up-regulated than that in 

PLGA-collagen hybrid group (0.49± 0.03) or PLGA only group (0.07± 0.02) (all post 

hoc p < 0.001) (Fig. 10). Additionally, MMP-9 expression was greater in the hair 

canals of developed hair follicles in group A than in other groups (circular area). 
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Discussion 

Deficiency of growth factors in diabetic wound areas is the key issue, which 

result in delayed wound repair. In use of rhPDGF-BB PLGA-collagen hybrid 

scaffolds significantly promoted the proliferation of cells in the wound bed area, 

markedly improved the wound repair, and enhanced the quality of repairing in rats 

associated with diabetes. Furthermore, we confirmed that treatment with high 

concentrations of rhPDGF-BB in PLGA-collagen hybrid membranes enhanced 

MMP-9 expression in the hair canals of developed hair follicles and collagen content 

in the diabetic wound areas during the healing process for more than three weeks. 

These findings indicate that the enhancement of MMP-9 function and collagen 

content by rhPDGF-BB would contribute to the acceleration of diabetic wound repair. 

Because viscosity of a polymer solution depends on concentration, the presence 

of rhPDGF-BB in PLGA will reduce solution viscosity. Upon a particular applied 

force, applied by the particular electric field in the electrospinning and collection 

process, lower viscous solutions stretched higher resulting in decreased diameters of 

electrospun rhPDGF-BB-eluting PLGA-collagen hybrid nanofibers. These features 

could be explained with reference to changes in the viscosity and diameter of the 

spinning solution. Fibers become interconnected as they dry only following they reach 

the collector.
18

 Additionally, the overall tension in fibers depends on self-repulsion 

of the excess charges on the ejected jet during electrospinning. Adding rhPDGF-BB 

resulted in the accumulation of a greater charge density on the surface of the jet. The 

total electric charge that was carried by the electrospinning jet significantly increased 

during the fabricated process because rhPDGF-BB is a heat-stable positively charged 

hydrophilic protein.
19

 As the number of charges that were carried by the jet increased, 

higher thinning and elongation powers that could overcome the surface tension force 
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resulting in a charged liquid jet that were exerted on the jet in the electrical field. 

Therefore, the final diameters of the fibers decreased markedly and their distribution 

became narrower with increasing the charge density. Furthermore, the fabricated 

scaffolds were high porosity with regularly distributed and fully interlocked geometry 

than previously obtained mats.
20-21

 Additionally, the examined materials were shown 

to be compatible with the nearby tissue without noted adverse reactions and 

inflammatory response, which is in line with the results of Schneider et al.
22

 The 

rhPDGF-BB PLGA-collagen hybrid nanofibers in this work served as ultimate 

scaffolds for cell seeding prior to cells ingrowth and tissue regeneration.
23

 

Additionally, the electrospun composite rhPDGF-BB/collagen or collagen 

nanofibrous mat had inferior mechanical properties when compared to the pure PLGA 

nanofibers, perhaps on account of macromolecular chains rearrangement and 

structural change in the mixed solution.
24

 Nevertheless, the rhPDGF-BB/collagen or 

collagen scaffolds herein had adequate material extensibility and strength leaded to 

tolerate the variations of structure and morphology that occur in wound healing 

process.
25

 

A wet environment plays an essential role for recruitment and proliferation of 

fibroblasts or keratinocytes as well as collagen synthesis during wound healing; it also 

disfavors scar formation because healing commonly proceeds more quickly under 

humid conditions than dry conditions.
26

 Therefore, an ideal wound dressing for 

wound must offer a moist wound environment, be absorbent to carbonic anhydride 

and oxygen, and aid in faster healing of wound. The management of biomaterial 

hydrophobicity at the surface of polymers for making them enhanced cell-substrates 

interaction within scaffolds is promising. The surface of nanofiber was relatively 

smooth and might have the similar hydrophilicity due to compatible roughness.
27
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However, the effect of hydroscopic membrane also depends on the polymer 

characteristics of the fiber. Despite electrospun PLGA mats exhibited hydrophobic 

characteristic
28

, the presence of collagen and rhPDGF-BB made the nanofibrous 

membranes more hydrophilic.
29

 Furthermore, rhPDGF-BB-eluting collagen scaffolds 

retained more water than collagen-only scaffolds herein. Therefore, cell-adhering 

proteins can be competitively adsorbed by surfaces moderate wettability, resulting in 

cell adhesion.
30

 Moreover, the nanofibrous membranes has the benefit of reducing the 

necessity for frequent wound dressing and cleaning and, allowing the skin to enhance 

better on wound repair and for pain relief.
31

  

The sustainable release of rhPDGF-BB from nanofibrous membranes herein 

proceeds through a three-stage kinetic mechanism: an initial drug-burst, 

diffusion-limited and degradation-controlled release.
32-33

 The in vivo and in vitro drug 

delivery profiles showed that growth factors were almost released after 

electrospinning of rhPDGF-BB-eluting PLGA-collagen hybrid platform. Nevertheless, 

the molecules placed on the nanofibrous outsides resulted in the initial burst of 

rhPDGF-BB delivery for five days. Following the rhPDGF-BB released, the 

rhPDGF-BB nanofibrous scaffolds proceeds through two more stages - 

diffusion-limited release on days five to seven and degradation-controlled release 

after day seven.
33-34

 Therefore, the nanofibrous membranes released rhPDGF-BB for 

more than three weeks, favoring the diabetic wounds treatment. 

Diabetes has been demonstrated to impair the production of collagen and delay 

wound repair, both are serious to the phases of proliferation and maturation after a 

wound damage.
35

 PDGF-BB can stimulate the synthesis and accumulation of collagen 

in wound healing to an extent that is controlled by its chemoattactant activity for 

collagen-producing cells or macrophages.
36-37
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Health care practitioners have reported that hair-bearing skin tends to heal more 

rapidly than those that lack hair follicles.
38-39

 The diabetic population has a 

significantly higher rate of hair loss and significantly thinner hair than the 

non-diabetic population because people with diabetics have fewer new strands and 

filaments parts of follicles.
40

 MMP-9, one of a family of zinc-dependent 

endoproteases
34

, participates in regulating the formation of hair canals and promotes 

the formation of the initial lumen process by actively remodeling the extracellular 

matrix, preparing the hair canal for emergence of the hair shaft and preventing 

damage to its walls by a growing hair fiber.
41

 PDGF is an effective mitogen that is 

generated in keratinocytes and endothelial cells, and is essential in the cell 

differentiation, proliferation and growth.
42

 During wound healing, re-epithelialization 

process was promoted by migrating epithelial stem cells in the hair follicle to the 

epidermis. This fact reveals that PDGF-BB is involved in initiating wound repair, 

suggesting that rhPDGF-BB-eluting PLGA-collagen hybrid scaffolds may be utilized 

in an innovative treatment to accelerate would healing. 

Changed expression of PDGF-BB has been related to problems of possible 

cancer promotion because of PDGF natural activity.
43-44

 However, the external 

application of rhPDGF-BB has been evaluated for potential problems in a variety of 

studies without suggestion of carcinogenicity, toxicity, or mutagenicity after 

administration as an implantable device or drug combination product.
45-47

 

In conclusion, the developed rhPDGF-BB–eluting PLGA-collagen hybrid 

nanofibrous membranes made treated diabetic wound contain more collagen content 

and increase the MMP-9-induced expression of hair follicles than collagen-PLGA 

hybrid dressing, owing to delivery of effective rhPDGF-BB. Further studies are 

warranted to confirm these results in other animal models for the study of hair follicle 
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to clarify the complex association between hair follicle function and wound healing. 
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Legends for figures 

Figure 1: Scanning electron microscope (SEM) pictures of rhPDGF-BB-eluting 

PLGA-collagen (a), and virgin PLGA-collagen hybrid scaffold (b) (Scale bar: 5 μm).  

 

Figure 2: Stress-strain curves of three groups. Virgin PLGA: tensile strength 2.16 

MPa, elongation at breakage 91.4 %; rhPDGF-BB-eluting PLGA-collagen hybrid 

scaffold: tensile strength 2.07 MPa, elongation at breakage 48.9 %; PLGA-collagen 

hybrid scaffolds: tensile strength 2.07 MPa, elongation at breakage 61.9%. 

 

Figure 3: Measured contact angles. rhPDGF-BB-eluting PLGA-collagen hybrid (a), 

PLGA-collagen hybrid (b), and virgin PLGA scaffolds (c). Contact angles were 98.0°, 

107.6°, and 112.7°, respectively. 

 

Figure 4: Various water content of three groups. (*Group A versus Group B, †Group 

A versus Group C, ‡Group B versus Group C, p<0.05 in post hoc analysis) 

 

Figure 5:  In vitro rhPDGF-BB release.  

 

Figure 6: The process of wound repair on different days. Day zero (a,b,c), three (d,e,f), 

seven (g,h,i), and 14 (j,k,l) following treatment with group A, B, and C. (Scale bar = 5 

mm).   

 

Figure 7: Wound repair analysis for three groups. 

 

Figure 8: Wound histological images (hematoxylin/eosin, H&E stain) in three groups 
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on day 14. Double arrow indicates dermal layer. Scale bar = 50μm.  

 

Fig. 9: Expression of collagen on day seven. DAPI-labeled nuclei (blue) (d,e,f). 

Cy3-conjugated secondary antibody (orange) (g,h,i). rhPDGF-BB-eluting 

PLGA-collagen hybrid scaffold increases collagen I in dermis (double arrow). Dashed 

lines indicate dermal–epidermal junction. Scale bar = 75μm.  

 

Fig. 10: Effect of three groups on MMP-9 content on day 14. DAPI-labeled nuclei 

(blue) (d,e,f). Cy3-conjugated secondary antibody (orange) (g,h,i). 

rhPDGF-BB-eluting PLGA-collagen hybrid scaffolds up-regulates MMP-9 in dermis 

(double arrow).  
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Figure 1: 
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Figure 2: 
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Figure 3: 
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Figure 4: 
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Figure 5: 

 

Page 28 of 33RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 29 

Figure 6: 
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Figure 7: 
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Figure 8: 

 

Page 31 of 33 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 32 

Figure 9: 
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Figure 10: 
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