

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Facile synthesis of nanostructured LiMnPO₄ as

high-performance cathode material with long cycle life and

superior rate capability

Longhuan Liao,^a Jian Xie,^{*ab} Shichao Zhang,^c Gaoshao Cao^b and Xinbing Zhao^{ab}

^aState Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China. E-mail: xiejian1977@zju.edu.cn; Fax: +86-571-87951451; Tel: +86-571-87951451 ^bKey Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, P. R. China

School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, P. R. China

ABSTRACT

Lithium manganese phosphate (LiMnPO₄) has been considered as an alternative to lithium iron phosphate (LiFePO₄) for next-generation Li-ion battery cathode because of its higher working voltage. However, facile preparation methods for high-performance LiMnPO₄ are still lacking. In this work, we propose a facile route to prepare nano-LiMnPO₄ (30–50 nm) by using citric acid (CA) as the surfactant. The addition of a small amount of CA in precursor leads to obvious size reduction of LiMnPO₄. After carbon-coated nano-LiMnPO₄ exhibits excellent rate capability and long cycle life at high rate because of the small size and uniform/thin carbon coating. At a high rate up to 20 C (3.4 A g⁻¹), LiMnPO₄/C can still deliver a high discharge capacity of 96.6 mAh g⁻¹. LiMnPO₄/C also exhibits long cycle life with ~70% capacity retained after 500 cycles at 10 C. The excellent electrochemical performance of LiMnPO₄/C makes it attractive cathode in high-power and high-energy Li-ion batteries.

1. Introduction

LiMPO₄ (M = Fe, Mn, Co) with an olivine-type structure has gained a wide interest as new cathode materials for Li-ion batteries since the first report on LiFePO₄ by Goodenough and co-workers in 1997.¹ In these olivine-type materials, LiFePO₄ has now realized practical applications in electric vehicles (EVs) because of its environmental friendliness, low cost and structural stability.^{2,3} Compared with LiFePO₄, LiMnPO₄ (LMP) could provide a larger energy density with its higher redox potential of Mn^{2+}/Mn^{3+} (4.1 V *vs.* Li/Li⁺) than Fe²⁺/Fe³⁺ (3.45 V *vs.* Li/Li⁺).⁴⁻⁶ However, LiMnPO₄ exhibits a rather lower electrochemical activity than LiFePO₄ due to its intrinsically lower electronic and ionic conductivity,^{7,8} structural instability of MnPO₄ phase,^{9,10} and larger volume change between LiMnPO₄ and MnPO₄.¹¹ In addition, The Mn³⁺ in the charge state undergoes Jahn-Teller distortion.^{12,13} In recent years, great effort has been made to improve the electrochemical activity of LiMnPO₄ through cation substitution, size decrease, optimized carbon coating, etc.¹⁴ Cation substitution has found to be an effective measure to activate LiMnPO₄ and stabilize the delithiated phase.¹⁵ However, the substitution should be controlled at a low level to maintain the high energy density of LiMnPO₄.¹⁶⁻²⁴

Size decrease is another useful method to enhance the electrochemical activity of LiMnPO₄. Oh et al. synthesized LiMnPO₄ using a spray-pyrolysis/ball-milling route.²⁵ The LiMnPO₄ of 10–50 nm could deliver high capacities of 158 mAh g⁻¹ at 0.05 C and 126 mAh g⁻¹ at 1 C after coating of uniform carbon layer. Recent work has shown that nano-engineering could remarkably improve the electrochemical performance of LiMnPO₄.^{18,26–42} Since Yang et al. first reported the direct synthesis of LiFePO₄ by hydrothermal method,⁴³ hydrothermal/solvothermal route has been widely used to prepare LiMPO₄ (M = Fe, Mn) with nanostructure.⁴⁴ The size and morphology of LiMnPO₄ could be easily regulated by controlling the synthetic conditions (temperature, time, reactant concentration/ratio, etc) and using different solvents or surfactants.^{26–29,35–39} The work by Qin et al. indicated that the morphology of LiMnPO₄ can be controlled by simply adjusting the pH value.²⁷ The obtained LiMnPO₄ nanoplates could yield high capacities of 149 mAh g⁻¹ at 0.1 C and 90 mAh

 g^{-1} at 1 C after graphene coating. Hong et al. synthesized LiMnPO₄ nanorods by setting the volume ratio of ethylene glycol (EG) and water at 11:1.³⁷ The carbon-coated LiMnPO₄ could deliver a high capacity of 110 mAh g⁻¹ at 10 C and a capacity retention of ~94.5% after 100 cycles at 0.5 C.

It is generally accepted that, nano-engineering is a practical strategy to realize the high performance of LiMnPO₄ materials. Nevertheless, a challenge still remains to find a facile preparation method for nanosized LiMnPO₄. For the solvothermal synthesis of LiMnPO₄, the reaction of H₃PO₄ + 3LiOH + MnSO₄ = LiMnPO₄ + Li₂SO₄ + 3H₂O is usually adopted. The morphology of LiMnPO₄ was found to depend greatly on molar ratios of H₃PO₄/LiOH/MnSO₄.^{27,39} Actually, acidity plays a critical role in determining the morphology of LiMnPO₄ in the reactions. In this work, nanostructured LiMnPO₄ was prepared by a facile solvothermal route in an EG/H₂O mixed solvent with citric acid (CA) as a surfactant. The results showed that the addition of a small amount of CA leads to an obvious size decrease and considerable performance improvement of LiMnPO₄. The LiMnPO₄/C granules of 30–50 nm could deliver high capacities of 147.9, 113.0 and 96.6 mAh g⁻¹ at 1 C, 10 C and 20 C, respectively. The capacities can be retained at 89.1 and 80.5 mAh g⁻¹ after 500 cycles at 1 C and 10 C, respectively. The intrinsic mechanism for performance enhancement was also investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). This work provides a facile method to realize a high performance of the LiMnPO₄ materials.

2. Experimental Section

2.1 Preparation of LiMnPO₄ and LiMnPO₄/C

LiMnPO₄ was prepared by a facile solvothermal route via reaction $H_3PO_4 + 3LiOH + MnSO_4 = LiMnPO_4 + Li_2SO_4 + 3H_2O$ in an EG/water mixed solvent.³⁹ The molar ratio of H_3PO_4 , LiOH and MnSO₄ in the precursor is 1:3:1. During the preparation of the MnSO₄ solution in EG/water, a desired amount of CA (1–7 mmol) was added. The reaction products are named LMP-*x*, where *x* represents the amount of CA used (in the unit of mmol). For example, when 1.0 mmol of CA was used, the product is named LMP-1.0. The carbon coating procedure was conduced according to the

previous work. 39 For simplicity, LiMnPO_4/C uses the same name as the corresponding LiMnPO_4 sample.

2.2 Materials characterization

X-ray diffraction (XRD) patterns were collected on a Rigaku D/Max-2550pc powder diffractometer (Cu K_{α}, $\lambda = 0.1541$ nm) to analyze the crystalline structure of LiMnPO₄. The morphology and microstructure of LiMnPO₄ and LiMnPO₄/C were checked by scanning electron microscope (SEM) on an S-4800 microscope and transmission electron microscopy (TEM) on a JEM 2100F microscope. Carbon content in LiMnPO₄/C samples was obtained using a Flash EA 1112 tester. In the equipment, the solid carbon can be combusted into gaseous CO₂ in a rapid and dynamic mode. The carbon content can be determined by analyzing the amount of CO₂ with chromatography. The Brunauer-Emmett-Teller (BET) specific surface area of LiMnPO₄ was calculated based on the N₂ absorption/desorption isotherms using a Quantachrome Autosorb-1 analyser.

2.4 Electrochemical measurements

The electrochemical performance of LiMnPO₄/C was measured using CR2025-type coin cells on a Neware battery cycler (Shenzhen, China). The electrode was made by homogeneously mixing LiMnPO₄/C, acetylene black and polyvinylidene fluoride in a mass ratio of 7:2:1. The active material (LiMnPO₄/C) loading was around 2 mg. The cells assembly was conducted in a glove box filled with pure Ar. For the cells, metallic Li foils were used as the counter electrodes, 1 M LiPF₆ in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1 by volume) was used as the electrolyte, and Celgard 2300 microporous membranes were used as the separators. The cells were tested with a constant-current–constant-voltage (CC–CV) protocol. The cells were first galvanostatically charged to 4.5 V at different current rates, then held at 4.5 V for 1 h, and galvanostatically discharged to 2.0 V. The charge and discharge processes use the same current rate. The current density was calculated based on the total mass of LiMnPO₄ and carbon for the LiMnPO₄/C composites. The specific capacity of LiMnPO₄/C is normalized by the mass of LiMnPO₄ and 1 C is defined as 170 mA g⁻¹. CV tests were conducted at 2.0–4.5 V (*vs.* Li/Li⁺) with a scan rate of 0.1 mV s⁻¹ on a VersaSTAT3

RSC Advances Accepted Manuscript

electrochemistry workstation (Princeton Applied Research). EIS tests were carried out on the VersaSTAT3 workstation using an ac voltage of 10 mV amplitude in a frequency range of 10 mHz – 100 kHz. The EIS measurements were performed in the lithiated state of LiMnPO₄ after the rest of the cells for several hours. The electrochemical tests were performed at room temperature.

3. Results and discussion

Fig. 1 gives XRD patterns of the solvothermal products with different amounts of CA in the precursors. The phase purity of the LiMnPO₄ samples was confirmed by comparing with the standard diffraction peaks of LiMnPO₄ (Space group *pnmb*, JCPDS Card no. 33–0804). Note that the relative intensity of the diffraction peaks changes with increasing the CA amount, suggesting the changes of morphology and size of LiMnPO₄. The sharp peaks suggest a high crystallinity of LiMnPO₄ samples even they were prepared at low temperature.

Fig. 1 XRD patterns of LiMnPO₄ prepared with different CA amounts in the precursors.

The morphology of the solvothermal products was characterized by SEM. The LiMnPO₄ exhibits a spindle-like shape when it was prepared with a CA-free precursor (Fig. S1). The size of the spindle-like LiMnPO₄ is around 200 nm and the BET specific surface area is $32.2 \text{ m}^2 \text{g}^{-1}$. As seen in Fig. 2a, the shape and size of LiMnPO₄ show a remarkable change when a small amount of CA (CA/MnSO₄ molar ratio is 1/10) was added in the precursor. The obtained LiMnPO₄ demonstrates a plate-like shape with a size below 100 nm. The size of LiMnPO₄ can be further

reduced to 30–50 nm by increasing the CA amount (CA/MnSO₄ molar ratio is 3/10). The LiMnPO₄ exhibits an irregular granule shape with BET surface area increased to 53.8 m^2g^{-1} (Fig. 2b). The size of LiMnPO₄ shows a trend to increase when the amount of CA was further increased (Fig. 2c–f). At a CA/MnSO₄ molar ratio of 7/10, the LiMnPO₄ crystallizes into plate-like shape again and the surface area decreases to 45.7 m^2g^{-1} (Fig. 2f). Even so, the plate-like LiMnPO₄ still has a smaller size than the spindle-like one, suggesting that CA does plays a critical role in reducing the size of LiMnPO₄. The size decrease, in turn, will enhance the electrochemical performance of LiMnPO₄, which will be discussed later.

Fig. 2 SEM images of LiMnPO₄ prepared with different CA/MnSO₄ molar ratios in the precursors:

(a) 1/10, (b) 3/10, (c) 7/20, (d) 2/5, (e) 1/2 and (f) 7/10.

Fig. 3 presents TEM images of the pristine LMP-3.0 and carbon-coated LMP-3.0. As seen in Fig. 3,b, the pristine LMP-3.0 exhibits an irregular shape with a size of 30–50 nm, agreeing with the SEM observation. The morphology of the sample was retained after carbon coating as shown in Fig. 3c. High-resolution TEM (HRTEM) image in Fig. 3d indicates that the LiMnPO₄ is well crystallized. The lattice spacings of 0.21 and 0.36 nm related to the (112) and (111) planes of LiMnPO₄. The surface of LiMnPO₄ is uniformly coated by a layer of carbon with a thickness ~1 nm. As a result, size decrease of LiMnPO₄ has realized through a facile solvothermal route using CA as the surfactant. The mechanism is schematically illustrated in Fig. 4. The adsorption of CA on the surface of LiMnPO₄ inhibits its continuous growth during the solvothermal reaction. The LiMnPO₄ grows into irregular shape due possibly to the different adsorption ability of CA on the different crystalline planes of LiMnPO₄. However, excess CA will greatly change the acidity of the solution, leading to the formation of plate-like LiMnPO₄, ³⁹

Fig. 3 TEM images of (a, b) pristine and (c, d) carbon-coated LMP-3.0.

EXAMPO₄ • CA **Fig. 4** Schematic illustration of the CA-induced refrained growth of LiMnPO₄ crystals.

Electrochemical tests were performed on three LiMnPO₄/C samples with different sizes to reveal the size dependence of the electrochemical performance. Fig. 5a gives the first charge-discharge curves of the LiMnPO₄/C samples at 0.05 C. The capacities of LiMnPO₄/C were calculated normalized to the mass of LiMnPO₄. As seen in the figure, these samples exhibit high electrochemical activity at a low current rate, delivering high discharge capacities (164.5 mAh g⁻¹ for LMP-3.0, 163 mAh g⁻¹ for LMP-3.5, 161 mAh g⁻¹ for LMP-4.0). Specially, LMP-3.0 yields the highest discharge capacity of 164.5 mAh g⁻¹, which is close to the theoretical capacity of LiMnPO₄ (170 mAh g⁻¹). The highest capacity of LMP-3.0 is closely correlated with its smallest crystal size which maximizes the utilization of active material. For LiMnPO₄ material, irreversible capacities in the first cycle are usually observed, which is attributed to the passivation of the electrolyte and electrode at high potentials.^{37,45} The irreversible capacities of LMP-3.0, LMP-3.5 and LMP-4.0 are 17.5, 19 and 24 mAh g⁻¹, respectively. Fig. 5b shows the CV scans of the samples at 0.1 mV s⁻¹.

LMP-3.0 displays obviously stronger and sharper current peaks than LMP-3.5 and LMP-4.0, indicating its fastest electrochemical reaction kinetics due to the smallest crystal size.

Fig. 6 compares the rate capability of the LiMnPO₄/C samples at current rates of 0.1 C–20 C. The charge and discharge processes of the cells were performed at the same current rates in the rate capability tests. Note that the plateau length is on the decrease with the increase in current rate. The polarization also increases with increasing the current density. LMP-3.0 shows the best rate capability among the three samples. The discharge capacities of LMP-3.0 are 158.6, 152.3, 147.9, 140.0 and 126.1 mAh g⁻¹ at 0.1 C, 0.5 C, 1 C, 2 C and 5 C, respectively. At 10 C and 20 C, this sample can still deliver high capacities of 113.0 and 96.6 mAh g⁻¹, respectively. The superior rate capability of LMP-3.0 can be ascribed to its small crystal size and uniform/thin conductive carbon layer, making it possible for rapid electron and Li-ion transport. The LMP-3.0 sample shows a slower capacity decrease with current density than LMP-3.5 and LMP-4.0 especially at high current densities, implying that the crystal size does exert an obvious effect on the Li-ion transport on the electrode/electrolyte interface and in bulk crystals.

Fig. 6 Rate capability of LiMnPO₄/C: (a) LMP-3.0, (b) LMP-3.5 and (c) MP-4.0.

Fig. 7 demonstrates the cycling stability of the LiMnPO₄/C samples. As seen in Fig. 7a, LMP-3.0, LMP-3.5 and LMP-4.0 can deliver high initial discharge capacities of 147.2, 142.8 and 142.6 mAh g^{-1} at 1 C, which can be maintained at 89.1, 84.3 and 75.1 mAh g^{-1} after 500 cycles. LMP-3.0 exhibits the best cycling stability with a capacity retention over 60% after 500 cycles at 1 C. Even after 500 cycles at 10 C, this sample can still keep a discharge capacity of 80.5 mAh g^{-1} , with a retention around 70%. Although the cycling stability of LiMnPO₄/C has been enhanced by various strategies in recent work,^{25–30,32, 33,35–37,41, 42} there are few reports on LiMnPO₄/C that can sustain 500 cycles at such a high current density (10 C). It should be stressed that the charge and discharge in this work were performed at the same current rate. The outstanding cycling stability of LMP-3.0 can be due to the uniform carbon coating which refrains Mn dissolution,^{25,34,42,45} and small crystal size which alleviates volume strain between LiMnPO₄ and MnPO₄.^{11,42,46,47} In contrast, the large-sized spindle-like LiMnPO₄ exhibits low capacity and poor cycling stability (Fig. S2). The low capacity and poor cycling stability of spindle-like LiMnPO₄ can be attributed to the low Li-ion

diffusion rate with insufficient utilization of active material and poor carbon coating for large-sized LiMnPO₄ particles. Table 1 compares the rate capability and cycle life of some LiMnPO₄/C composites in this work and others. The data summarized in Table 1 represent the best ones on LiMnPO₄/C materials reported to date. Of note is that both rate capability and cycle life of our LMP-3.0 sample are among the best ones when we compare charge/discharge mode, applied current rate and cycle number comprehensively. We propose that the outstanding electrochemical properties of our LiMnPO₄/C can be attributed to the small size and uniform carbon coating, which renders rapid electron and Li-ion transport and easy release of the lattice strain upon repeated cycling. The carbon coating also led to remarkably improved electrochemical performance of other cathode materials such as LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ and LiNi_{0.5}Mn_{1.5}O₄ by stabilizing the structure and supplying the conducting channels.^{48,49} In addition, the ultrathin carbon layer facilitates Li-ion diffusion across electrode/electrolyte interface with enhanced electrode kinetics. It should be noted that the LiMnPO₄/C in our work was prepared by a facile solvothermal route using small amounts of inexpensive and nontoxic citric acid.

Fig. 7 Cycling stability of LiMnPO₄/C at (a) 1 C and (b) 10 C.

Sample and	Cycling stability				Rate capability				
preparation method	Current	Initial capacity (mAh g ⁻¹)	Cycle number	Capacity retention		Reference			
	density								
LMP-3.0, SR with CA	10C-ch, 10C dis	117.6	100/500	83%/68%	1C-ch, 1C-dis	5C-ch, 5C-dis	10C-ch, 10C-dis	20C-ch, 20C-dis	This work
	IUC-uis				147.9	120.1	11 3. 0	90.0	
LMP, spray pyrolysis and BM	0.05C-ch, 0.5C-dis	~140	50	94.2%	1C-dis	0.030 2C-	2C-dis 10C 107 ~6		[25]
LMP plates, SR with SDBS	0.05C-ch, 0.05C-dis	147	50	93%	0.1C-ch, 1C-dis	0.1C-ch, 2C-dis		0.1C-ch, 5C-dis	[26]
LMP/G, SR+ spray drying	1C-ch-dis, 2C-ch-dis,	~90	60	75%	1C-ch, 1C-dis	2C-ch, 2C-dis		5C-ch, 5C-dis	[27]
LMP grains, SR with CTAB	0.05C-ch, 0.05C-ch,	153	110	95.4%	90 0.05C-ch, 1C-dis	~/5 0.05C-ch, 5C-dis		64 0.05C-ch, 10C-dis	[28]
LMP, precipitation+BM	0.05C-ch, 0.2C-dis	~135	45	90.5%	128 0.05C-ch, 1C-dis 120	111 0.05C-ch, 5C-dis 90		92 0.05C-ch, 10C-dis	[30]
porous LMP, PMMA template		_			0.1C-ch, 1C-dis 154	0.1C 6C- 12	c-ch, dis 29	0.1C-ch, 10C-dis 110	[31]
LMP sheets, SR with HT, HP and PVP	0.2C-ch, 0.2C-dis	157	50	93.6%	5C-ch, 5C-dis 119	10C-ch, 10C-dis 93		20C-ch, 20C-dis 63	[32]
LMP granules, SSR with OA	0.1C-ch-dis, 0.2C-ch/ 0.5C-dis	122	50+50	97.5% +96.4%	0.05C-ch, 5C-dis 95.7	0.05C-ch, 10C-dis 87.1		0.05C-ch, 20C-dis 60.1	[33]
LMP plates, SR with CTAB	0.2C-ch, 1C-dis	130.3	500	92.7%	1C-dis 127.6	5C-dis 93.8		10C-dis 69.2	[35]
LMP, SR	0.5C-ch, 0.5C-dis	138	100	91.5%	1C-ch, 1C-dis ~135	5C-ch, 5C-dis 118		10C-ch, 10C-dis 106	[36]
LMP rods, SR	0.5C-ch, 0.5C-dis	144.5	100	94.5%	1C-ch, 1C-dis 137	5C-ch, 5C-dis ~125		10C-ch, 10C-dis 110	[37]
LMP flakes, SR+sintering	0.5C-ch, 0.5C-dis	~135	200	>95%	1C-ch, 1C-dis 130	5C- 5C- 11	5C-ch, 10C-ch 5C-dis 10C-di 110 92		[40]
LMP, BM+SSR	1C-ch, 1C-dis	128	200	94%	0.1C-ch, 1C-dis >120	0.1C-ch, 0.1C-ch, 2C-dis 5C-dis ~105 ~60		[42]	

Table 1 Comparison of electrochemical performance of LiMnPO₄/C in this work with others.

Note: SR=solvothermal reaction, SSR=solid state reaction, BM=ball milling, HT=high temperature, HP=high pressure, ch=charge, dis=discharge, LMP=LiMnPO₄, SDBS=sodium dodecyl benzene sulfonate, G=grapheme, CTAB=hexadecyltrimethyl ammonium bromide, PMMA=polymethyl methacrylate, PVP=polyvinylpyrrolidone, OA=oleic acid

RSC Advances Accepted Manuscript

EIS tests were used to reveal the different electrode kinetics among the three samples. As seen in Fig. 8a, the Nyquist plots of the LiMnPO₄/C samples are constructed by a high-frequency semicircle and a low-frequency slopping line. The plots were fitted by the equivalent circuit (see inset in Fig. 8a). In the circuit, R_e denotes the electrolyte and ohm resistance, R_i and Q_1 are related to contact resistance of active material with the current collector and the related capacitance, respectively, R_{ct} and Q_2 represent charge transfer resistance and double-layer capacitance, respectively, and Z_w is the Warburg impedance related to Li-ion bulk diffusion.^{50–52} As shown in the Table 2, LMP-3.0 exhibits much lower R_{ct} value compared with LMP-3.5 and LMP 4.0 although they have similar R_i values. The low R_{ct} value means rapid electrochemical reaction kinetics on the electrode/electrolyte interface, which is closely related to the uniform/thin conductive carbon layer and large specific surface area of LMP-3.0.

Li-ion chemical diffusion coefficients D_{Li} were also measured using EIS to further understand the different electrochemical behaviors between these LiMnPO₄/C samples. To calculate the D_{Li} values using the EIS technique, the Warburg factor σ in the Warburg region should first be determined. Fig. 8b shows the Nyquist plot of LMP-3.0 with marked frequency *f* and the Warburg region with a slope of ~45°. The inset in Fig. 8b correlates *Z*' (or –*Z*') with $\omega^{-1/2}$ ($\omega = 2\pi f$) where σ can be obtained by linearly fitting the *Z*' (or –*Z*') *vs.* $\omega^{-1/2}$ plots. Thus, D_{Li} (cm² s⁻¹) values can be calculated using the following equation: ^{33,53,54}

$$D_{\rm Li} = R^2 T^2 / (2A^2 n^4 F^4 C^2 \sigma^2) \tag{1}$$

where *R* is the gas constant, *T* is the absolute temperature (K), *A* is the surface area of the electrode (cm²), *n* is number of transferred electrons per LiMnPO₄ molecule upon complete delithiation, *F* is the Faraday constant, *C* is the Li-ion concentration in LiMnPO₄ (0.022 mol cm⁻³), and σ is the Warburg factor (Ω Hz^{1/2}). The *D*_{Li} values of the three samples are listed in Table 2. We can see that LMP-3.0 has a higher *D*_{Li} value than the other samples, implying the rapidest Li-ion bulk diffusion. This can explain its better rate capability and enhanced high-rate cycling stability. The EIS results are consistent with the different electrochemical behaviors of the three samples.

Fig. 8 (a) Nyquist plots and equivalent circuit of LiMnPO₄/C and (b) Z' (or -Z') vs. $\omega^{-1/2}$ plots and the linear fitting of carbon-coated LMP-3.0 in the Warburg region.

-			-	_				
Sample	P(0)	$P_{i}(\mathbf{O})$	Q_1		P(0)	Q_2		$D_{-}(am^2 a^{-1})$
Sample	$R_{\rm e}$ (32)	$\Lambda_1(22)$	Y	п	$\Lambda_{\rm ct}$ (22)	Y	n	$D_{\rm Li}$ (cm s)
LMP-3.0	3.2	88.5	9.3×10^{-5}	0.58	25.4	1.6×10^{-5}	0.77	5.0×10^{-15}
LMP-3.5	2.2	84.8	6.5×10^{-4}	0.54	93.4	2.2×10^{-5}	0.68	1.6×10^{-15}
LMP-4.0	2.7	84.7	5.9×10^{-4}	0.58	117.3	2.1×10^{-5}	0.67	2.9×10^{-15}

Table 2 Fitting results of the Nyquist plots using the equivalent circuit and the D_{Li} values.

4. Conclusions

In summary, we proposed a facile solvothermal route to synthesize LiMnPO₄ nanocrystals by using CA as the surfactant. The morphology and size of LiMnPO₄ change greatly by adding a small amount of CA, which realizes the conversion of spindle-like LiMnPO₄ of 200 nm into granule-like one of 30–50 nm. The LiMnPO₄ granules display superior rate capability and cycling stability at high rates after the coating of a uniform/thin carbon layer of ~1 nm thickness. At 20 C, a high discharge capacity of 96.6 mAh g⁻¹ can be achieved for LiMnPO₄/C. The excellent rate capability is attributed to the small size with easy Li-ion transport on electrode/electrolyte interface and in bulk material, and to the uniform/thin carbon layer with enhanced electron transport. The LiMnPO₄/C granules also show outstanding high-rate cycling stability with a discharge capacity of 80.5 mAh g⁻¹ maintained after 500 cycles at 10 C. The long cycle life is ascribed to the small size which alleviates the lattice strains and the uniform carbon coating which refrains the Mn dissolution. The superior electrochemical performance of LiMnPO₄/C makes it promising applications in EVs.

RSC Advances Accepted Manuscript

Acknowledgements

This work was financially supported by the National Basic Research Program of China (2013CB934001), the National Natural Science Foundation of China (No. 51572238), Zhejiang Provincial Natural Science Foundation of China under Grant No. LY15E010004, and Program for Innovative Research Team in University of Ministry of Education of China (IRT13037).

Notes and references

- 1 A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, J. Electrochem.Soc., 1997, 144, 1188–1194.
- 2 L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang and J. B. Goodenough, *Energy Environ. Sci.*, 2011, 4, 269–284.
- 3 O. K. Park, Y. Cho, S. Lee, H. C. Yoo, H. K. Song and J. Cho, *Energy Environ. Sci.*, 2011, 4, 1621–1633.
- 4 C. Delacourt, P. Poizot, M. Morcrette, J. M. Tarascon and C. Masquelier, *Chem. Mater.*, 2004, 16, 93–99.
- 5 M. Yonemura, A. Yamada, Y. Takei, N. Sonoyama and R. Kanno, *J. Electrochem. Soc.*, 2004, **151**, A1352–A1356.
- 6 F. Zhou, M. Cococcioni, K. Kang and G. Ceder, *Electrochem. Commun.*, 2004, 6, 1144–1148.
- 7 C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J. B. Leriche, M. Morcrette, J. M. Tarascon and C. Masqueliera, *J. Electrochem. Soc.*, 2005, **152**, A913–A921.
- 8 D. Morgan, A. Van der Ven and G. Ceder, *Electrochem. Solid-State Lett.*, 2004, 7, A30–A32.
- 9 A. Yamada, M. Yonemura, Y. Takei, N. Sonoyama and R. Kanno, *Electrochem, Solid-State Lett.*, 2005, 8, A55–A58.
- 10 D. Choi, J. Xiao, Y. J. Choi, J. S. Hardy, M. Vijayakumar, M. S. Bhuvaneswari, J. Liu, W. Xu,
 W. Wang, Z. G. Yang, G. L. Graff and J. G. Zhang, *Energy Environ. Sci.*, 2011, 4, 4560–4566.
- 11 N. Meethong, H. Y. Shadow Huang, S. A. Speakman, W. Craig Carter and Y. M. Chiang, Adv.

Funct. Mater., 2007, 17, 1115–1123.

- 12 L. F. J. Piper, N. F. Quackenbush, S. Sallis, D. O. Scanlon, G. W. Watson, K. W. Nam, X. Q. Yang, K. E. Smith, F. Omenya, N. A. Chernova and M. S. Whittingham, *J. Phys. Chem. C*, 2013, 117, 10383–10396.
- 13 Y. Mishima, T. Hojo, T. Nishio, H. Sadamura, N. Oyama, C. Moriyoshi and Y. Kuroiwa, J. Phys. Chem. C, 2013, 117, 2608–2615.
- 14 V. Aravindan, J. Gnanaraj, Y. S. Lee and S. Madhavi, J. Mater. Chem. A, 2013, 1, 3518-3539.
- 15 G. Y. Chen, J. D. Wilcox and T. J. Richardson, *Electrochem. Solid-State Lett.*, 2008, **11**, A190–A194.
- 16 P. F. Xiao, B. Ding, M. O. Lai and L. Lu, J. Electrochem. Soc., 2013, 160, A918-A926.
- 17 V. Ramar and P. Balaya, Phys. Chem. Chem. Phys., 2013, 15, 17240–17249.
- 18 S. Liu, H. S. Fang, E. R. Dai, B. Yang, Y. C. Yao, W. H. Ma and Y. N. Dai, *Electrochim. Acta*, 2014, **116**, 97–102.
- 19 Q. Lu, G. S. Hutchings, Y. Zhou, H. L. Xin, H. M. Zheng and F. Jiao, *J. Mater. Chem. A*, 2014, 2, 6368–6373.
- 20 M. S. Kim, J. P. Jegal, K. C. Roh and K. B. Kim, J. Mater. Chem. A, 2014, 2, 10607–10613.
- 21 K. Kisu, E. Iwama, W. Onishi, S. Nakashima, W. Naoi and K. Naoi, J. Mater. Chem. A, 2014, 2, 20789–20798.
- 22 L. J. Hu, B. Qiu, Y. G. Xia, Z. H. Qin, L. F. Qin, X. F. Zhou and Z. P. Liu, *J. Power Sources*, 2014, **248**, 246–252.
- 23 X. Zhou, Y. F. Deng, L. N. Wan, X. S. Qin and G. H. Chen, J. Power Sources, 2014, 265, 223–230.
- 24 P. J. Zuo, L. G. Wang, W. Zhang, G. P. Yin, Y. L. Ma, C. Y. Du, X. Q. Cheng and Y. Z. Gao, *Nanoscale*, 2015, 7, 11509–11514.
- 25 S. M. Oh, S. W. Oh, C. S. Yoon, B. Scrosati, K. Amine and Y. K. Sun, *Adv. Funct. Mater.*, 2010, 20, 3260–3265.

- 26 F. Wang, J. Yang, P. F. Gao, Y. NuLi and J. L. Wang, J. Power Sources, 2011, 196, 10258–10262.
- 27 Z. H. Qin, X. F. Zhou, Y. G. Xia, C. L. Tang and Z. P. Liu, J. Mater. Chem., 2012, 22, 21144–21153.
- 28 H. C. Dinh, S. I. Mho, Y. Kang and I. H. Yeo, J. Power Sources, 2013, 244,189–195.
- 29 S. L. Yang, R. G. Ma, M. J. Hu, L. J. Xi, Z. G. Lu and C. Y. Chung, J. Mater. Chem., 2012, 22, 25402–25408.
- 30 K. Su, F. Liu and J. T. Chen, J. Power Sources, 2013, 232, 234-239.
- 31 H. Yoo, M. Jo, B. S. Jin, H. S. Kim and J. Cho, Adv. Energy Mater., 2011, 1, 347-351.
- 32 X. H. Rui, X. X. Zhao, Z. Y. Lu, H. T. Tan, D. H. Sim, H. H. Hng, R. Yazami, T. M. Lim and Q. Y. Yan, *ACS Nano*, 2013, 7, 5637–5646.
- 33 L. F. Zhang, Q. T. Qu, L. Zhang, J. Li and H. H. Zheng, J. Mater. Chem. A, 2014, 2, 711–719.
- 34 L. G. Wang, P. J. Zuo, G. P. Yin, Y. L. Ma, X. Q. Cheng, C. Y. Du and Y. Z. Gao, J. Mater. Chem. A, 2015, 3, 1569–1579.
- 35 W. X. Zhang, Z. Q. Shan, K. L. Zhu, S. Z. Liu, X. Y. Liu and J. H. Tian, *Electrochim. Acta*, 2015, 153, 385–392.
- 36 Y. Hong, Z. L. Tang and Z. T. Zhang, *Electrochim. Acta*, 2015, 176, 369–377.
- 37 Y. Hong, Z. L. Tang, S. T. Wang, W. Quan and Z. T. Zhang, J. Mater. Chem. A, 2015, 3, 10267–10274.
- 38 J. N. Zhu, W. C. Li, F. Cheng and A. H. Lu, J. Mater. Chem. A, 2015, 3, 13920–13925.
- 39 H. Guo, C. Y. Wu, L. H. Liao, J. Xie, S. C. Zhang, P. Y. Zhu, G. S. Cao and X. B. Zhao, *Inorg. Chem.*, 2015, 54, 667–674.
- 40 Q. B. Xia, T. Liu, J. J. Xu, X. Y. Cheng, W. Lu and X. D. Wu, *J. Mater. Chem. A*, 2015, **3**, 6301–6305.
- 41 J. G. Zheng, C. C. Qin, T. F. Wu, S. F. Xie, L. Ni, M. Y. Peng, Y. F. Tang and Y. F. Chen, J. Mater. Chem. A, 2015, 3, 15299–15306.

- 42 J. G. Zheng, L. Ni, Y. W. Lu, C. C. Qin, P. X. Liu, T. F. Wu, Y. F. Tang and Y. F. Chen, J. Power Sources, 2015, 282, 444–451.
- 43 S. F. Yang, P. Y. Zavalij and M. S. Whittingham, Electrochem. Commun., 2001, 3, 505–508.
- 44 M. K. Devaraju and I. Honma, Adv. Energy Mater., 2012, 2, 284–297.
- 45 D. Choi, D. H. Wang, I. T. Bae, J. Xiao, Z. M. Nie, W. Wang, V. V. Viswanathan, Y. J. Lee, J. G. Zhang, G. L. Graff, Z. G. Yang and J. Liu, *Nano Lett.*, 2010, 10, 2799–2805.
- 46 G. Y. Chen, A. K. Shukla, X. Y. Song and T. J. Richardson, *J. Mater. Chem.*, 2011, **21**, 10126–10133.
- 47 Y. S. Yu, C. Kim, D. A. Shapiro, M. Farmand, D. N. Qian, T. Tyliszczak, A. L. David Kilcoyne,
 R. Celestre, S. Marchesini, J. Joseph, P. Denes, T. Warwick, F. C. Strobridge, C. P. Grey, H.
 Padmore, Y. S. Meng, R. Kostecki and J. Cabana, *Nano Lett.*, 2015, 15, 4282–4288.
- 48 S. S. Jan, S. Nurgul, X. Q. Shi, H. Xia and H. Pang, *Electrochim. Acta*, 2014, 149, 86–93.
- 49 X. Tang, S. S. Jan, Y. Y. Qian, H. Xia, J. F. Ni, S. V. Savilov and S. M. Aldoshin, *Sci. Rep.*, 2015, 5, 11958.
- 50 J. P. Schmidt, T. Chrobak, M. Ender, J. Illig, D. Klotz and E. Ivers Tiffée, J. Power Sources, 2011, 196, 5342–5348.
- 51 J. Illig, M. Ender, T. Chrobak, J. P. Schmidt, D. Klotz and E. Ivers Tiffée, J. Electrochem. Soc., 2012, 159, A952–A960.
- 52 J. Illig, J. P. Schmidt, M. Weiss, A. Weber and E. Ivers Tiffée, *J. Power Sources*, 2013, 239, 670–679.
- 53 K. S. Lee, K. J. Lee, Y. S. Kang, T. J. Shin, Y. E. Sung and D. Ahn, *Nanoscale*, 2015, 7, 13860–13867.
- 54 H. J. Zhu, W. Zhai, M. Yang, X. M. Liu, Y. C. Chen, H. Yang and X. D. Shen, *RSC Adv.*, 2014, 4, 25625–25632.

Table of Contents entry

Nano-LiMnPO₄/C exhibits superior rate capability and long cycling stability sustaining a stable cycling of 500 cycles at 10 C.

