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A QSPR study on liquid crystallinity of five-ring bent-core 
molecules using decision trees, MARS and artificial neural 
networks 

Jelena Antanasijević,*a Davor Antanasijević,b Viktor Pocajt,a Nemanja Trišovića and Katalin Fodor-
Csorbac 

Accelerating progress in the discovery of new bent-core liquid crystal (LC) materials with enhanced features relies on the 

understanding of structure−property relationships that underline the formation of LC phases. The aim of this study was to 

develop a model for the prediction of LC behaviour of five-ring bent-core systems using a QSPR approach that combines 

dimension reduction techniques (e.g. genetic algorithms etc.) for the selection of molecular descriptors and decision trees, 

multivariate adaptive regression splines (MARS) and artificial neural networks (ANN) as classification methods. A total of 27  

models based on the separate pools of calculated molecular descriptors (2D; 2D and 3D) and published experimental 

outcomes were evaluated. Overall, the results suggest that the acquired ANN LC classifiers are usable for the prediction of 

LC behaviour. The best of those models showed high accuracy and precision (91% and 97%). Since the best classifier is able 

to successfully capture trends in homologous series, it can be used not only to screen new bent-core structures for potential 

LCs, but also for the estimation of influence of structural modifications on LC phase formation, as well as for the evaluation 

of LC phase stability.

Introduction  

The outstanding feature of the bent-core liquid crystals (LCs) is 

the spontaneous formation of polar order even without 

molecular chirality.1 It originates from bent shape of the 

aromatic core which restricts the rotation around the long axis 

and causes the molecules to be tightly packed in the bent 

direction.2 This leads to a macroscopic polarization of smectic 

layers providing ferroelectric and antiferroelectric properties 

with potential applications for electro-optical switches, as 

optical phase modulators, nonlinear optical materials, etc.3–5 

Extensive efforts have been made to determine a relationship 

between the mesomorphic properties of bent-core liquid 

crystals and their molecular structure.6 Although some general 

understandings about the matter have been established,7–10 

designing of the LC molecular structure with favourable 

properties is still a great challenge for chemists, concerning that 

those molecules need to exhibit LC behaviour at lower 

temperatures. Also, it should be noted that the mesophase 

behaviour of the bent-core compounds is more sensitive to 

structural modifications than that of calamitic ones concerning 

the number of the rings, type and orientation of the connecting 

groups, substituents on the central and outer rings as well as 

the length of the terminal chains.7 In addition, the synthesis of 

bent-core LCs is often very complex, expensive and time 

consuming, and therefore the use of statistical classification 

techniques may be helpful in order to reduce the ratio of 

synthesized bent-core molecules that does not exhibit LC 

properties. 

Although there are various studies related to the prediction of 

a particular LC property,11–15 only a limited number of 

quantitative structure-property relationship (QSPR) models for 

the prediction of liquid crystallinity can be found in the 

literature.16–19 In those papers, the LC behaviour of ferrocene 

derivatives, copolyethers, polyazomethines and calamitic 

compounds was predicted using different statistical methods, 

mainly artificial neural networks (ANNs). 

Because of the complex relationship between the bent-core 

structure and its LC behaviour, the use of nonlinear classifiers is 

required to achieve an accurate prediction. In this study, 

decision tree (DT), multivariate adaptive regression splines 

(MARS) and three different ANN architectures, namely 

supervised Kohonen (SKNN), counter propagation (CPNN) and 

probabilistic neural network (PNN), were applied for the 

prediction of LC behaviour of five-ring system (Figure 1). In 

addition, feature selection (FSL) as well as genetic algorithms  
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Figure 1. Schematic representation of the modelled five- ring 

bent-core system 

(GA) and principal component analysis (PCA) as dimension 

reduction methods were employed for the selection of 

descriptors. 

Methods 

Dataset 

In this study, bent-core compounds and their LC behaviour (see 

Table S1, Supporting Information) used in the development of 

QSPR models were taken from literature (references S1-S18 

presented in Supporting Information). The dataset consisted of 

294 five-ring aromatic compounds with linkage groups of 

different type and orientation, terminal chains of different type 

and length, and variety of substituents on the central and outer 

rings. There were 243 LC compounds and 51 compounds for 

which LC behaviour was not observed (NLC). For the purpose of 

developing the model, the dataset was randomly divided into 

the training set and external prediction set, in the ratio 85:15. 

The training set, which consisted of 206 LCs and 44 NLCs, was 

used to adjust the parameters of the models. The prediction set, 

which consisted of 37 LCs and 7 NLCs, was used to test the 

developed models and to evaluate their generalization ability. 

Thus the proportion of LC and NLC compounds in the two 

subsets was almost identical as in the original dataset. 

Additionally, for the purposes of training PNN and optimizing 

the architectures of SKNN and CPNN, the training dataset was 

divided into learning set and internal validation set, in the ratio 

4:1. 

Structure generation and optimization 

The molecular structures of the LC compounds used in this 

study were sketched using ChemDraw20, and each structure was 

stored in the individual (.mol) file. The structures were initially 

optimized using MMFF94 optimization routine (ChemAxon, 

Marvin21) and the final geometries of the minimum energy 

conformation were obtained.  

Descriptor generation 

A series of 2D and 3D descriptors was generated using PaDEL-

Descriptor software22, including a variety of constitutional, 

topological, geometric, electrostatic, steric, quantum-chemical 

and hybrid descriptors. A detailed description and examples of 

these descriptors can be found in the literature23. Any 

descriptor whose values were identical for all compounds was 

eliminated in order to reduce the number of descriptors that 

contained irrelevant information. The reduced pool of 501 

descriptors (360 2D and 141 3D) was further used for the 

development of the model.  

Dimension reduction  

In this study, QSPR models were created separately with 2D 

descriptors and with 2D and 3D descriptors together (2&3D), 

concerning that even after careful handling of the possible 

conformations, 2D descriptor based models can outperform the 

3D ones24–28, and for generation of the latter larger 

computational resources are needed.  

The selection of proper molecular descriptors is a difficult and 

target-dependent task that can be handled using dimension 

reduction methods.29 Therefore, after the initial descriptor 

removal a further dimension reduction was carried out using 

feature selection, genetic algorithms and principal component 

analysis. It should be noted that this dimension reduction step 

is necessary only in the case of ANN models. Decision trees and 

MARS are capable to select the most important descriptors 

during the training of the model, thus the subsets of descriptors 

selected by DT and MARS were also used for the development 

of ANN model. The Statistica30 feature selection routine was 

utilized to select 20 most significant descriptors, based on the 

computed Chi-square statistic and p value (significance) for 

each descriptor. The PCA was performed also in Statistica30 by 

extracting the principal components (PCs) with the eigenvalues 

higher than 1. A genetic algorithm descriptor selection was 

performed using Neuroshell 2 Genetic Adaptive module31 by 

applying the input smoothing factors (ISFs) (see section Artificial 

neural networks) as a sensitivity tool. After this ISF sensitivity 

analysis, the minimum number of incorrect classifications 

(MNIC) from the PNN training was used as the measure of 

subset quality. Descriptor subsets with fewer descriptors, but 

equivalent MNIC values, were favoured in the process of 

reduction.  

The considered pools of descriptors, applied dimension 

reduction and classification techniques and all 27 developed 

models of the present study have been schematically presented 

in Figure 2. 

Decision tree  

Decision tree is a conclusion scheme which partitions feature 

space into a set of hyperrectangles and models the output as a 

constant in each partition.32 The main advantages of DT are: 

invariance to monotone transformations (normalization of the 

data is not required), irrelevant features do not severely 

detriment performance, relatively high robustness to outliers 

and interpretability (easily quantification of the importance of 

each feature).33  

Several DT algorithms have been used in practice: Chi-Squared 

Automatic Interaction Detector (CHAID), Quick, Unbiased, 

Efficient Statistical Trees (QUEST), and Classification and 

Regression Trees (CART). Among them, CART, which is a non-

parametric binary recursive tree structure developed by  
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Figure 2. A schematic summary of the applied techniques and 

developed classification models 

Breiman et al.34, was adopted for this study. CART is an efficient 

tree induction method for large data sets, and it has been used 

as a classification35 and a feature selection method.36 The DT 

was built by splitting the root node into two child nodes which 

were then split repeatedly until the terminal nodes were 

reached. Each split was evaluated using Gini measure as an 

impurity function.37 In order to avoid overfitting, the obtained 

DT has been pruned at the end of the categorization process. 

The pruning procedure develops a sequence of smaller trees, 

based on the cost-complexity parameter, and determines the 

DT with higher accuracy.36 

In this study, the CART implementation in Statistica (C&RT 

module) was used for DT model development. A 5-fold cross-

validation is performed in order to obtain a stable tree with the 

smallest overall misclassification rate. 

Multivariate adaptive regression splines (MARS)  

MARS, developed by Friedman38, is a multivariate 

nonparametric classification/regression technique well suited 

for high-dimensional problems (i.e., a large number of inputs).32 

MARS combines the strengths of decision trees and spline fitting 

by replacing the step functions normally associated with DTs 

with piecewise linear basis functions.39 The MARS algorithm 

builds models from two side truncated functions (basis 

functions) of the inputs (x) separated by the “knots” (t): 

(𝑥 − 𝑡)+ = {
(𝑥 − 𝑡)   𝑥 > 𝑡
      0         𝑥 ≤ 𝑡

    (1) 

(𝑡 − 𝑥)+ = {
(𝑡 − 𝑥)   𝑥 < 𝑡
      0         𝑥 ≥ 𝑡

   (2) 

A knot marks the border of the data region where the behaviour 

of the function significantly changes and marks the edge of a 

pair of basis functions, thus building contiguous plane surfaces 

by summing up basis functions (Bm) with suitable coefficient 

(am)40: 

�̂� = 𝑎0 + ∑ 𝑎𝑚
𝑀
𝑚=1 𝐵𝑚(𝑥)    (3) 

where ŷ is the predicted output, a0 the coefficient of the 

constant basis function and M the number of basis functions. 

Eq. (3) describes the MARS model with the order of interactions 

(K) equal to 1. For the order of interactions K≥2, the Bm denotes 

the product of basis functions (bm,k): 

𝐵𝑚(𝑥) = ∏ 𝑏𝑚,𝑘(𝑥)𝐾
𝑘=1     (4) 

The procedure for finding the best MARS model includes the 

forward selection and backward elimination procedures. In the 

forward stepwise addition procedure, the pairs of basis 

functions were added until the performance of MARS model 

was improved. Such model is often a very complex and 

overfitting. During the backward elimination, the model is 

pruned by removing the redundant basis functions using the 

generalized cross-validation (GCV).41 The GCV is the mean 

squared residual error divided by a penalty dependent on the 

model complexity.42 Further details on MARS can be found 

elsewhere.32,38 

For classification purposes, MARS can be implemented in two 

manners: (1) the pairwise classification, with output coded as 0 

or 1, is handled as a regression, and (2) the classification of more 

than two classes need to be performed using a hybrid of MARS 

called POLYMARS.43  

In this study, the first technique is adopted and the MARS 

models were produced in Statistica using MARSpline routine. 

The developed MARS models had a maximum of 40 basis 

functions, allowed backward pruning, and a GCV penalty of 2. In 

order to determine the optimal order of interaction of the spline 

basis functions, the models with the order of interaction 

restricted to 2, 3 and 4 were compared. A lower-order model, 

with similar accuracy as a higher-order one, was favoured, as 

suggested by Zhang and Singer.44 

Artificial neural networks  

ANNs, which simulate functioning of the human brain, are 

frequently applied for regression45,46 and classification 

purposes.47 An ANN is consisted of artificial neurons organized 

in layers with intra- or inter-layer connections, resulting in feed-

forward (standard) or feed-back networks. Each neuron is 

characterized by the numeric weights, which are adjusted 
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(trained) using either supervised, if target (output) values are 

needed, or unsupervised algorithm.48 Only a brief description of 

the ANN architectures used is presented here, since all the 

details can be found in the quoted papers and other literature. 

In this work, the SKNN and CPNN models were created using the 

Kohonen and CP-ANN MATLAB toolbox 3.649 released by Milano 

Chemometrics and QSAR research Group, while the PNN 

models were created using NeuroShell 2 software31.  

SKNN is based on a self-organizing map (SOM) learning 

algorithm developed by Kohonen.50,51 The SOM is a single 

layered network and this (Kohonen) layer is often visualized as 

a square or hexagonal toroidal space, which is consisted of a 

grid of N2 neurons, where N is the number of neurons for each 

side. Each neuron contains as many weights as the number of 

inputs. The weights of each neuron are updated on the basis of 

the input vectors, for a certain number of times (epochs). Both 

the N and epochs must be defined by the user.52 

SKNN consists of the input and output map, which are ‘glued’ 

together forming a combined input-output map which is 

updated according to the SOM training procedure. After 

training, the input and output maps are decoupled. The 

topological formation of the combined input-output map is 

performed in a supervised way, since the input and output 

values are used explicitly during the SKNN training. The 

prediction of unknown class of a new sample is performed by 

locating the winning neuron in the input map, which is followed 

by locating of the class of the corresponding neuron in the 

output map. The maximum value of this neuron's weight vector 

determines the actual class membership.53 

CPNN can be also considered as an extension of SOMs, but it 

combines characteristics from both supervised and 

unsupervised learning. The theoretical concept of the CPNN was 

founded by Hecht–Nielsen.54 CPNN consists of two layers: an 

input layer (called Kohonen layer), which performs the mapping 

of the input data, and an output layer (called Grossberg layer) 

that serves as a “pointing device”55 and whose neurons have as 

many weights as the number of classes that need to be learned. 

In contrast to the learning in the Kohonen layer, the correct 

response is needed for the correction of the weights in the 

Grossberg layer, thus the learning is performed in the 

supervised manner.56 At the end of the CPNN training, each 

neuron of the Kohonen layer can be assigned to a class on the 

basis of the output weights and all the samples placed in that 

neuron are automatically assigned to the corresponding class.57 

The class of a new sample is estimated following the same 

procedure as in the case of SKNN. 

The overfitting of both SKNN and CPNN is prevented by the 

optimization of architecture in terms of the number of neurons 

in output layer and the number of epochs of using genetic 

algorithms as it is described by Ballabio et. al.52 For this purpose 

the following GA fitness function is used: 

𝐹 = 𝑎𝑐𝑐𝑣 ∙ (1 − |𝑎𝑐𝑐𝑣 − 𝑎𝑐𝑐𝑡|)  (5) 

where acct and accv are accuracies calculated on the training 

and internal validation set, respectably. After the optimal 

architectural parameters were obtained, the best SKNN and 

CPNN models were selected using the cross-validation method 

of 5 folds. 

PNN, invented by Specht58, is a one-pass feed-forward 

supervised learning neural network consisting of four layers: 

input, pattern, summation and decision layer. PNN 

approximates Bayes classifier where the class conditional 

probabilities are estimated by using the Parzen’s window 

approach.59  In a binary classification problem, PNN predicts the 

class of samples using the Bayes decision rule: 

ℎ𝑘𝑐𝑘𝑓𝑘(𝑥) > ℎ𝑚𝑐𝑚𝑓𝑚(𝑥)   (6) 

where class k and m have the prior probabilities of hk and hm, 

costs of misclassification of ck and cm, and probability density 

function (PDF) of fk(x)and fm(x), respectively. In the PNN 

algorithm, the PDF of each class is estimated from the available 

training samples using Gaussian kernel,60 the fundamental 

equation of PNN being the following61: 

�̂�(𝑥) =
∑ 𝑦𝑖 ∙exp (−𝐷(𝑥,𝑥𝑖))𝑛

𝑖=1

∑ exp (−𝐷(𝑥,𝑥𝑖))𝑛
𝑖=1

   (7) 

where yi is the class vector, and D(x,xi) is Euclidean distance 

between an observation x and each of the other observations xi 

in the training set belonging to the class k (Eq. (8)). 

𝐷(𝑥, 𝑥𝑖) = ∑ [(𝑥𝑗 − 𝑥𝑖𝑗) 𝜎𝑗⁄ ]
2𝑝

𝑗=1     (8) 

In Eq. (8) p is the number of inputs, while the σ is so-called 

smoothing factor, which is only adjustable parameter that 

needs to be optimized during the PNN training. The σ represents 

the width of the calculated Gaussian curve for each PDF. One of 

the major issues associated with the PNN is the selection of 

optimal smoothing factor.62 In this study, genetic algorithms 

were used for searching the optimal σ. When GA is used, beside 

the overall σ, the so-called individual smoothing factors (ISFs), 

for each input, are also calculated. The ISF quantifies the 

importance of a given input to the model, thus ISFs were used 

as a sensitivity tool. 

During the PNN training the learning dataset is used to set the 

network weights, while the validation data was utilized for the 

determination of optimal smoothing factor and corresponding 

ISFs. 

Classifiers performance metrics  

The performance of created classifiers was analysed only on the 

basis of classification results obtained for the prediction set. The 

used performance metrics are defined as follows: 

Accuracy   𝑎𝑐𝑐 =
𝑎+𝑑

𝑎+𝑏+𝑐+𝑑
  (9) 

Precision   𝑃𝑟 =
𝑎

𝑎+𝑐
   (10) 

Recall   𝑟 =
𝑎

𝑎+𝑏
   (11) 

Geometric mean 𝐺𝑚𝑒𝑎𝑛 = √𝑟 ∙ 𝑑 (𝑐 + 𝑑)⁄    (12) 

where a is true positive, b is false negative, c is false positive, 

and d is true negative predictions (Table 1).  
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Table 1. Confusion table 

 Predicted class 
LC NLC 

Actual class LC a b 
NLC c d 

Accuracy gives the percentage of LCs and NLCs correctly 

classified, while the precision gives the percentage of correctly 

classified LCs among all compounds which are classified as LCs. 

The numerical value of recall represents the probability of 

identifying compounds that exhibit the LC phases. In addition to 

the acc the Gmean is used, since the acc can be misleading in 

cases where the classes are unequally represented in the 

training set. Gmean has two distinctive properties of being 

independent of the distribution of examples between classes 

and being nonlinear. The second property means that the “cost” 

of misclassifying each positive example increases the more 

often positive examples are misclassified.63  

Results 

Prediction of LCs using decision tree 

Decision tree methodology was applied separately to the pool 

of 2D and 2&3D descriptors, and in both cases the same DT 

model containing only 2D descriptors has been obtained. The 

DT model has five terminal nodes distributed over three levels 

(Figure 3). This DT model is based on 4 molecular descriptors, 

which short description is also presented in Figure 3. The 

terminology used for explanation of molecular descriptors is 

presented in Supporting Information (page S16). 

The root node was split using the JGI9 descriptor, which is 

related to the charge transfer between the pairs of atoms and 

therefore it indicates the charge transfer over the molecule. The 

30 compounds with higher JGI9 values were finally split by the 

SM1_Dzp descriptor to two terminal nodes: the first with the 

ratio of LCs of 72% and the second containing only NLC 

compounds. The SM1_Dzp descriptor was calculated as a 

molecular spectral moment of order 1 from Barysz matrix 

weighted by its polarizability. Barysz matrix is a symmetric 

weighted distance matrix accounting contemporarily for the 

presence of heteroatoms and multiple bonds in a molecule. The 

spectral moment of order 1 from Barysz matrix is equal to the 

sum of the matrix eigenvalues.23  

The remaining 220 compounds were additionally split using the 

MPC9 and after that using the MLFER_E descriptor, which 

resulted in one LC and two NLC terminal nodes. The root node 

containing 82% of LCs was “purified” to the ratio of LCs of 93%. 

The MPC9 is a molecular path count of order 9 topological 

descriptor that counts the total number of paths of length m (in 

this case 9) in the molecule. The length m of the path is the 

number of edges along the path and it is called path order.23 The 

MLFER_E, which quantifies the excess molar refraction, is one 

of the molecular linear free energy relation (MLFER) 

descriptors. The excess molar refraction represents 

polarizability contributions from n- and π- electrons and can be 

calculated from the refractive index and characteristic 

molecular volume.64  

The pairwise correlation coefficient among these descriptors 

has an average value of 0.25, a minimum value of 0.05 (between 

JGI9 and MPC9) and a maximum of 0.47 (between SM1_Dzp and 

MLFER_E). 

Figure 3. The decision tree model obtained for the classification of LCs. The outer ring of each node presents the “purity” of the 

parent node. The number of compounds in a node (n) and ratio of LCs is displayed near the corresponding node. The descriptors 

and their splitting values are presented between two levels.  
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Table 2. Performance metrics values for the DT model and 

corresponding confusion table 

Des. 
type 

acc  
(%) 

Pr 
(%) 

r 
(%) 

Gmea

n 

(%) 

Actual  
class  

Predicted 
class 

LC NLC 

2D 80 87 89 50 LC 33 4 
NLC 5 2 

The classification results obtained for the prediction set are 

presented in Table 2. The compounds in the prediction dataset 

were classified correctly with the accuracy of 80% and precision 

of 87%, while the Gmean had a lower value of only 50%. Low Gmean 

value indicates a significant misclassification of NLC compounds 

by the DT model, which is obvious from the confusion table 

(Table 2). 

Prediction of LCs using MARS  

As it is mentioned above, the MARS algorithm with the order of 

interaction restricted to 2, 3 and 4 was applied to the separate 

pool of descriptors (2D and 2&3D) and the obtained models 

were compared. The two MARS models with the smallest 

overall misclassification rate were selected, one for the each 

pool of descriptors. The 2D-MARS model (Equation (S1) in 

Supporting Information) was generated with 15 2D descriptors, 

27 basis functions and with the order of interaction of 4, while 

the 2&3D-MARS model (Equation (S2) in Supporting 

Information) was generated with 13 2D and 5 3D descriptors, 26 

basis functions and with the order of interaction of 2. 

Table 4. Performance metrics values for the MARS models and 

corresponding confusion tables 

Des. 
type 

acc 
(%) 

Pr 
(%) 

r 
(%) 

Gmean 

(%) 

Actual 
class  

Predicted 
class 

LC NLC 

2D 80 89 86 61 LC 32 5 
NLC 4 3 

2&3D 84 88 95 52 LC 35 2 
NLC 5 2 

A list of basis functions for each of the two MARS models is 

shown in Table 3, while the corresponding coefficients are 

presented in Supplementary Information (Equations (S1) and 

(S2)). The values of performance metrics and corresponding 

confusion tables for both MARS models are shown in Table 4. 

The 2&3D-MARS model has higher accuracy and excellent recall 

of 95%, thus it was able to predict almost all LCs from the 

prediction set. Both MARS models have low Gmean values, similar 

as the DT model, because of the substantial misclassification of 

NLC compounds. 

A list of descriptors used in the MARS models with short 

description is presented in Supporting Information (Table S2). 

The pairwise correlation coefficient among descriptors used in 

the 2D-MARS model has an average value of 0.36, while those 

coefficients average value between the descriptors of 2&3D-

MARS model is 0.34. 

Table 3. Basic functions of the 2D- and 2&3D-MARS model 

Basic function 2D-MARS model 2&3D-MARS model 

B1 max(0; 6.10 ⋅ 10−1 − 𝐴𝑉𝑃-0) max(0; 𝐴𝑉𝑃-0 − 6.10 ⋅ 10−1) 
B2 max(0; 2.09 ⋅ 102 − 𝑀𝑃𝐶10)  max(0; 6.10 ⋅ 10−1 − 𝐴𝑉𝑃-0) 
B3 max(0; 𝑀𝑃𝐶10 − 2.09 ⋅ 102) max(0; 𝑀𝑃𝐶10 − 2.09 ⋅ 102) 
B4 max(0; 𝑊𝑃𝑂𝐿 − 9.50 ⋅ 101)  max(0; 𝑊𝑃𝑂𝐿 − 9.50 ⋅ 101)  
B5 max(0; 𝑀𝐷𝐸𝐶-12 − 4.39)  max(0; 𝐸3𝑠 − 3.20 ⋅ 10−1)  
B6 max(0; 9.50 ⋅ 101 − 𝑊𝑃𝑂𝐿)  max(0; 3.20 ⋅ 10−1 − 𝐸3𝑠)  
B7 max(0; 4.39 − 𝑀𝐷𝐸𝐶-12)  max(0; 3.75 ⋅ 10−1 − 𝑅𝑃𝐶𝑆)  
B8 max(0; 𝐵𝐶𝑈𝑇𝑝-1ℎ − 9.46)  max(0; 𝐸𝑇𝐴_𝐸𝑡𝑎𝑃_𝐹 − 1.10)  
B9 max(0; 9.46 − 𝐵𝐶𝑈𝑇𝑝-1ℎ)  max(0; 1.10 − 𝐸𝑇𝐴_𝐸𝑡𝑎𝑃_𝐹)  
B10 max(0; 𝑆𝐶𝐻-7 − 6.60 ⋅ 10−1)  max(0; 3.84 − 𝐼𝐶2)  
B11 max(0; 6.60 ⋅ 10−1 − 𝑆𝐶𝐻-7)  max(0; 𝐼𝐶2 − 3.84)  
B12 max(0; 2.11 − 𝑉𝑃-6)  max(0; 𝑀𝐿𝐹𝐸𝑅_𝐵𝑂 − 1.63) 
B13 max(0; 𝑀𝐼𝐶5 − 4.29 ⋅ 101)  max(0; 𝑔𝑒𝑜𝑚𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 − 4.49 ⋅ 101)  
B14 max(0; 4.29 ⋅ 101 − 𝑀𝐼𝐶5)  max(0; 𝑀𝐿𝐹𝐸𝑅_𝐿 − 2.53 ⋅ 101) 
B15 max(0; 𝑉𝐸1_𝐷𝑡 − 3.58 ⋅ 10−2) max(0; 𝑊𝑁𝑆𝐴-2 + 2.05 ⋅ 103) 
B16 max(0; 𝑀𝐿𝐹𝐸𝑅_𝑆 − 3.66) max(0; −2.05 ⋅ 103 − 𝑊𝑁𝑆𝐴-2) 
B17 max(0; 3.66 − 𝑀𝐿𝐹𝐸𝑅_𝑆) max(0; 𝑉𝑃-4 − 5.90) 
B18 max(0; 𝑆𝑝𝐴𝑏𝑠_𝐷𝑧𝑝 − 1.75 ⋅ 103) max(0; 2.53 ⋅ 101 − 𝑀𝐿𝐹𝐸𝑅_𝐿) 
B19 max(0; 1.75 ⋅ 103 − 𝑆𝑝𝐴𝑏𝑠_𝐷𝑧𝑝) max(0; 5.90 − 𝑉𝑃-4) 
B20 max(0; 𝑉𝐸3_𝐷𝑧𝑠 + 4.72 ⋅ 101) max(0; 𝑉𝐸3_𝐷𝑧𝑣 + 8.84) 
B21 max(0; 𝐴𝑉𝑃-0 − 6.10 ⋅ 10−1) max(0; −8.84 − 𝑉𝐸3_𝐷𝑧𝑣) 
B22 max(0; 𝑉𝐸3_𝐷𝑧𝑣 + 8.84) max(0; 𝑃2𝑚 − 3.23 ⋅ 10−1) 
B23 max(0; −8.84 − 𝑉𝐸3_𝐷𝑧𝑣) max(0; 𝑉𝐸3_𝐷𝑡 + 1.62 ⋅ 101) 
B24 max(0; 𝑉𝐸2_𝐷𝑡 − 2.81 ⋅ 10−4) max(0; 1.47 ⋅ 102 − 𝐸𝑇𝐴_𝐸𝑡𝑎_𝑅)  
B25 max(0; 2.81 ⋅ 10−4 − 𝑉𝐸2_𝐷𝑡) max(0; 8.75 ⋅ 10−2 − 𝑉𝐶-5) 
B26 max(0; 7.32 − 𝑀𝐷𝐸𝐶-12)  max(0; −3.57 ⋅ 101 − 𝑉𝐸3_𝐷𝑧𝑒) 
B27 max(0; 𝑉𝑃𝐶-4 − 1.52) N/A 
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Among selected 2D descriptors, the MPC is described in 

previous section (Prediction of LCs using decision tree). Three 

new MLFER descriptors are used in the MARS models: MLFER_S 

quantifies dipolarity/polarizability, MLFER_L is a solute gas-

hexadecane partition coefficient and MLFER_BO represents 

overall solute hydrogen bond basicity. Descriptors labelled as 

VP-4, VP-6, AVP-0, SCH-7, VPC-4 and VC-5 are topological 

descriptors that give information regarding the connectivity of 

various atoms in the molecule and they are referred as 

connectivity indices calculated using Chi operator. Those 

descriptors are able to take into account the presence of 

heteroatoms in a molecule, as well as double and triple bonds, 

molecular size, degree of branching and flexibility.  

Next group of descriptors are those calculated from Barysz 

matrix, namely the logarithmic coefficient sum of the last 

eigenvector weighted by van der Waals volumes (VE3_Dzv), by 

I-state (VE3_Dzs) or by Sanderson electronegativities (VE3_Dze) 

and graph energy weighted by polarizabilities (SpAbs_Dzp). 

Descriptors determined from the detour matrix (also known as 

a matrix of maximal topological distances), i.e. coefficient sum 

of the last eigenvector (VE1_Dt) and its average (VE2_Dt) and 

logarithmic (VE3_Dt) values, were also used in the models.  

The Wiener polarity number65 (WPOL) is equal to the number of 

bonds around which free rotations can take place. Moreover, it 

is related to the flexibility and steric properties of molecules. 

Information content (IC) descriptors are based on the 

calculation of equivalence classes from the molecular graph. 

Among them, the IC indices of neighbourhood symmetry take 

into account also neighbour degree and edge multiplicity. The 

Modified Information Content index (MIC) is the IC index 

weighted by the corresponding atomic masses of all atoms in 

the molecule. The MDEC-12 descriptor counts the molecular 

distance edge between all primary and secondary carbons. 

BCUTs (Burden – CAS – University of Texas eigenvalues) are 

extensions of the Burden descriptors, which are based on a 

combination of atomic numbers for each atom and a 

description of nominal bond-types for adjacent and 

nonadjacent atoms. The BCUT descriptors expand the number 

and types of atomic features that can be considered and also 

provide a greater variety of proximity measures and weighting 

schemes. The result is a new whole-molecule descriptor that 

has proved useful in measuring molecular diversity and related 

tasks.66  

The last two selected 2D descriptors (ETA_Eta_R and 

ETA_EtaP_F) belong to the group of extended topochemical 

atom (ETA) indices. ETA_Eta_R is a composite index that 

consider both bonded and non-bonded interactions and 

describes overall topological environment of a molecule relative 

to the molecular size. ETA_EtaP_F is a functionality index, which 

accounts the presence of heteroatoms and multiple bonds.67  

As mentioned above, five descriptors derived from 3D 

molecular geometry are chosen by the 2&3D-MARS model. One 

of them is geometric diameter (geomDiameter), defined as the 

maximum geometric eccentricity in a molecule, and it 

represents the longest geometric distance between two atoms 

in the molecule. The other two (WNSA-2 and RPCS) are charged 

partial surface area descriptors that combine shape and 

electronic information to characterize molecules and, 

therefore, encode features responsible for polar interactions 

between molecules. The WNSA-2 is related to the negative 

charge surface area, while the RPCS is related to the positive 

one. Finally, the descriptors labelled as E3s and P2m are WHIM 

(Weighted Holistic Invariant Molecular) descriptors that give a 

relevant molecular 3D information regarding the molecular size, 

shape, symmetry, and atom distribution with respect to 

invariant reference frames. 

More details on the descriptors, which are briefly presented in 

this and next section, are available in literature23. 

Dimension reduction for ANN development 

In addition to the selection of descriptors, which was performed 

during the DT and MARS model development, set of descriptors 

were obtained by FSL and GA. Also, descriptors were 

transformed into PCs using the PCA.  

A list of descriptors selected by FSL and GA is presented in Table 

5, while the short description is provided in Supporting 

Information (Table S3). 17 PCs from the pool of 2D descriptors 

and 24 PCs from the pool of 2&3D descriptors, both with 

cumulative variance of 98%, were extracted using the PCA. The 

eigenvalue of each PC along with corresponding variance is 

presented in Figure 4. 

The same set of 20 2D descriptors was obtained for both 

considered pools of descriptors by the FSL. The application of 

GA yielded a set of 11 2D descriptors selected from the 

corresponding 2D pool, and a set of 10 2D and 2 3D descriptors 

chosen from the 2&3D pool of descriptors. Pairwise correlations 

among descriptors selected by FSL have an average value of 

0.44, while the average value of pairwise correlation 

coefficients among the descriptors selected by GA from the pool 

of 2D and 2&3D descriptors was 0.26 and 0.28, respectively.  

Figure 4. PCA components with eigenvalues and variance  
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Table 5. List of descriptors selected using feature selection and genetic algorithms 

Descriptor group 2D-FSL 2D-GA  2&3D-GA 

Barysz Matrix SM1_Dzi; 
SM1_Dzs 

VR2_Dzs SM1_Dzi; 
SM1_Dzp;  
EE_Dzi; EE_Dzm;  
EE_Dzv 

BCUT BCUTp-1h BCUTp-1h BCUTc-1h 
Carbon Types C1SP3 C3SP2  
Chi Chain SCH-6; SCH-7;  

VCH-6; VCH-7 
 

 
Chi Cluster VC-5  VC-3 
Chi Path Cluster VPC-4; VPC-5 VPC-6  
Path Count piPC5; TpiPC piPC7; TpiPC MPC8 
Extended Topochemical Atom ETA_dAlpha_B; 

ETA_dPsi_A 
ETA_dAlpha_B
; 
ETA_BetaP 

ETA_Beta; 
ETA_Beta_ns_d 

Molecular distance edge MDEC-13   
Molecular linear free energy 
relation 

MLFER_E   

Topological Distance Matrix  VE3_D  
Topological charge GGI6; GGI9; JGI9   

Information Content  SIC3  
Constitutional Descriptor  Mare  
WHIMa   Dp; L1s 

a3D descriptors 

A relatively high average value of pairwise correlation 

coefficients between descriptors selected by FSL is consistent 

with the fact that FSL measures the significance of single 

descriptors, one by one, and, in contrast to the GA, FSL does not 

select the “best” combination of descriptors.  

Only new descriptor types that haven’t been previously 

mentioned will be described in this section. Carbon-type 

descriptors calculate the carbon connectivity in terms of 

hybridization: C1SP3 represents the number of singly bound 

carbon bound to one other carbon, while C3SP2 represents the 

number of doubly bound carbon bound to three other carbons. 

The descriptors labelled as piPC5, piPC7 and TpiPC are 

conventional bond order ID number descriptors, and they 

belong to the path count descriptor group. The ID number is a 

molecular weighted path sum which accounts for multiple 

bonds in the molecule. One of the selected descriptors is a mean 

atomic Allred-Rochow electronegativity (Mare), scaled on the 

carbon atom, and it is a constitutional descriptor. Different 

Estrada indices calculated from Barysz matrix were selected by 

GAs. The Estrada indices encode information on complexity of 

molecular graphs and are also used to describe characteristic 

physicochemical features of complex systems. They are based 

on the exponential function and consider both positive and 

negative eigenvalues at the same time, without compensation 

effects.  

At this point it can be summarized that the selected descriptors 

encode information about molecular geometry, polarity, 

flexibility, intermolecular interactions and distribution of the 

electronic charge. Each of these features alters molecular 

packing and results in the formation and properties of bent-core 

LC phases. Considering that molecular packing is determined by 

a sensitive balance between many competing factors, a variety 

of descriptors is required for a satisfactory prediction of LC 

behaviour.  

Prediction of LCs using ANNs  

Prior to the creation of SKNN and CPNN models, GAs were used 

to select the most suitable numbers of neurons in the output 

layer and training epochs. Other parameters of ANN 

architecture, such as the boundary condition and the neuron 

shape, were fixed, thus the toroidal boundary condition and 

hexagonal neuron shape were selected, whereas 20% of 

training samples were randomly extracted and used as internal 

validation set in each GA run. Other GAs settings are 

summarized in Table 6. The results of SKNN and CPNN 

optimization obtained for different descriptor sets are shown in 

Table 7. An example of resulting plot of GA optimization (so-

called “bubble plot”), which is obtained during the optimization 

of 2D-FSL-SKNN model, is shown in Supporting Information 

(Figure S1). 

Table 6. List of parameters used for GAs 

Parameter SKNN and CPNN 
optimization 

PNN smoothing 
factor determ. 

Fitness function Eq. (5) MNIC 
Population size 10 200 
Mutation prob. 0.05 NeuroShell 2 

default value Crossover prob. 0.50 
Stop criterion 25 evaluations 20 generationsa 
Number of runs 10 1 

awith no improvement of 1% 
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Table 7. Optimal architectural and training parameters of 

SKNN and CPNN models 

Descriptor ND
a Optimal SKNN Optimal CPNN 

Type Select. Out. 
layer  

Epochs Out. 
layer 

Epochs 

2D DT 4 12x12 350 8x8 200 
MARS 15 12x12 350 10x10 400 
GA 11 12x12 200 12x12 300 
FSL 20 12x12 300 12x12 350 
PCA 360 

(17)b 
12x12 350 12x12 250 

2&3
D 

MARS 18 12x12 200 12x12 250 
GA 12 10x10 500 12x12 350 
PCA 501 

(24)b 
12x12 400 12x12 350 

aND – number of descriptors 
bnumber of PCs 

The PNN architecture parameters, i.e. the number of neurons in 

each layer, are solely dependent on the features of training 

dataset. More precisely, in this case the number of neurons in 

the input layer corresponds to the number of descriptors, while 

the pattern layer has as many neurons as the number of 

compounds in the learning set. The number of neurons in the 

summation layer is equal to the number of classes, while the 

decision layer has only one neuron in the case of binary 

classification. Since the same learning set was used, all PNN 

models had 200 patterns, 2 summation and 1 decision neuron, 

while the number of input neurons was varied from 4 to 24, in 

order to match the number of descriptors used. The GAs were 

employed for the determination of optimal value of smoothing 

factor during the PNN training and their parameters are 

presented in Table 6. The values of performance metrics and 

corresponding confusion tables for ANN models are shown in 

Tables 8-10. It can be noticed that the performance of majority 

of ANN models was good, with 2D-FSL-SKNN, 2&3D-GA-CPNN 

and 2&3D-GA-PNN performing better than others, achieving 

accuracy higher than 90%.  

Table 8. Performance metric values for the SKNN models and 
corresponding confusion tables 

Model acc  
(%) 

Pr 
(%) 

r 
(%) 

Gmea

n 

(%) 

Actual  
class 

Predicted 
class 
LC NLC 

2D-DT 80 87 89 50 LC 33 4 
NLC 5 2 

2D-MARS 80 87 89 50 LC 33 4 
NLC 5 2 

2D-GA 86 90 95 64 LC 35 2 
NLC 4 3 

2D-FSL 91 92 97 75 LC 36 1 
NLC 3 4 

2D-PCA 68 81 81 0 LC 30 7 
NLC 7 0 

2&3D-
MARS 

84 88 95 52 LC 35 2 
NLC 5 2 

2&3D-GA 84 89 92 63 LC 34 3 
NLC 4 3 

2&3D-
PCA 

77 89 84 60 LC 31 6 

NLC 4 3 

Table 9. Performance metric values for the CPNN models and 

corresponding confusion tables 

Model 
 

acc  
(%) 

Pr 
(%) 

r 
(%) 

Gmea

n 

(%) 

Actual  
class 

Predicted 
class 

LC NLC 
2D-DT 82 89 89 62 LC 33 4 

NLC 4 3 
2D-MARS 82 87 92 51 LC 34 3 

NLC 5 2 
2D-GA 82 89 89 62 LC 33 4 

NLC 4 3 
2D-FSL 86 92 92 72 LC 34 3 

NLC 3 4 
2D-PCA 75 84 86 35 LC 32 5 

NLC 6 1 
2&3D-
MARS 

86 90 95 64 LC 35 2 
NLC 4 3 

2&3D-GA 91 95 95 82 LC 35 2 
NLC 2 5 

2&3D-
PCA 

80 85 92 36 LC 34 3 
NLC 6 1 

A detailed evaluation of ANN classifiers is presented in the next 

section. 

Discussion 
Classifier comparison  

A comparison of accuracy obtained on the prediction set of all 

tested classifiers is presented in Figure 5. In total, there were 17 

2D models (DT, MARS and 15 ANNs based on different set of 

descriptors) and 10 2&3D models (MARS and 9 ANNs also based 

on different descriptor sets) applied for the prediction of LC 

behaviour of five-ring bent-core systems. 

It can be seen from Figure 5 that ANN models based on DT or 

MARS descriptor selection, in most cases (7/9), have the same 

or better performance in comparison with the corresponding 

DT or MARS models. However, the best ANN classifiers were 

created using the descriptor sets obtained by FSL and GA, which 

are dedicated selection techniques.  

Table 10. Performance metric values for the PNN models and 
corresponding confusion tables 

Model acc  
(%) 

Pr 
(%) 

r 
(%) 

Gmea

n 

(%) 

Actual  
Class 

Predicted 
class 

LC NLC 

2D-DT 75 91 78 67 LC 29 8 
NLC 3 4 

2D-MARS 86 97 86 86 LC 32 5 
NLC 1 6 

2D-GA 84 94 86 79 LC 32 5 
NLC 2 5 

2D-FSL 80 97 78 82 LC 29 8 
NLC 1 6 

2D-PCA 70 85 78 47 LC 29 8 
NLC 5 2 

2&3D-
MARS 

66 87 70 55 LC 26 11 
NLC 4 3 

2&3D-GA 91 97 92 89 LC 34 3 
NLC 1 6 

2&3D-
PCA 

77 86 86 50 LC 32 5 
NLC 5 2 
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Figure 5. Accuracy of models obtained using different 

classification and dimension reduction techniques. The 

dimension reduction techniques are arranged by ascending 

number of descriptors. 

The models based on PCs were outperformed by all other 

models, whilst the 2D descriptors based models proved to be 

less accurate than the corresponding models created with both 

2D and 3D descriptors.  

The average performance of classifiers created with descriptors 

selected using different techniques is presented in Figure 6. The 

division of classifiers, in respect to the dimension reduction 

technique used, which emerges from Figure 5 is more obvious 

in Figure 6. Considering overall performance, the obtained 

models can be divided into three groups: 1. PCA based, 2. 

DT/MARS based and 3. FSL/GA based. A difference of about 5% 

in terms of acc and Pr, between the groups can  

Figure 6. The average performance of classifiers created with 

descriptors selected by different techniques. The lines 

represent standard deviation. The number of DT and MARS 

based models is 4 and 8, respectively, while the number of GA, 

FSL and PCA models is the same, 6 of each. 

be observed, and, among the best performing ones, the FSL 

based ANN models have better precision, while the GA ones are 

slightly more accurate.  

Predictive power of the best classifiers  

The prediction results for each pool of descriptors and for the 

best DT, MARS and ANN models are given in Figure 7 (the results 

for other models are presented in Figures S2-S5 in Supporting 

Information). 

Since two 2&3D ANN models have the same accuracy, GA-PNN 

was regarded as better, owing to its higher Gmean value (89%). 

Although the 2D-DT model demonstrates inferior predictive 

power in comparison with the models presented in Figure 7, it 

can be considered as very convenient for the practical use. 

Namely, the simplicity of DT approach allows the execution of 

the model even in a spreadsheet environment (Microsoft Excel 

and similar) by applying the if–then rules obtained from DT. 

Thus, during the molecular design, new structures can be easily 

screened for a potential LC behaviour and the influence of 

structural units varied in homologous series can be quickly 

evaluated. The fact that DT model uses only 2D descriptors, 

further favour its usage. 

Figure 7. Predicted LC behaviour of the test compounds by the 

best DT, MARS and ANN models based on: a) 2D and b) 2&3D 

descriptor sets. 
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In the case of best 2D and 2&3D models (2D-FSL-SKNN and 

2&3D-GA-PNN), the prediction results exhibit four 

misclassifications. The 2D-FSL-SKNN has given three false 

positives (that is, a NLC is classified as the LC) and one false 

negative (i.e. a LC is classified as the NLC), while the 2&3D-GA-

PNN has predicted one false positive and three false negatives. 

Neither of the false predictions is common to the both ANN 

models.  

The output map for the 2D-FSL-SKNN is presented in Supporting 

Information (Figure S6). As can be seen, the compounds 74 and 

267 (P10 and P37 in Figure S6) are classified with the probability 

of 50%. 

This means that the model simply does not have enough 

information from the available training set and selected 

descriptors to make a confident prediction of the LC property of 

those molecules. The compound 92 is most likely misclassified 

as LC, by 2D-FSL-SKNN model, because it is more similar to the 

LC compound 93 in the term of values of selected descriptors, 

than with other compounds from the same homologous series, 

which are NLC compounds. 

The NLC compound 128, which is misclassified as LC by the 

2&3D-GA-PNN model with the probability of 81% (according to 

the PNN output, Table S4 in Supporting Information), can be 

consider as an outlier since all other compounds from the same 

homologous series are actually LC compounds. This is also 

supported by the fact that all models, except the 2D-FSL-SKNN, 

have misclassified this compound. The other three LC 

compounds, namely 166, 212 and 243, were classified as such 

with the probability of 47%, 19% and 6%, respectively. 

Figure 8. The pLC trend in a homologous series as the number of 

carbons (n) in the terminal chain is increased. 

 

Further decrease of misclassification rate could be achieved by 

using a more balanced dataset with an increased number of 

compounds, especially the NLC ones. Unfortunately, there is a 

deficit of reported NLC structures available in literature since 

published papers contain series of compounds most of which 

being liquid crystals. Since LCs are often synthesised in series of 

5 to 10 compounds, from a practical point of view it is necessary 

only to make a confident identification of LC series among the 

candidate series, while the classifiers are actually trained for a 

more complex task, i.e. to predict individual “losers” in the 

whole “winning” series. 

Influence of the terminal chain length   

The ability of classifier to capture the trends in homologous 

series of compounds is another measure of its quality. The 

influence of the terminal chain length on the 2&3D-GA-PNN 

probabilities (pLC) (Table S4 in Supporting Information) is 

accessed by analysing the obtained pLC for compounds that 

belong to the same homologous series (Figure 8).  

In order to highlight the pLC trend, the pLC for compounds other 

than those from the prediction set were inter- and 

extrapolated, i.e. for the NLC compounds pLC is set to 0%, while 

for the LC compounds pLC is estimated to be > 50% according to 

the observed trend. Figure 8 shows the pLC trends, which are 

observed as the chain length is increased by addition of carbons 

to the chain end, for 4 series of compounds that contain two or 

more molecules from the prediction set.  

In the case of series of compounds 284-294, the GA-PNN model 

has captured well-known effect of LC phase stabilization by the 

increase of terminal chains length. The increase of terminal 

chains length results in increased lateral attractive forces which 

stabilize the LC phases.68 Therefore, the bent-core compounds 

with longer terminal chains have higher pLC values, because they 

are more like to be LCs than shorter-chained ones.  

For the series of compounds 5-15 and 133-143 the observed pLC 

trend shows no influence of the terminal chain length. This is 

probably related with the fact that in those homologous series 

the length of only one terminal chain is varied, while the second 

one had fixed length (a long dodecyloxy chain). Apparently the 

presence of dodecyloxy chain maintains the stability of LC 

phase, and therefore all homologous exhibit LC behaviour with 

the same or similar values of pLC.  

Compounds from the homologous series 94-101 form dark 

conglomerate (DC) mesophases. For this particular homologous 

series, it was determined that the homologous with medium 

alkyl chain length are the most stable and that upon further 

chain elongation the DC phases become instable. For example, 

the crystallization of compound 100 takes place immediately 

after the formation of DC, while the longest homologous (101) 

doesn’t exhibit DC mesophase.69 This behaviour is well captured 

by the 2&3D-GA-PNN model: the pLC decreases from the 

medium homologous to the longest one. 
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Conclusions  

This work demonstrates that the complex phenomena of LC 

phase formation by five-ring bent-core molecules can be 

effectively modelled using a decision trees, MARS and artificial 

neural networks together with dimension reduction 

techniques. Using molecular descriptors from the pools of 2D 

and 2&3D chosen by feature selection and genetic algorithms 

or by classification techniques itself (DT and MARS), a total of 

27 models are created and evaluated. For each pool of 

descriptors, several models with the accuracy of prediction of 

unknown compounds from the prediction set greater than 90% 

were obtained. Also, the dedicated descriptor selection 

approaches (FSL and GAs) proved their advantage by 

outperforming the models based on other selection techniques 

applied.  

Overall, the results suggest that the each tested ANN 

architecture (SKNN, CPNN and PNN) is usable for the prediction 

of LC behaviour. Especially, the 2D-FSL-SKNN and 2&3D-GA-

PNN models demonstrated to be practical and effective tools 

for the LCs prediction, demonstrating a high accuracy of 91% 

and precision of 92% and 97%, respectively.  

Finally, the analysis of ability of the best classifier (2&3D-GA-

PNN) to capture the trends in homologous series showed that 

this model is capable to predict the stability of potential LC 

compound, as the function of PNN output probability. 

Therefore chemists can use the proposed PNN approach: (1) to 

screen the new bent-core structures in their quest for new LCs, 

(2) to estimate the stability of LC mesophase, and (3) to quantify 

the influence of structural modifications on the LC phase 

formation and its stability. Although the created models do not 

provide an understanding of the LC phase formation 

mechanism itself, they represent a rational and practical 

approach for the prediction of liquid crystallinity with high 

accuracy. 

Further research is planned in expanding the proposed 

approach for the prediction of particular type of mesophase, as 

well as in developing regression models for the prediction of 

transition temperatures of LC phases of various five-ring bent-

core systems. 
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Textual abstract 

 

In this study, we present approach for the prediction of liquid crystallinity of five-ring bent-core 

molecules. Reported classifiers can be also used for the estimation of influence of structural 

modifications on LC phase formation, and for the evaluation of LC phase stability. 
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