

Selective sorption and subsequent photocatalytic degradation of cationic dyes by sonochemically synthesized nano CuWO4 and Cu3Mo2O9

Journal:	RSC Advances
Manuscript ID	RA-ART-10-2015-020754.R1
Article Type:	Paper
Date Submitted by the Author:	23-Oct-2015
Complete List of Authors:	Dutta, Dimple; BARC, Rathore, Anjali; IISER Bhopal, Ballal, Anand; BARC, Chemistry Tyagi, A.; BARC, Chemistry
Subject area & keyword:	Nanoscience - Environmental < Environmental

SCHOLARONE[™] Manuscripts

1	Selective sorption and subsequent photocatalytic degradation of cationic dyes
2	by sonochemically synthesized nano CuWO ₄ and Cu ₃ Mo ₂ O ₉
3	Dimple P. Dutta ^a *, Anjali Rathore ^b , Anand Ballal ^c , A. K. Tyagi ^a
4	^a Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
5	^b Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462 066, India
6	^c Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
7	
8	Phone: +912225592308; email: dimpled@barc.gov.in
9	
10	Abstract
11	Sorption of harmful organic pollutants from industrial effluent and their concomitant
12	photodegradation by the sorbent under visible light can be an effective method for wastewater
13	remediation. In this work, we report the facile synthesis of CuWO ₄ and Cu ₃ Mo ₂ O ₉ nanoparticles
14	via a simple sonochemical approach. The materials exhibit superior selective sorption of cationic
15	dyes. The uptake of cationic dyes like rhodamine B (RhB), methylene blue (MB) and malachite
16	green (MG) have been studied along with their adsorption kinetics. The sorption plots have been
17	fitted to various isotherms and the results have been discussed in detail. Removal of the dye from
18	the sorbent has been carried out via mechanical agitation as well as via photocatalysis. The dye
19	sorbed nanosorbents have been subjected to photocatalytic degradation under visible light and
20	they show promising results. The sorbents can be completely removed from the system by
21	simple centrifuging. The reusability of the sorbents has also been tested and they have been

found to retain their efficiency after several consecutive runs. Thus, these materials showpromise as effective remediators for industrial dye effluents.

24

25 **1. Introduction**

Environmental degradation has been the prime fallout of burgeoning population and rapid 26 industrialization during the modern era. The pollution caused by the industries are taking a heavy 27 toll on the environment by spoiling soil quality and releasing unwanted toxins in air as well as 28 water bodies, which adversely affects flora and fauna. The lack of proper waste disposal by the 29 30 industries contributes immensely to air, soil and water pollution. Particularly, the leather, cosmetics, paper, printing and textile industries use various synthetic complex organic dyes as 31 coloring material. The textile industries generally require a lot of water for different processes 32 which results in contamination of the water with these dyes. Untreated or poorly treated effluents 33 from these industries lead to large scale water pollution as dyes are generally toxic in nature and 34 are mostly not amenable to microbial degradation.¹ Anaerobic degradation of certain dyes has 35 been reported to form carcinogenic compounds that can end up in the food chain.² The highly 36 colored dyes also endanger aquatic life by increasing the chemical oxygen demand (COD) and 37 reducing the penetration of sunlight and oxygen in water.³ Hence, proper treatment of these dye 38 effluents is imperative in reducing water pollution. 39

40

The dyes are generally resistant to light, detergent, soap, sweat and common oxidizing agents and hence, conventional water treatment procedures are generally ineffective to treat these effluents.⁴ Over the years, various methods like chemical treatment, membrane separation, ultrachemical filtration, coagulation and flocculation have been developed for treatment of

industrial effluents.⁵ However, most of the commonly used dyes are completely soluble in water 45 and hence the above techniques are rendered useless for their removal. Hence, considerable 46 emphasis has been laid in recent years to processes like photocatalysis and sorption for treatment 47 of dve effluents.⁶ The simplicity, reliability and effectiveness of the process of adsorption of dves 48 on solid sorbents, makes it a preferred method of choice. Activated carbon has been extensively 49 studied as sorbents for various dyes but they have high production and regeneration costs which 50 limits its practical utility.^{7,8} Various cheap natural adsorbents like clay, zeolites, 51 agricultural/biomass wastes, minerals and ores have also been studied for dye sorption.⁹ 52 However, it is difficult to compare their relative performance since the efficiency of the sorption 53 process depends critically on the specific physical and chemical characteristics of the sorbent 54 such as porosity, surface area and physical strength. Apart from the inherent advantages and 55 disadvantages of each individual sorbent in wastewater treatment, their adsorption capacities also 56 vary according to the experimental conditions.¹⁰ Hence, there is a constant quest for novel 57 adsorbents having high sorption capacity, fast kinetics of adsorption/desorption, easy separation 58 59 and regeneration. In this context, nanomaterials have the potential to make a big foray in developing more cost effective and environmental acceptable water purification processes due to 60 their small size and high surface area. Nanostructured sorbents offer the opportunity of higher 61 sorption capacity and can be designed to target specific contaminants. Very recently surface 62 functionalized TiO₂ nanoparticles synthesized via sol gel method has been shown to exhibit high 63 adsorption affinity for MB dye which is a prerequisite for its efficient photodegradation.¹¹ Also a 64 lot of recent research has been directed towards development of metal organic frameworks 65 (MOF) with nanosized pores which has shown promise in selective adsorption of dyes.¹²⁻¹⁵ 66 67 However, the synthesis of such MOFs is an involved process rendering complication in the

68 industrial dye effluent treatment which is always on the lookout for simple solutions. Hence there is a lot of renewed interest in inorganic materials like metal tungstates and molybdates 69 which are considered to be functional materials having diverse potential applications in 70 71 scintillation counters, lasers and optical fibers, humidity sensors, catalysts, low-dimensional magnetism and photoelectrocatalytic water oxidation.¹⁶⁻²⁴ Tungstates and molybdates with metal 72 ions having radius < 0.77Å adopt the wolframite structure where the divalent metal ions and 73 W^{6+}/Mo^{6+} ions gets stabilized in octahedral sites.²⁵ CuWO₄, with its narrow band gap (E_g) of ~ 74 75 2.3–2.4 eV, has been studied extensively as material for photoanode in photolectrochemical cells for splitting of water.²⁶⁻³⁰ CuMoO₄ finds application as potential cathode material for lithium ion 76 batteries.^{31,32} Micropompons of Cu₃Mo₂O₉ synthesized hydrothermally have been reported to 77 78 exhibit appreciable photocatalytic activity for the degradation of congo red under visible light irradiation.³³ Recently, we have reported the sorption affinity of MnWO₄/MnMoO₄ 79 nanostructures for common dyes and heavy metal ions such as copper.³⁴ However, to the best of 80 81 our knowledge, sorption behaviors of copper tungstates and molybdates have not yet been explored. Hence, it was of interest to synthesize nanoforms of these materials which can act as 82 sorbent for organic pollutants and subsequently photodegrade them under exposure to light. 83

84

In this work, we report the superior sorption ability and photocatalytic properties of $CuWO_4$ and Cu₃Mo₂O₉ nanomaterials synthesized using a sonochemical technique. In sonochemical synthesis, the ultrasonic waves generate high temperature and pressure cavitation hotspots which enhance the chemical reactions. The synthesis has been carried out in the absence of any capping agent and it is also a surfactant as well as template free technique which ensures easy recovery of the final product. The products obtained from the sonochemical synthesis have been

characterized using powder XRD and TEM. For the sorption studies, common dyes like 91 rhodamine B, methylene blue, malachite green and methyl orange were selected. These are 92 triphenylmethyl /azo dyes which are extensively used in textile and food industries as coloring 93 94 agents. Human exposure to these dyes is detrimental to health causing skin, eyes and respiratory tract irritation.³⁵⁻³⁷ The presence of these dyes in the industry effluents is a matter of great 95 concern and nanosorption followed by photocatalytic degradation can be an effective technique 96 of remediation. The experimental results indicate that our sonochemically synthesized as-97 prepared CuWO₄/ Cu₃Mo₂O₉ nanostructures are expected to be new promising materials for 98 cationic dye effluent remediation. 99

100

101 **2. Experimental**

102 **2.1 Materials and method**

103 The reactions were carried out under air at room temperature and pressure. High purity ($\geq 99\%$) 104 AR grade copper nitrate [Cu(NO₃)₂.xH₂O], sodium tungstate [Na₂WO₄.2H₂O] and sodium 105 molybdate [Na₂MoO₄.2H₂O] were obtained from commercial sources.

106

107 Synthesis of $CuWO_4$

In a typical reaction, an aqueous solution (20ml) of $[Na_2WO_4.2H_2O]$ (4.47 g, 13.57 mmol) was added dropwise to an aqueous solution (20ml) of $[Cu(NO_3)_2.3H_2O]$ (3.28 g, 13.57 mmol) under pulse sonication. After the addition was complete, the beaker was subjected to high intensity (100 W/cm²) ultrasonic radiation under air for 1.5h using an ultrasonicator (Oscar Ultrasonics) operating at 40 kHz. The external temperature of the contents in the beaker rose upto 65°C. After

sonication, the precipitate was washed with water and centrifuged. The light green precipitateobtained was dried in air.

115 Synthesis of $Cu_3Mo_2O_9$

To an aqueous solution (20ml) of $[Cu(NO_3)_2.3H_2O]$ (3.35 g, 13.86 mmol), an aqueous solution (20ml) of $[Na_2MoO_4.2H_2O]$ (3.36 g, 13.88 mmol) was added under sonication. Immediate precipitation was observed. The high intensity sonication was continued for 1.5h and the resultant solution was centrifuged to separate the precipitate. The sea green precipitate was washed twice with distilled water and air dried.

121

122 **2.2 Dye sorption experiments**

The sorption studies on CuWO₄ and Cu₃Mo₂O₉ samples for each individual dyes viz. Rhodamine 123 B (RhB), Methylene blue (MB) and Malachite Green (MG) was carried out in the batch mode as 124 reported by us previously.³⁴ In these experiments, an accurately weighed amount of the sorbent 125 126 was equilibrated at room temperature with a known concentration of the dye maintained at a particular pH for a known period of time (actual values given later during the discussion of each 127 sorption experiment). Once the equilibration was complete, the amount of dye left behind in 128 129 solution was measured spectrophotometrically at 546, 668 and 617 nm for RhB, MB and MG respectively. The various experimental conditions of pH, amount of sorbent and initial dye 130 concentration were varied to get a complete understanding of the sorption process. To ensure 131 reproducibility of the results, all the experiments were done in triplicate and the mean values 132 have been reported. 133

134

135 **2.3 Dye desorption experiments**

136	Approximately 50mg of spent adsorbent was centrifuged out of 20ppm dye solution (RhB, MB
137	and MG) and was dried in a hot air oven for 2h at 50°C. The dye loaded adsorbent was
138	suspended in 50 ml distilled water and sonicated for 1h at 40kHz. The suspension was
139	centrifuged at regular intervals and the supernatant was analyzed spectrophotometrically for the
140	desorbed dye concentration.
141	The adsorption desorption experiments were done repeatedly to ascertain the reusability of the
142	CuWO ₄ and Cu ₃ Mo ₂ O ₉ adsorbents.
143	
144	2.4 Photocatalytic degradation of dye to regenerate the sorbent
145	50mg/L of RhB, MB and MG dye was individually adsorbed on 50mg CuWO ₄ and Cu ₃ Mo ₂ O ₉
146	samples. The efficient and fast sorption of the dyes on the nanoparticles surface rendered the
147	solution completely colorless. Hence, the dye sorbed sorbent was centrifuged out and kept in the
148	form of an aqueous paste on a glass petridish and irradiated with a 150 W xenon lamp (15V,
149	3300K) to simulate daylight. Absorbance spectrum of the irradiated sample was recorded after
150	every 15min interval and the extent of photocatalytic degradation of the dye was monitored by
151	measuring the decrease in its absorbance value.
152	
153	2.5 Characterization

Powder XRD of CuWO₄ and Cu₃Mo₂O₉ samples were recorded on a PANalytical X-Pert Pro powder x-ray diffractometer. The CuK_{α} (k = 1.5406 and 1.5444Å) radiation was used and diffraction was measured over 20 range of 10°–80°. The conventional TEM micrographs of the particles dispersed on carbon coated copper grids were recorded using a Libra 120 KeV Electron Microscope (Carl Zeiss). The Brunauer–Emmett–Teller (BET) surface area was determined by

high purity nitrogen sorption using a Bel Japan Inc., Belsorp II surface area analyzer. The
samples were degassed under flowing argon at 100°C for 10h before the nitrogen adsorption.
The diffuse reflectance spectra were determined with a UV–vis spectrophotometer (Varian Cary
5000) with BaSO₄ as the reference standard.

- 163
- 164

3. Results and Discussion

165 *Characterization of CuWO*₄ *and Cu*₃ Mo_2O_9

CuWO₄ and Cu₃Mo₂O₉ have been synthesized using a simple sonochemical method. The XRD 166 pattern of the as prepared CuWO₄ and Cu₃Mo₂O₉ samples revealed its amorphous nature. 167 Furnace heating of the as synthesized powders at 500°C for 1h yielded crystalline CuWO₄ and 168 Cu₃Mo₂O₉ as is evident from their powder XRD patterns shown in Figure 1a and 1b, 169 respectively. The XRD pattern in Figure 1a is consistent with standard data for the scheelite 170 triclinic phase of CuWO₄ with P $\overline{1}$ space-group symmetry (PCPDF file no. 80-1918).³⁸ The 171 calculated lattice parameters of a = 4.690Å, b = 5.824Å, c = 4.881Å, α = 91.63°, β = 92.41° and 172 $\gamma = 82.91^{\circ}$ are very close to that of the reported values. The average crystallite size calculated 173 using the Debye-Scherrer equation from the FWHM (full width half maxima) of the XRD peaks 174 was found to be ~35 nm. In previous reports on sonochemical synthesis of CuWO₄, CTAB was 175 used as surfactant and the as synthesized powder had to be heated at 500°C for 5h to achieve 176 proper crystallinity in the sample.³⁸ In our case, the method is surfactant free and a shorter time 177 of 1h is required to get crystalline CuWO₄ nanoparticles. Figure 1b confirms the formation of 178 orthorhombic Cu₃Mo₂O₉ with space group Pna2₁ (PCPDF 702493). The average size of the 179 particles was found to be ~15 nm using the Debye Scherrer equation. Incidentally, there are no 180 reports on the sonochemical synthesis of Cu₃Mo₂O₉ nanoparticles in the literature. 181

182

183 TEM studies have been done to further investigate the microstructure and topography of the thermally treated CuWO₄ and Cu₃Mo₂O₉ samples (Figure 2a and 2c). The representative TEM 184 image of CuWO₄ shows formation of spherical particles with diameters ranging between ~20-85 185 186 nm (Figure 2a). The CuWO₄ nanoparticles are not monodispersed and the agglomeration seen in the TEM image is due to the thermal treatment of the as synthesized product to develop 187 crystallinity in the final sample. The histogram depicting the size distribution of the CuWO₄ 188 nanoparticles as observed from the TEM image is given in Figure 2b. The average diameter of 189 190 the nanospheres was found to be 36.6 ± 12.2 nm which is in good agreement with the size obtained from powder XRD. In case of the furnace heated Cu₃Mo₂O₉ sample, the TEM image 191 confirms formation of mostly spherical nanoparticles with sizes ranging between 10 to 30 nm 192 (Figure 2c). The corresponding histogram in Figure 2d gives an average diameter of 15.1 ± 1.6 193 194 nm for the Cu₃Mo₂O₉ nanoparticles which matches well with the size obtained via Scherrer calculation on the powder XRD pattern of the same sample. 195

The surface area of the nanoparticles plays an important role in justifying their application as 196 sorbents. In order to assess the specific surface area of our sonchemically synthesized CuWO₄ 197 and Cu₃Mo₂O₉ nanoparticles, their N₂ adsorption-desorption isotherms were recorded at -198 195.75°C. A classical Type III isotherm was obtained in each case suggesting the presence of 199 mesoporous structures. Using the B.E.T. equation, the specific surface area was found to be 200 $\sim 77.84 \pm 0.18 \text{ m}^2/\text{g}$ and $\sim 85.79 \pm 0.25 \text{ m}^2/\text{g}$ for the CuWO₄ and Cu₃Mo₂O₉ nanoparticles, 201 respectively (Figure 3a and 3b). The increase in specific surface area in case of copper 202 molybdate is probably due to the decrease in their particle size compared to that of copper 203 tungstate. The specific surface area obtained in case of our sonochemically synthesized CuWO₄ 204

nanoparticles is much higher than that reported for $CuWO_4$ nanorods.³⁴ Similar observations have been reported in case of nanocrystalline WO₃ synthesized via wet chemical route.³⁹

207 *Effect of pH on adsorption*

The effect of pH on the dye adsorption capacity of the CuWO₄ and Cu₃Mo₂O₉ nanoparticles has 208 been studied. A change in pH can alter the surface charge on the nanosorbent as well as the 209 210 degree of dissociation of the dye molecule. 10mg of CuWO₄/Cu₃Mo₂O₉ nanoparticles was added to 10ml of 20 mg/L dye solution (RhB, MB and MG) maintained at various pH (2, 3, 5, 7, 9) 211 using hydrochloric acid or sodium hydroxide. The pH was measured by using a portable pH 212 meter (Mettler Toledo, FG2- FiveGo pH). The adsorption of the dve over the sorbent was studied 213 by checking absorbance for each dye through a UV-vis spectrophotometer. The dye 214 concentration was measured after every 3 minutes until constant or zero absorbance was seen. 215 From Figures 4a-c, it can be observed that the fastest and complete sorption of the dyes occurs at 216 pH 3 for the CuWO₄ nanoparticles. RhB sorption was effective exclusively under acidic pH 217 218 whereas MB dye sorption occurred under both acidic and alkaline pH. This was tested by adding 10mg of the sorbent to a 20 mg/L mixture of all three dyes maintained at pH 9 and selective 219 sorption of the MB dye was observed (Supplementary Figure S1). Also, among the three dyes, 220 221 the shortest time for complete sorption was seen for MB which was 3 min. However, in case of Cu₃Mo₂O₉ nanoparticles, the sorption occurred only under acidic conditions for all the three dyes 222 and the fastest sorption was seen at pH \sim 3 (Figure 4d-f). Both RhB and MB was completely 223 adsorbed on the $Cu_3Mo_2O_9$ nanoparticles within a short time span of 3 min. At neutral pH, none 224 of the dyes were sorbed on the Cu₃Mo₂O₉ nanoparticles. Since there is a strong dependence of 225 the dye sorption properties of CuWO₄ and Cu₃Mo₂O₉ nanoparticles on the pH of the medium, it 226 can be inferred that the ion exchange plays a roles in this sorption process. The same set of 227

experiments were carried out with 10ml of 20 mg/L methyl orange (MO) solution which is an anionic dye. It was observed that both $CuWO_4$ and $Cu_3Mo_2O_9$ nanoparticles did not adsorb the anionic dye under acidic, basic or neutral pH.

- 231
- 232 *Effect of concentration of dye on adsorption*

For 20 mg/L concentration, the time taken for the complete sorption of RhB, MB and MG dye at 233 pH~3 by our CuWO₄ nanoparticles was 9 min, 3 min and 9 min, respectively. The effect of the 234 concentration of the dye solution on the time of uptake for all the dyes was studied within a 235 range of 20 to 200 mg/L. All the experiments were done using 10 mg CuWO₄ nanoparticles and 236 pH of the dye solution was maintained at 3. It was observed that even for 200 mg/L 237 concentration, complete sorption of all the three dyes occurred on the CuWO₄ nanoparticles with 238 239 no further increase in time. On increasing the amount of $CuWO_4$ nanoparticles from 10 to 20mg, the time taken for complete sorption of 200 mg/L RhB solution decreased from 9 min to 3 min 240 (Figure 5a and 5b). In case of the Cu₃Mo₂O₉ nanoparticles, the time taken for complete sorption 241 of various concentrations of the dyes (20 to 200 mg/L) at pH~3, is given in Table 1. On 242 increasing the concentration of dye to 200 mg/L, MB adsorption is the slowest. However, on 243 increasing the amount of $Cu_3Mo_2O_9$ nanoparticles from 10 mg to 30 mg, 200 mg/L MB dye was 244 completely sorbed in 3 min. 245

The amount of dye adsorbed on per gram of the adsorbent (CuWO₄/ Cu₃Mo₂O₉ nanoparticles)
has been calculated using the mass balance equation

248
$$q_e = \frac{(C_0 - C_e)V}{m}$$
 (1)

where q_e is the equilibrium concentration of the dye on the adsorbent (mg/g), m is mass of sorbent (g), V is the volume of the solution (L), C_0 represent the initial concentration of dye

(mg/L) and C_e is the equilibrium concentration of the dye solution. Figure 6a and 6b indicates 251 252 that the extent of sorption exhibited by the CuWO₄ and Cu₃Mo₂O₉ nanoparticles, respectively, is a function of the initial dye concentration. In case of CuWO₄, for all the three dyes, the sorption 253 254 amount keeps increasing with the initial concentrations of the dye indicating that even 10mg of the sorbent is capable of adsorbing dyes of concentration higher than 200mg/L. Similar 255 observations had been noted in case of sonochemically synthesized MnWO₄ nanoparticles.³⁴ To 256 study the maximum sorption capacity, the initial dye concentration of MB was increased to 257 500mg/L and it was observed that the limiting value of qe obtained experimentally was 258 \sim 367mg/g (Supplementary Figure S2). In case of Cu₃Mo₂O₉ nanoparticles, the amount taken up 259 by the sorbent keeps on increasing for the MB dye within the concentration range of 10 to 50 260 mg/L and almost saturates when the concentration of dye is increased to 200 mg/L. The limiting 261 value of q_e obtained in this case is ~ 80 mg/g. The q_e value improves from 19.86 to 70.51 mg/g 262 as the MG dye concentration is increased from 50 to 200 mg/L. For RhB dye, the qe value 263 increased linearly with increase in the dye concentration from 20 to 200mg/L. Higher initial 264 concentration of the dyes have been reported to enhance the adsorption process by providing a 265 driving force to overcome the mass transfer resistance of the dyes between the aqueous and solid 266 phases.40 267

268

269 Adsorption Isotherm Study

The adsorption isotherms of both $CuWO_4$ and $Cu_3Mo_2O_9$ nanoparticles for all the three dyes have been tested with the Langmuir and Freundlich models in order to establish the correlation for the equilibrium data in the design of the sorption system. This indicates the distribution of the adsorbed molecules between the liquid phase and the solid phase when the adsorption process

reaches equilibrium state. A better regression coefficient (R²) value gives an indication of the applicability of the isotherm models. The Langmuir isotherm equation is based on the assumption that monolayer adsorption of solute molecules occurs on a fixed number of localized surface sites present on the sorbent.⁴¹ In Freundlich isotherm equation, non-ideal sorption is taken care of by considering heterogenous surface energy systems.⁴² The linear form of the Langmuir and Freundlich equations are given below

$$280 \qquad \frac{C_e}{q_e} = \left(\frac{1}{bQ_0}\right) + \left(\frac{1}{Q_0}\right)C_e \tag{2}$$

281
$$\log q_e = \log K_F + \left(\frac{1}{n}\right) \log C_e$$
 (3)

where Q_0 and b are Langmuir constants related to adsorption capacity and rate of adsorption, 282 respectively, $K_{\rm F}$ (mg/g (L/mg)^{1/n}) is roughly an indicator of the adsorption capacity and 1/n is 283 the adsorption intensity constant that varies with the heterogeneity of the adsorbate. For CuWO₄ 284 nanoparticles, the Langmuir and Freundlich plots corresponding to the adsorption of all the three 285 286 dyes are shown in Figures 6c and 6d, respectively. From the fitting parameters listed in Table 2, it can be inferred that the adsorption data fits both Freundlich and Langmuir models as they have 287 almost comparable R² values. Initially monolayer adsorption of the dyes occurs on CuWO₄ 288 289 nanoparticles followed by multilayer adsorption. In case of Langmuir adsorption isotherm, a dimensionless constant separation factor (R_L) is used to determine the favorability of the 290 adsorption process.³⁵ 291

292
$$R_L = \frac{1}{1+bC_0}$$
 (4)

where C_0 (mg/L) is the highest initial concentration of adsorbent, and *b* (L/mg) is Langmuir constant. The type of isotherm is indicated by the R_L values, R_L = 0 (irreversible), $0 < R_L < 1$ (favorable), R_L = 1 (linear) and R_L > 0 (unfavorable). For our sonochemically synthesized

CuWO₄ nanoparticles, the R_L values have been found to be 0.588, 0.641 and 0.625 for RhB, MB 296 and MG, respectively, indicating that the adsorption is a favorable process. In case of Freundlich 297 298 isotherm, value of n>1 indicates favorable adsorption condition. From Table 2 it can be seen that for CuWO₄ nanoparticles, the n values are \sim 1 indicating predominance of monolayer adsorption. 299 The maximum sorption capacity of CuWO₄ for RhB, MB and MG dye as calculated from the 300 301 Langmuir model was found to be ~303, 370 and 333 mg/g, respectively. This is much higher than that reported in case of MnWO₄ nanoparticles.³⁴ For the Cu₃Mo₂O₉ nanoparticles, the 302 Langmuir and Freundlich plots corresponding to the adsorption of all the three dyes are shown in 303 Figures 6e and 6f, respectively and the fitting parameters are given in Table 2. For RhB and MG 304 adsorption, the Freundlich isotherm fits the data better than the Langmuir isotherm. This is 305 confirmed by the higher value of R^2 obtained in the former case. This suggests that the 306 adsorption process of RhB and MG on Cu₃Mo₂O₉ nanoparticles is multilayer in nature and 307 should be better represented by the Freundlich isotherm rather than the Langmuir model. In case 308 of MB, better R^2 value for Langmuir model and R_L of 0.270 indicates monolayer sorption. 309 However, the maximum sorption capacity of the Cu₃Mo₂O₉ nanoparticles for MB was ~99 mg/g 310 which is much less than that observed in case of CuWO₄. 311

312

313 *Adsorption kinetics*

The physicochemical process of adsorption involves the transfer of the dye from the liquid phase to the surface of the nanoparticles. The study of the kinetics of the sorption process at different time intervals gives an idea about the mechanism of adsorption. Rapid sorption of all three dyes has been observed in case of our sonochemically synthesized Cu₃Mo₂O₉ nanoparticles. The average time required by 10mg of Cu₃Mo₂O₉ for sorption of all three dyes (10ml, 50ppm) was

Page 15 of 29

RSC Advances

between 3 to 6 min. Hence, kinetic modeling studies could not be done since it was not possible to measure various points within such small time periods. However, kinetic modeling studies on RhB and MG dye adsorption by CuWO₄ nanoparticles was carried out. Here, we have analyzed the sorption kinetic data using Lagergren's first order and pseudo-second order models. The equation for Lagergren's first order model is given as

324
$$log(q_e - q_t) = log q_e - \frac{\kappa_1}{2.303}t$$
 (5)

where q_t and q_e represent the amount of dye adsorbed (mg/g) at any time t and at equilibrium time, respectively, and k_1 represents the adsorption rate constant (min⁻¹).⁴³ The k_1 values can be obtained from the slope of the plot of log ($q_e - q_t$) vs. t. The pseudo second order kinetic equation is given as

329
$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
 (6)

where k_2 = rate constant of pseudo-second-order (g/mg/min) and can be obtained experimentally 330 from the intercept of plot of t/q_t vs. T.³³ The parameters of pseudo-first and pseudo-second order 331 kinetic models obtained for RhB and MG adsorption by CuWO₄ nanoparticles have been given 332 in Table 3 and Table 4, respectively. It can be seen that for RhB adsorption, the regression 333 coefficient (R^2) values are between 0.8517 – 0.9984 and 0.9778 – 0.9993 for the pseudo-first and 334 pseudo-second order kinetic models, respectively (Table 3). The higher R² values indicate that 335 the pseudo-second order kinetic model fit quite well with the experimental data and moreover the 336 calculated and experimentally obtained qe values show a better match in this case. Similarly, in 337 case of MG adsorption, better R² values have been obtained in case of the pseuso-second order 338 kinetic model. The calculated qe values obtained from the pseudo-first order kinetic model are 339 erratic whereas they match with the experimentally obtained qe values in case of the pseudo-340 second order kinetic model. The sum of error square analysis (SSE%) has been done to prove the 341

validity of the pseudo-second order kinetic model for the adsorption process. The SSE wascalculated using the following equation

344
$$SSE(\%) = \sqrt{\frac{\Sigma(q_{e,exp} - q_{e,cal})^2}{n}}$$
(7)

where n is the number of data points. From Table 3 and Table 4, it can be seen that the SSE% value is lower in case of pseudo-second order model compared to the pseudo-first order model. Thus, it can be inferred that the adsorption of RhB and MG dyes on our sonochemically synthesized CuWO₄ nanoparticles was best fitted to the pseudo-second order kinetic model which indicates the possibility of chemisorption as the rate limiting step.⁴⁴

To get a better idea about the adsorption mechanism, the intraparticle diffusion model suggested by Weber and Morris has been used to further analyse the kinetic results.⁴⁵

352
$$q_t = k_{id} t^{1/2} + C$$
 (8)

The slope of the plot of q_t vs $t^{1/2}$ gives the value of k_{id} which is the intraparticle diffusion rate 353 constant (mg/g $min^{0.5}$). A linear plot with an intercept equal to zero indicates that pore diffusion 354 is the rate limiting step. However, in case of RhB and MG adsorption by CuWO₄ nanoparticles, a 355 multilinear plot is obtained having at least two linear segments (Figure 7a,b) suggesting the 356 occurrence of both external mass transfer as well as pore diffusion of the solute.⁴⁶ The steep rise 357 in the plot for all concentrations of RhB and MG dye solution suggests rapid external surface 358 adsorption of the dye on the nanoparticle surface during the initial period. The gradual rise in the 359 360 second stage suggests that at this point intraparticle diffusion becomes the rate limiting step. Thus, it can be inferred that in case of RhB and MG adsorption on CuWO₄ nanoparticles, the 361 intraparticle diffusion is not the rate limiting step exclusively.⁴⁷ 362

363

364 Selective sorption of cationic dyes by $CuWO_4$ and $Cu_3Mo_2O_9$ nanoparticles

The selectivity of our sonochemically synthesized CuWO₄ and Cu₃Mo₂O₉ nanoparticles for 365 cationic dyes have been demonstrated by the following experiment. 10mg of $CuWO_4 / Cu_3Mo_2O_9$ 366 was added to 10 ml of 20ppm mixture of RhB, MG, MB and MO solution. The pH of the dve 367 368 solution was adjusted to 3 as the nanoparticles exhibits highest sorption efficiency at that pH. Figure 8a and 8b shows the change in the absorbance values of the dve solution with the passage 369 of time, in presence of CuWO₄ and Cu₃Mo₂O₉ nanoparticles, respectively. The sorption of the 370 cationic dyes is complete within 10 minutes while the peak at 515nm persists even after 5h. This 371 peak is due to the azonium ions formed in the MO dve in acidic pH.⁴⁸ Thus, the selective 372 sorption of cationic dyes from a mixture of cationic and anionic dyes is possible using these 373 CuWO₄ /Cu₃Mo₂O₉ nanoparticles. 374

375

376 *Desorption study*

For its practical application in industry, it is essential that the sorbent materials can be removed 377 easily from the system and has considerable reusability. We have tested the reusability of our 378 379 CuWO₄ and Cu₃Mo₂O₉ samples by conducting desorption experiments using mechanical vibrations from ultrasonic waves to dislodge the dye ions from the surface of the nanosorbents. 380 In case of the dye loaded Cu₃Mo₂O₉ samples, ~98% desorption was observed for MB dye within 381 a short time span of 45 min. For RhB and MG, the time taken for ~97% desorption was 65 and 382 70 min, respectively. Such fast desorption indicates physisorption of the dyes on $Cu_3Mo_2O_9$ 383 surface. Similar observations have been reported in case of MB sorption on alumina 384 nanoparticles.³⁵ The regenerated sorbent was centrifuged, separated from the supernatant water, 385 dried in air and used for further sorption studies. The absorption desorption experiment was 386 repeated thrice. The thrice regenerated sorbent was tested with a mixture of all three dyes 387

388 (20ppm) and ~98% removal was observed within 3min (Figure 9). However, in case of CuWO₄ 389 sorbent, only ~40% desorption was observed for RhB, MG and MB dyes after 3h, 3.5h and 2.5h, 390 respectively. This indicates that the dyes bind more tenaciously on the CuWO₄ surface compared 391 to Cu₃Mo₂O₉ surface and the process may be that of chemisorption. Thus the desorption 392 experiments supports the results obtained from kinetic studies which indicated that RhB and MG 393 dye adsorption on CuWO₄ nanoparticles best fitted the pseudo-second order kinetic model.

394

395 *Mechanism of sorption*

The zeta potentials of CuWO₄ and Cu₃Mo₂O₉ nanoparticles have been measured and they were 396 found to be negative (Table 5). RhB, MB and MG are all cationic dyes and hence they get 397 attracted to this negative surface charge on the nanomaterials whereas MO being an anionic dye 398 399 is not adsorbed. An increase in the zeta potential values has been observed on addition of each of the cationic dyes which indicates the occurrence of charge neutralization due to mutual 400 electrostatic attraction. The zeta potential of our sonochemically synthesized Cu₃Mo₂O₉ 401 402 nanoparticles is more negative than CuWO₄ nanoparticles and probably this result in the faster adhesion of the cationic dyes to the former compared to the later. It is well known that in 403 aqueous solutions, the basic dyes exist in cationic form. At lower pH compared to the pK_a value 404 of RhB (3.7), the carboxylic group of the cationic form of RhB⁺ stays protonated and does not 405 lose proton to form zwitterions.⁴⁹⁻⁵¹ The cationic form has more affinity towards the negatively 406 charged tungstate and molybdate surface and hence the maximum adsorption of RhB occurs at a 407 pH value of ~2 - 3. A pH value between 2 to 5 has been found to exhibit maximum sorption of 408 cationic dyes like MB and MG on the negatively charged CuWO₄ and Cu₃Mo₂O₉ surface. 409 410 However, when the pH of the solution is lowered, a decrease in the number of negative sites on

the sorbent surface is expected which should lower the amount of sorption. This indicates that electrostatic interaction is not the only mechanism operating in this case. With decrease in pH, more hydrogen ions gets bonded on the surface of the tungstate and molybdate nanosorbent which increases the possibility of hydrogen bonding with the nitrogen atoms present in MB and MG.⁵²

416

417 *Photocatalytic degradation of adsorbed dye*

The utility of a sorbent for dye remediation from wastewater increases manifold if the adsorbed dye can be degraded photocatalytically. To assess the photocatalytic activity of our sonochemically synthesized CuWO₄ and Cu₃Mo₂O₉ nanoparticles, their band gaps have been obtained from the diffused reflectance spectra recorded for these samples by using the Kubelka Munk function. CuWO₄ and Cu₃Mo₂O₉ are indirect band gap materials and the band gap can be obtained by the following equation:

424
$$(F(R_{x}) hv)^{1/2} = A(hv - E_{g})$$
 (9)

where $F(R_{\alpha})$ is called the remission or Kubelka–Munk function, diffuse reflectance (R_{α}) of the 425 examined samples is $R_{\infty} = R_{\text{sample}}/R_{\text{standard}}$ and A is a constant that is dependent on the transition 426 probability of the optical absorption process. The variation of $(F(R_{\infty}) hv)^{1/2}$ versus (hv) has been 427 428 plotted (Figure 10a and 10b) and by extrapolating the linear portions of these plots to the x-axis (photon energy) i.e. hv = 0, values of theoretical band gap for the samples could be obtained. 429 CuWO₄ has an indirect band gap of 2.20 ± 0.02 eV which is similar to that reported in 430 literature.^{53,54} The Cu₃Mo₂O₉ nanoparticles have a slightly higher band gap of 2.32 ± 0.03 eV. 431 Thus both CuWO₄ and Cu₃Mo₂O₉ have their absorption edge in the visible range of the 432 spectrum. The photocatalytic activity have been probed by irradiating 50mg of 20ppm dye 433

434 sorbed (RhB, MB, MG) nanopowders under a 150W Xe lamp. The degradation curves for the various dyes obtained with the CuWO₄ and Cu₃Mo₂O₉ nanosorbents are shown in Figures 10c 435 and 10d, respectively. CuWO₄ displays a better visible light photocatalytic activity with ~100% 436 437 dve degradation within 130min, 180min and 240min for MG, MB and RhB, respectively. The results can be compared with that reported for CuWO₄ nanoparticles synthesized via polyol 438 method. Approximately 100% MB degradation (7ppm) under visible light occurred within 439 240min in solution phase.⁵⁵ In contrast, only partial degradation of the dyes is observed in case 440 of our Cu₃Mo₂O₉ sorbent even after 240min of exposure to visible light. The apparent first order 441 rate constant for the visible light photodegradation kinetics has been calculated in each case and 442 the results are given in Table 6. It is observed that the reaction rates are one magnitude higher for 443 the CuWO₄ nanosorbent compared to that of Cu₃Mo₂O₉. It should be noted that $\sim 100\%$ sorption 444 445 of dyes occurred on both the sorbents. Hence, hindrance of direct photon absorption for photocatalytic degradation due to complete blockage of the surface will not lead to such varied 446 result. 447

448 The band positions of $CuWO_4$ can be predicted using the electronegativity concept, and its CB 449 and VB potentials at the point of zero charge can be calculated by the following equation:

- 450 $E_{VB} = \chi E^e + 0.5E_g$ (10)
- 451 $E_{CB} = E_{VB} E_g$ (11)

where χ is the absolute electronegativity of CuWO₄ (6.315 eV), E^e is the energy of free electrons on the hydrogen scale (~4.5 eV), and E_g is the bandgap (2.20 eV).⁵⁶ Based on the above equations, E_{VB} and E_{CB} of CuWO₄ were calculated to be +2.915 eV and +0.715 eV, respectively. The positions of valence band and conduction band of semiconductor reflect the oxidation ability of hole and reduction ability of electron, respectively. Since the valence edge potential of

CuWO₄ is more positive than $(E_{(\bullet OH/H2O\bullet)} = +2.68 \text{ eV vs. NHE})$, the trapped holes in the valence 457 458 band of CuWO₄ can oxidize H₂O to yield [•]OH. [•]OH is considered to be one of the main reactive species during photocatalytic reaction and to be responsible for oxidation decomposition of many 459 460 organic dye pollutants. The favourable band edge positions of CuWO₄ make it an ideal candidate to generate OH[•] radical via oxidation of water which is regarded as the principal oxidant for dye 461 photodegradation.⁵⁷ The E_{VB} and E_{CB} of our sonochemically synthesized Cu₃Mo₂O₉ 462 nanoparticles were also calculated and they were found to be 0 eV and -2.32 eV, respectively. In 463 464 this case, the photogenerated electrons in the CB of Cu₃Mo₂O₉ could be captured by adsorbed O₂ to generate $O_2^{-\bullet}$ radicals. This might be the probable reason for the partial degradation of all three 465 cationic dyes sorbed on our sonochemically synthesized Cu₃Mo₂O₉ nanoparticles. It is to be 466 467 noted that Cu₃Mo₂O₉ has been reported to exhibit selective photodegradation of anionic dyes like Congo Red and very low degradation ability for cationic dyes.³³ Further studies with simple dye 468 469 solutions need to be done to understand the photocatalytic selectivity exhibited by Cu₃Mo₂O₉.

470

471 *Regeneration of the sorbents*

472 An important aspect to be considered for commercial viability of sorbents is its easy and economic regeneration. The Cu₃Mo₂O₉ nanosorbent could be regenerated by simple mechanical 473 474 agitation in an ultrasonic bath and its efficiency remained practically unchanged after three consecutive runs. In case of CuWO₄, the sorbent recovered after photocatalytic degradation was 475 also subjected to dye sorption and photocatalytic degradation for three consecutive cycles. The 476 477 nanoparticles retained its sorption efficiency and the sorbed MG dye could be effectively photodegraded as is evident from Figure 11a. The crystalline structure of the sample obtained 478 479 after three consecutive cycles was studied using powder XRD (Figure 11b). The patterns

480 obtained matched exactly with that of the starting sample which confirms its stability. The photostable property of CuWO₄ was also checked by recording the FTIR spectra of the MB 481 sorbed starting compound and that obtained after photocatalytic degradation of the MB dye 482 483 under visible irradiation (Figure 11c). The CuWO₄ sample obtained after photocatalysis was dried in air before recording the FTIR spectrum. The MB dye sorbed sample showed broad peak 484 between 2600 to 3700cm⁻¹ due to O-H stretching vibrations of the hydroxyl groups. The 485 relatively sharp peak at ~1625 cm⁻¹ is attributed to the H-O-H bending vibrations of the water 486 molecules.⁵⁸ The strong IR band at 1380 cm⁻¹ is due to $v_s(CH_2)$ vibration. The broad band in the 487 range of 1000 to 500 cm⁻¹ is due to the various stretching and bending modes of the WO_4^{2-} 488 lattice.⁵⁹ It can be clearly seen from Figure 11c that the characteristic absorptions of the tungstate 489 lattice have not changed throughout the photocatalytic degradation process indicating the 490 photostability of the CuWO₄ nanoparticles. 491

492

493 **4.** Conclusion

Here we have demonstrated the efficient selective cationic dye sorption property of 494 sonochemically synthesized CuWO₄ and Cu₃Mo₂O₉ nanoparticles. The kinetic studies on the dye 495 sorption ability of both materials could be best fitted to a pseudo second order kinetic model. 496 Though the sorption of dyes was faster on nano Cu₃Mo₂O₉ compared to nano CuWO₄, the 497 sorption capacity of the latter was higher than the former. The adsorbed dye could be desorbed 498 completely from the Cu₃Mo₂O₉ nanosorbent via simple mechanical agitation in an ultrasonic 499 bath. However, only partial desorption of the dyes occurred from nano CuWO₄ using the same 500 technique. The photocatalytic degradation of the adsorbed dyes and concomitant regeneration of 501 both the nanosorbents has been tested under visible light. It was seen that almost 100% 502

503 photodegradation of the MB, MG and RhB dyes occurred within 130 to 240 min of visible 504 irradiation in case of nano CuWO₄. Thus easy recovery of both sorbents could be demonstrated 505 and they also exhibit good multicyclic efficiency. Hence, these materials can find application in 506 the field of cationic dye effluent remediation in the industries.

507

508 Acknowledgement

Anjali Rathore would like to acknowledge the National Initiative on Undergraduate Science
programme of Homi Bhabha Centre for Science Education for the help and support extended for
this work.

513	References
514	1. M. T. Uddin, M. A. Islam, S. Mahmud and M. Rukanuzzaman, J. Hazard. Mater., 2009,
515	164 , 53-60.
516	2. I. M. Banat, P. Nigam, D. Singh and R. Merchant, Bioresour. Technol., 1996, 58, 217-
517	227.
518	3. C. A. Murray and S. A. Parsons, Water Sci. Technol.: Water Supply, 2004, 4, 113-119.
519	4. Z. Aksu, Process Biochem. 2005, 40, 997–1026.
520	5. S. A. Parsons and B. Jefferson, Introduction to Potable Water Treatment Processes;
521	Blackwell Publishing: Oxford, United Kingdom, 2006.
522	6. A. Singh, D. P. Dutta, J. Ramkumar, K. Bhattacharya, A. K. Tyagi and M. H. Fulekar,
523	<i>RSC Advances</i> , 2013, 3 (44), 22580 – 22590.
524	7. N. K. Amin, J. Hazard. Mater., 2009, 165, 52–62.
525	8. V. Gómez, M. Larrechi and M. Callao, <i>Chemosphere</i> , 2007, 69 , 1151–1158.
526	9. G. Crini, Bioresour Technol., 2006, 97(9), 1061-1085.
527	10. S. Babel and T.A. Kurniawan, J. Hazard. Mater., 2003, B97, 219-243.
528	11. MT. Nguyen-Le and BK. Lee, Chem. Engg. J., 2015, 281, 20–33.
529	12. Y. Han, S. Sheng, F. Yang, Y. Xie, M. Zhao and Jian-R. Li, J. Mater. Chem. A, 2015, 3,
530	12804-12809.
531	13. X. Zhao, X. Bu, T. Wu, ST. Zheng, L. Wang and P. Feng, Nat. Commun., 2013, 4,
532	2344–2352.
533	14. DM. Chen, W. Shi and P. Cheng, Chem. Commun., 2015, 51, 370-372.
534	15. Z. Zhu, Y. L. Bai, L. Zhang, D. Sun, J. Fang and S. Zhu, Chem. Commun., 2014, 50,
535	14674–14677.

Page 25 of 29

RSC Advances

536	16. B. Grobelna, B. Lipowska and A. M. Klonkowski, J. Alloys Compd., 2006, 419, 191-196.
537	17. J. Tamaki, T. Fujii, K. Fujimori, N. Miura and N. Yamazoe, Sensors and Actuators B,
538	1995, 24 (5), 396-399.
539	18. D. L. Stern and R. K. Grasselli, J Catal., 1997, 167(2), 570-572.
540	19. S. H. Yu, B. Liu, M. S. Mo, J. H. Huang, X. M. Li and Y. T. Qian, Adv. Funct. Mater.,
541	2002, 13(8) , 639-647.
542	20. M. Denk, D. Kuhness, M. Wagner, S. Surnev, F. R. Negreiros, L. Sementa, G. Barcaro, I.
543	Vobornik, A. Fortunelli and F. P. Netzer, ACS Nano, 2014, 8 (4), 3947–3954.
544	21. L. M. Adeira, M. F. Portela and C. Mazzocchia, Catal. Rev Sci. Eng., 2004, 46, 53-110.
545	22. C. Livage, A. Hynaux, J. Marrot, M. Nogues and G. Fe'rey, J. Mater. Chem., 2002, 12,
546	1423-1425.
547	23. W. M. Sears, Sens. Actuators, B: Chem., 2000, 67, 161-172.
548	24. B. Liu, S. H. Yu, L. J. Li, Q. Zhang and K. Jiang, Angew. Chem., Int. Ed., 2004, 43,
549	4745-4750.
550	25. Y. Ding, Y. Wan, Yu-L. Min, W.Zhang and Shu-H. Yu, Inorg. Chem., 2008, 47 (17),
551	7813–7823.
552	26. J. C. Hill and KS. Choi, J. Phys. Chem. C, 2012, 116, 7612-7620.
553	27. J. A. Seabold and KS. Choi, Chem. Mater., 2011, 23, 1105–1112.
554	28. Q. Mi, A. Zhanaidarova, B. Brunschwig, H. Gray and N. Lewis, Energy Environ. Sci.,
555	2012, 5 , 5694–5700.
556	29. Q. Mi, Y. Ping, Y. Li, B. Cao, B. S. Brunschwig, P. G. Khalifah, G. A. Galli, H. B. Gray
557	and N. S. Lewis, J. Am. Chem. Soc., 2012, 134, 18318-18328.
558	30. J. E. Yourey, J. B. Kurtz and B. M. Bartlett, J. Phys. Chem. C, 2012, 116, 3200-3205.

559	31. W. Xiao , J. S. Chen , C. M. Li , R. Xu and X. W. Lou, Chem. Mater., 2010, 22, 746-
560	754.
561	32. C. L. Li and Z. W. Fu, <i>Electrochim. Acta.</i> , 2008, 53 , 4293-4301.
562	33. J. Xia, L. X. Song, W. Liu, Y. Teng, Q. S. Wang, L. Zhao and M.M. Ruan, RSC Adv.,
563	2015, 5 , 12015-12024.
564	34. D. P. Dutta, A. Mathur, J. Ramkumar and A. K. Tyagi, RSC Adv., 2014, 4, 37027-37035.
565	35. S. Banerjee, R. K. Gautam, A. Jaiswal, M. C. Chattopadhyaya and Y. C. Sharma, RSC
566	<i>Adv.</i> , 2015, 5 , 14425-14440.
567	36. M. Soylak, Y.E. Unsal and E. Yilmaz, <i>Toxicology</i> , 2011, 49 , 1796-1799.
568	37. S. Srivastava, R. Sinha and D. Roy, Aquatic Toxicology, 2004, 66, 319-329.
569	38. R. K. Selvan and A. Gedanken, <i>Nanotechnology</i> , 2009, 20 , 105602 (7pp).
570	39. S. Adhikari, D. Sarkar and H. S. Maiti, Mater. Res. Bull., 2014, 49, 325-330.
571	40. B.H. Hameed, D.K. Mahmoud and A.L. Ahmad, J. Hazard. Mater., 2008, 158, 65–72.
572	41. I. Langmuir, J. Am. Chem. Soc., 1918, 57, 1361–1403.
573	42. H. Freundlich, Z. Phys. Chem., 1906, 57, 384-470.
574	43. S. Langergren, About the theory of so-called adsorption of soluble substances, Kungliga
575	Svenska Vetenskapsakademies, Handlingar, 1898, 24 (4), 1–39.
576	44. Y. S. Ho and G. McKay, Process Biochem., 1999, 34, 451–465.
577	45. W. J. Weber and J. C. Morris, J. Sanit. Eng. Div., Am. Soc. Civ. Eng., 1963, 89, 31.
578	46. B. H. Hameed, R. R. Krishni and S. A. Sata, J. Hazard. Mater., 2009, 162, 305-311.
579	47. E. Haque, J.E. Lee, I.T. Jang, Y.K. Hwang, J.S. Chang, J. Jegal and S.H. Jhung, J.
580	Hazard. Mater., 2010, 181, 535–542.

581	48. J. del Nero, R. E. de Araujo, A. S. L. Gomes and C. P. de Melo, J. Chem. Phys., 2005,
582	122 , 104506.
583	49. S. Woislawski, J. Am. Chem. Soc., 1953, 75, 5201-5203.
584	50. R.W. Ramette and E.B. Sandell, J. Am. Chem. Soc., 1956, 78, 4872-4877.
585	51. S. Merouani, O. Hamdaoui, F. Saoudi and M. Chiha, Chem. Engg. J., 2010, 158, 550-
586	557.
587	52. S. Takizawa and P. Patiparn, Adsorption of organic contaminants by Mesoporous silica,
588	in Water Resources Research Progress, ed: L. N. Robinson, 197-198.
589	53. R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Martínez-García and A. Segura,
590	Europhys. Lett., 2008, 83, 37002 (5pp).
591	54. J. E. Youray and B. M. Bartlett, J. Mater. Chem., 2011, 21, 7651-7660.
592	55. P. Schmitt, N. Brem, S. Schunk and C. Feldmann, Adv. Func. Mater., 2011, 21, 3037-
593	3046.
594	56. H. Huang, S. Wang, Y. Zhang and P. K. Chu, RSC Adv., 2014, 4, 41219-41227.
595	57. T. Montini, V. Gombac, A. Hameed, L. Felisari, G. Adami and P. Fornasiero, Chem.
596	Phys. Lett., 2010, 498, 113–119.
597	58. A. Anspoks, A. Kalinko, J. Timoshenko and A. Kuzmin, Solid State Comm., 2014, 183,
598	22-26.
599	59. A. Kuzmin, A. Kalinko and R. Evarestov, Acta Mater., 2013, 61, 371-378.

600	Table 1: Time ta	ken for complete	sorption of	various conce	ntrations of	the dyes a	at pH~3 by
-----	------------------	------------------	-------------	---------------	--------------	------------	------------

 $601 \quad Cu_3Mo_2O_9 \text{ nanoparticles}$

Concentration of Dye (mg/L)	Time taken for complete sorption (min)					
	RhB	MB	MG			
20	3	3	6			
30	6	3	6			
40	6	3	6			
50	6	3	6			
100	6	15	6			
200	10	30	10			

602

Table 2: Langmuir and Freundlich isotherm constants and correlation coefficients of CuWO₄

	10.10.0	. • •	0 1	.1	1
604	and Cu_3Mo_2O	₉ nanoparticles	tor the	three	dyes

Sample	Dye	Langmuir			Freundlich			
	solution	$Q_0 (mg/g)$	b	\mathbf{R}^2	K _F	n	\mathbf{R}^2	
CuWO ₄	RhB	303.2 ± 2.65	0.0035 ± 0.0001	0.9982	0.981 ± 0.0032	0.994 ± 0.0015	0.9998	
	MB	370.1 ± 3.30	0.0028 ± 0.0002	0.9913	0.968 ± 0.001	1.002 ± 0.0031	0.9997	
	MG	333.5 ± 1.54	0.0030 ± 0.0001	0.9989	0.991 ± 0.0025	1.004 ± 0.0012	0.9998	
Cu ₃ Mo ₂ O ₉	RhB	3719.5 ± 9.32	0.0002 ± 0.0023	0.6826	1.006 ± 0.0021	1.008 ± 0.0005	0.9988	
	MB	99.6 ± 1.23	0.0135 ± 0.0014	0.9844	4.553 ± 0.0054	1.831 ± 0.0122	0.8867	
	MG	840.3 ± 7.43	0.0012 ± 0.0009	0.8221	1.318 ± 0.0043	1.095 ± 0.0011	0.9983	

605

Table 3: Pseudo-first and second-order kinetic models for different concentrations of RhB dye
 adsorption on CuWO₄ nanoparticles.

C ₀	q _e , exp	Pseudo-first ord	er kinetic model	Pseudo-second order kinetic model					
(mg/L)	(mg/g)	q _e , cal	k ₁	\mathbf{R}^2	SSE	Qe, cal	k ₂	R ²	SSE
		(mg/g)	(min ⁻¹)		(%)	(mg/g)	(g/mgmin)		(%)
20	19.81	17.63 ± 0.015	0.4111 ± 0.0047	0.9724	1.091	19.53 ± 0.016	0.1691 ± 0.0039	0.9893	0.140
30	29.13	28.26 ± 0.007	0.5343 ± 0.0013	0.9994	0.435	29.41 ± 0.009	0.1101 ± 0.0041	0.9889	0.280
40	39.44	43.59 ± 0.002	0.4905 ± 0.0011	0.9907	2.075	39.82 ± 0.010	0.0477 ± 0.0046	0.9778	0.190
50	49.30	32.66 ± 0.021	0.4606 ± 0.0058	0.8517	8.320	48.57 ± 0.007	0.1835 ± 0.0023	0.9973	0.365
100	99.10	63.53 ± 0.056	0.5688 ± 0.0042	0.9272	17.784	98.91 ± 0.005	0.1278 ± 0.0017	0.9993	0.190
200	198.20	191.24 ± 0.021	0.6517 ± 0.0031	0.9553	3.479	198.41 ± 0.011	0.0349 ± 0.0014	0.9976	0.210

608

Table 4: Pseudo-first and second-order kinetic models for different concentrations of MG dye

610 adsorption on $CuWO_4$ nanoparticles.

C ₀	q _e , _{exp} (mg/g)	Pseudo-first order kinetic model			Pseudo-second order kinetic model				
(mg/L)		q _e , _{cal} (mg/g)	k ₁ (min ⁻¹)	R ²	SSE (%)	q _e , _{cal} (mg/g)	k ₂ (g/mgmin)	\mathbf{R}^2	SSE (%)
20	19.81	37.57 ± 1.234	0.7139 ± 0.083	0.7690	8.879	20.01± 0.014	0.1000 ± 0.0016	0.9684	0.095
30	28.85	35.77 ± 1.045	0.6674 ± 0.045	0.9137	3.459	29.15± 0.009	0.1509 ± 0.0003	0.9943	0.150
40	38.06	30.08 ± 0.746	0.6816 ± 0.014	0.9630	3.989	38.46 ± 0.001	0.3381 ±0.0003	0.9992	0.200
50	49.25	32.18 ± 0.935	0.5688 ± 0.021	0.9402	8.535	49.26 ± 0.001	0.2289 ± 0.0001	0.9991	0.005

612	Table 5: Zeta potential	measurements for	$CuWO_4 \ and$	$Cu_3Mo_2O_9\\$	nanoparticles	with RhB,	MB,
-----	-------------------------	------------------	----------------	-----------------	---------------	-----------	-----

and MG dyes at various pH.

Sample	ξ(mV) at pH 3	ξ(mV) at pH 5	ξ(mV) at pH 7
$CuWO_4$	-20.23	-15.43	-15.61
$CuWO_4 + RhB$	-11.74	-14.64	-15.25
$CuWO_4 + MB$	-10.34	-11.25	-12.21
CuWO ₄ + MG	-14.32	-14.15	-15.02
Cu ₃ Mo ₂ O ₉	-36.43	-32.11	-31.56
$Cu_3Mo_2O_9 + RhB$	-28.42	-30.65	-29.32
$Cu_3Mo_2O_9 + MB$	-27.67	-29.84	-29.11
$Cu_3Mo_2O_9 + MG$	-28.34	-30.25	-30.78

616

Table 6: Apparent first order kinetic constant for visible light photodegradation of dye sorbed

CuWO₄ and Cu₃Mo₂O₉ nanoparticles

Sample	Sorbed dye	1 st order kinetic const. (min ⁻¹)	\mathbf{R}^2
CuWO ₄	RhB	1.42×10^{-2}	0.9825
	MB	2.01×10^{-2}	0.9858
	MG	3.28×10^{-2}	0.9825
Cu ₃ Mo ₂ O ₉	RhB	2.59×10^{-3}	0.9810
	MB	4.42×10^{-3}	0.9829
	MG	4.17x10 ⁻³	0.9838