RSC Advances

Expedient Synthesis of Nitrovinyl Substituted Bicyclo[2.2.2]octenone Scaffolds

Journal:	RSC Advances		
Manuscript ID	RA-ART-09-2015-020016.R1		
Article Type:	Paper		
Date Submitted by the Author:	01-Nov-2015		
Complete List of Authors:	Peddinti, Rama; Indian Institute of Technology, Roorkee, Chemistry Sharma, Shivangi; Indian Institute of Technology Roorkee, Chemistry Naganaboina, Ram Tilak; Indian Institute of Technology Roorkee, Chemistry		
Subject area \& keyword:	Synthetic methodology < Organic		

Expedient Synthesis of Nitrovinyl Substituted Bicyclo[2.2.2]octenone Scaffolds

Shivangi Sharma, Ram Tilak Naganaboina and Rama Krishna Peddinti*
Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI:

A simple and rapid oxidative acetalization and Diels-Alder protocol of nitrovinyl substituted guaiacols has been developed to synthesize nitrovinyl-bearing bicyclo[2.2.2]octenone derivatives. The electrondeficient nature of the in situ generated orthoquinone monoketals renders [4+2] cycloaddition facile with electron-rich and conjugative dienophiles. The 4 -alkenyl masked o-benzoquinone is relatively more ${ }_{10}$ reactive than its 3 -alkenyl counterpart. The 3 -alkenyl masked o-benzoquinone undergoes dimerization partially even in the presence of external dienophile.

Introduction

Over the past two decades, the hypervalent iodine chemistry received considerable attention in organic synthesis. ${ }^{1,2}$ The
15 selective and mild oxidizing properties of these reagents made them very useful and routinely used reagents. These reagents can be used as both dehydrogenating as well as oxygenating reagents. The hypervalent iodine reagents are environmentally benign, nontoxic and alternative to toxic heavy metal oxidants in many of the
20 organic transformations to construct complex molecules. In particular, the hypervalent iodine reagents are valuable for the generation of masked o-benzoquinones (MOBs) and benzoquinone monoimines. ${ }^{3}$ The generation of these MOBs rely on the oxidative dearomatization of 2-alkoxyphenols in the
${ }_{25}$ presence of hypervalent iodine reagents such as diacetoxyiodobenzene (DIB) or phenyliodonium bis(trifluoroacetate) (PIFA) in alcoholic solvents. The linearly conjugative cyclohexadienones are utilized as key intermediates in the synthesis of many natural products. ${ }^{4}$ The highly reactive
${ }_{30}$ MOBs can act as dienes as well as dienophiles in Diels-Alder reaction. Though these transiently generated MOBs undergo selfdimerization in the absence of external dienophiles, valuable bicyclo[2.2.2]octenone synthons can be obtained in excellent regio- and stereo-selectivities with external dienophiles. The
${ }_{35}$ Diels-Alder reaction of MOBs has been exploited as a key step in the total synthesis of many biologically active molecules. ${ }^{4}$ The most recent examples of total synthesis based on the MOB strategy are (\pm)-eremopetasidione, ${ }^{4 \mathrm{a}}$ the tetracyclic lycopodium alkaloid (\pm)-magellanine, ${ }^{4 \mathrm{~b}}(\pm)$-penicillones A and $\mathrm{B},{ }^{4 \mathrm{c}}{ }^{(+)-}$ ${ }_{40}$ eudesmadien-12,6-olide, ${ }^{4 \mathrm{~d}}(+)$-frullanolide, ${ }^{4 \mathrm{~d}}(+)$-chamaecypanone C. ${ }^{4 e}$ The MOBs can also undergo Michael- and anti-Michael type addition reactions with various nucleophiles. ${ }^{5}$ Recently, we have explored the Diels-Alder reactivity of stable 4 -halo MOBs ${ }^{6}$ and benzoxazole core containing MOBs^{7} for the synthesis of various
${ }_{45}$ densely functionalized bicyclo[2.2.2]octenone derivatives.
Nitrostyrenes are ubiquitous structural motifs which are involved
in the synthesis of heterocyclic compounds ${ }^{8}$ and medicinal substances. ${ }^{9}$ Nitrostyrenes readily undergo reactions such as [3+ 2] cycloaddition ${ }^{10}$ and Michael addition. ${ }^{11}$

${ }_{\text {so }}$ Results and Discussion

Inspired by the applications of nitrostyrenes as well as bicyclo[2.2.2]octenones, we were interested to develop a protocol for the synthesis of nitrovinyl bearing bicyclo[2.2.2]octenones using the Diels-Alder strategy of the transiently generated ${ }_{55}$ orthoquinone monoketals and to know whether the inner diene \mathbf{A} and/or the outer diene \mathbf{B} of the MOBs participate in the DielsAlder reaction with alkenes ${ }^{12}$ (Figure 1).

Figure 1 Inner and outer dienes of nitrovinyl substituted ortho${ }_{65}$ quinone monoketals 2 and 7.

Considering the electron-deficient nature of the in situ generated nitrovinyl o-benzoquinone monoketals, we have selected electron-rich dienophiles for the [4+2] cycloaddition. As 70 a prelude to our objective, the reaction between (E)-2-methoxy-4-(2'-nitrovinyl)phenol (1) and ethyl vinyl ether (3a) in methanol, in the presence of DIB was carried out (Method A) to furnish the Diels-Alder adduct 4a as yellow liquid in remarkable yield of 95\%.

Cite this: DOI: 10.1039/c0xx00000x
www.rsc.org/xxXXXX

ARTICLE TYPE

Table 1 Reactions of (E)-2-methoxy-4-(2-nitrovinyl)phenol (1) with 3a-j ${ }^{a, b}$

4a (95\%) (Method A, 10 min)

4e (78\%)
(Method B, 25 min)

4b (94\%) (Method A, 10 min)

4 f (73\%)
(Method B, 25 min)

4c (93\%)
(Method A, 10 min)

4g (74\%)
(Method B, 25 min)

4d (92\%) (Method A, 10 min)

4h (86\%)
(Method B, 25 min)

(Method B, 25 min)

(Method B, 25 min)

${ }^{a}$ Method A: To the solution of methoxyphenol $\mathbf{1}(0.5 \mathrm{mmol})$ and dienophile $\mathbf{3}(5 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$, solid DIB (1.2 mmol) was added portion-wise and allowed to stir at rt for further 10 min . Method B: To the solution of methoxyphenol $\mathbf{1}$ (0.5 mmol) and dienophile $\mathbf{3}$ (5 mmol) in $\mathrm{MeOH}(2 \mathrm{~mL})$, DIB $(1.2 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added drop-wise for 10 min and then allowed to stir at rt for further 15 min . ${ }^{b}$ isolated yields.

To expand the scope of the reaction, we extended the present Diels-Alder strategy of MOB 2 generated from 2-methoxyphenol $\mathbf{1}$ with dienophiles such as butyl vinyl ether (3b), 2,3-dihydrofuran 5 ($\mathbf{3 c}$), styrene ($\mathbf{3 d}$) and 4 -methoxystyrene ($\mathbf{3 e}$). For this purpose, we dearomatized the 2-methoxyphenol $\mathbf{1}$ in the presence of dienophiles 3b-3d in methanol using DIB and stirred at room temperature. The reactions reached completion in 10 min , to furnish the corresponding Diels-Alder adducts $\mathbf{4 b}-\mathbf{4 d}$ in excellent 10 yields. In the case of 4-methoxystyrene (3e), when reactions were carried out under Method A conditions, the yield of the DielsAlder cycloadduct 4 e was slightly decreased to 67%. Alternatively, we carried out the reaction by Method B in which to a solution of methoxyphenol $\mathbf{1}$ and styrene derivative $\mathbf{3 e}$ in ${ }_{15}$ methanol was added methanolic DIB solution drop-wise for 15 min at room temperature, and the reaction mixture was further stirred for 10 min at room temperature to obtain the corresponding Diels-Alder adduct $\mathbf{4 e}$ in improved yield of 78%. Similarly, the reactions of $\mathbf{1}$ with the styrenes $\mathbf{3 f}-\mathbf{3 j}$ bearing methoxy and methyl
${ }_{20}$ groups performed the nitrovinyl bicyclo[2.2.2]octenones $\mathbf{4 f} \mathbf{- 4 j}$ in Method B (Table 1).

We further extended this methodology for the reaction of 2methoxyphenol 1 with electron-deficient dienophiles such as methyl vinyl ketone and methyl acrylate. Unfortunately, in this ${ }_{25}$ case, the reaction ended up with the formation Diels-Alder dimer 5 in 72 and 78%, respectively, instead of the Diels-Alder adducts indicating that these dienophiles are not sufficiently electron-rich to drive the Diels-Alder reaction with electron-deficient MOB 2. To evaluate the propensity of dimerization of the MOB 2, the ${ }_{30}$ oxidation of methoxyphenol $\mathbf{1}$ was performed in the absence of external dienophile and the reaction afforded the Diels-Alder dimer 5 in 10 min in 94% yield after silica gel column chromatography.

We extended our investigations with more reactive MOB 7 ${ }_{35}$ generated in situ from the oxidation of (E)-2-methoxy-5-(2'nitrovinyl)phenol (6). The reaction of $\mathbf{6}$ was first carried out with electron-rich dienophile ethyl vinyl ether (3a) by Method A and the reaction produced exclusively dimer 9 . This may be due to the high reactivity of MOB 7 generated by the oxidative ${ }_{40}$ dearomatization of methoxyphenol 6. Therefore, dilution technique to maintain large ratio of dienophile to MOB was used throughout the reaction to minimize the dimerization and to increase the yield of Diels-Alder adduct 8a. Thus to a methanolic solution of $\mathbf{6}$ in the presence of ethyl vinyl ether 3a, was added
${ }_{45}$ drop-wise a solution of DIB in dry methanol for 15 minutes at 0 ${ }^{\circ} \mathrm{C}$. The reaction was further continued for 30 min at room temperature. After usual work up and purification, the DielsAlder adduct $\mathbf{8 a}$ was obtained in 33% yield along with dimer $\mathbf{9}$ in 28%.
${ }_{50}$ The present Diels-Alder protocol of MOB 7 was further tested with dienophiles $\mathbf{3 b} \mathbf{b} \mathbf{3 1}$. In all these cases, the reaction reached completion to furnish the corresponding Diels-Alder adducts $\mathbf{8 b}$ $\mathbf{8 1}$ in $27-70 \%$ along with the dimer 9 . The reaction of 6 with styrenes $\mathbf{3 e}, \mathbf{3 f}$ and $\mathbf{3 h}$ afforded the cycloadducts $\mathbf{8 e}, \mathbf{8 f}$ and $\mathbf{8 h}$ in ${ }_{55} 67-70 \%$ yield and the dimer 9 could not be isolated (Table 2). Interestingly, the electron-deficient dienophiles methyl vinyl ketone ($\mathbf{3 k}$) and methyl acrylate (31) drove the MOB 7 to undergo
the Diels-Alder reaction to produce the bicyclo[2.2.2]octenones $\mathbf{8 k}$ and $\mathbf{8 l}$ in appreciable amount along with the dimer $\mathbf{9}$ in good ${ }_{60}$ amount. However, in the reaction between $\mathbf{6}$ and $\mathbf{3 k}$, the cycloadduct $\mathbf{8 k}$ and dimer $\mathbf{9}$ were too close for the separation on column chromatography. Upon subjecting the residue to preparatory TLC, $\mathbf{8 k}$ was isolated in 24% yield in almost pure form. Furthermore, the oxidation of methoxyphenol 6 was ${ }_{65}$ employed in the absence of external dienophile to furnish the Diels-Alder dimer 9 of the in situ generated MOB 7 in 45 min in 82% yield after silica gel column chromatography.

The cycloadducts were obtained as racemic mixture of a single diastereomer in each case. The assigned structures of all nitrovinyl ${ }_{70}$ bicyclo[2.2.2]octenones were confirmed by the collective data obtained from IR, ${ }^{1} \mathrm{H}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(125 \mathrm{MHz})$ NMR, DEPT and HRMS spectral analysis. To identify the chemical shifts of protons and carbon atoms, we have carried out the 2-D NMR experiments such as ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, heteronuclear multiple 75 quantum correlation (HMQC) on cycloadduct $\mathbf{8 a} .{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY shows the correlations between protons $\mathrm{H}_{1}-\mathrm{H}_{7}, \mathrm{H}_{4}-\mathrm{H}_{8 \mathrm{a}}, \mathrm{H}_{4}-\mathrm{H}_{5}$, $\mathrm{H}_{5}-\mathrm{H}_{1}, \mathrm{H}_{7}-\mathrm{H}_{1}, \mathrm{H}_{8 \mathrm{a}}-\mathrm{H}_{8 \mathrm{~b}}$ and $\mathrm{H}_{9}-\mathrm{H}_{10}$. The CH connectivities between $\mathrm{C}_{1}-\mathrm{H}_{1}, \mathrm{C}_{2}-\mathrm{H}_{2}, \mathrm{C}_{4}-\mathrm{H}_{4}, \mathrm{C}_{5}-\mathrm{H}_{5}, \mathrm{C}_{7}-\mathrm{H}_{7}, \mathrm{C}_{8}-\mathrm{H}_{8 \mathrm{a}}, \mathrm{C}_{8}-\mathrm{H}_{8 \mathrm{~b}}, \mathrm{C}_{9}-$ H_{9} and $\mathrm{C}_{10}-\mathrm{H}_{10}$ are revealed by HMQC spectrum of 8a. The ${ }_{80}$ protons $\mathrm{H}-1$ and $\mathrm{H}-4$ resonate in the range of $\delta 3.27-3.79$ and 3.13-3.56 ppm, respectively (Table SI-2 in supplementary material). The coupling constants of $\mathrm{H}-4-\mathrm{H}-8 b$ or $\mathrm{H}-4-\mathrm{H}-8 \mathrm{a}$ are observed predominantly in the range of $J=2.5-3.0 \mathrm{~Hz}$, which are in agreement with the assigned ortho-regiochemistry. The proton ${ }_{85} \mathrm{H}-8 \mathrm{a}$ resonates in the range of $\delta 1.30-1.86 \mathrm{ppm}$ and $\mathrm{H}-8 \mathrm{~b}$ resonate at downfield in the range of $\delta 2.30-3.40 \mathrm{ppm}$ (Table SI-2 in supplementary material). The higher chemical shift of H-8b may be attributed predominantly to the magnetic anisotropic effect of exo-methoxy group of ketal function which is lying in its ${ }_{90}$ proximity. The coupling constants ($J=6.0-6.5 \mathrm{~Hz}$) between H$8 \mathrm{a}-\mathrm{H}-7$, and those $(J=8.0-10.0 \mathrm{~Hz}) \mathrm{H}-7$ between $\mathrm{H}-8 \mathrm{~b}-\mathrm{H}-7$ reveals the cis relationship of the protons $\mathrm{H}-8 \mathrm{~b}$ and which confirms the assigned endo-stereochemistry. The cycloadducts exhibited IR absorptions at $1730-1746 \mathrm{~cm}^{-1}$, a characteristic ${ }_{95}$ absorption of carbonyl function of bicyclo[2.2.2]octenones derived from MOBs. In the ${ }^{13} \mathrm{C}$ NMR of the Diels-Alder adducts, the ring carbonyl carbon appears at around $199-200 \mathrm{ppm}$ and the ketal quaternary carbon appears at around $93-94 \mathrm{ppm}$. Among the bridge-head carbons C-1 ($\delta 50-57 \mathrm{ppm})$ and C-4 ($\delta 31-40 \mathrm{ppm}$), 100 the former which is positioned next to the ring carbonyl resonates downfield (Table SI-3 in supplementary material).

The assigned regio- and stereo-selectivities are further established by the single crystal X-ray analysis of the adduct 4h (Figure 2). ${ }^{13}$ The single crystals of $\mathbf{4 h}$ were grown by slow 105 evaporation of solvent from solution in methanol/hexane (1:9). The analysis of the crystal structure has illustrated the ortho regiochemistry and endo stereochemistry as shown in Figure 2. The regio-, stereo- and site-selectivity of the dimerization is in harmony with the literature precedents. ${ }^{6 a, 7,14}$

Cite this: DOI: 10.1039/c0xx00000x
www.rsc.org/xxxxxx
$\underline{\text { Table } 2 \text { Reactions of (E)-2-methoxy-5-(2-nitrovinyl)phenol (6) with 3a-1 }{ }^{a, b}}$

${ }^{a}$ Method B: To the solution of methoxyphenol $6(0.5 \mathrm{mmol})$ and dienophile $3(5 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$, DIB (1.5 mmol) in $\mathrm{MeOH}(15 \mathrm{~mL})$ was added drop-wise at $0{ }^{\circ} \mathrm{C}$ for 15 min and then allowed to stir at rt for further 30 min . ${ }^{b}$ isolated yields.

20

Figure 2 Single crystal X-ray structure of cycloadduct $\mathbf{4 h}$.
5 Further functionalization of some of the nitrovinyl bicyclo[2.2.2]octenones 1,3-dipolar cycloaddition was carried out to afford triazole-substituted bicyclo[2.2.2]octenones. The 30
recently reported literature procedure described for the p -TSA-mediated 1,3-dipolar cycloadditions of nitroolefins with 10 sodium azide was followed for this purpose. ${ }^{15}$ Thus the cycloadducts $\mathbf{4 c} \mathbf{- 4 e}$, when treated with sodium azide under the catalytic influence of p-TSA, furnished the 1,2,3-triazole-bearing cycloadducts $\mathbf{1 0 a} \mathbf{- 1 0 c}$ through $[3+2]$ cycloaddition (Table 3).

15 It is noteworthy that the inner diene moiety \mathbf{A} of the MOBs 2 and 7 participate in the cycloaddition and the outer diene moiety \mathbf{B} did not take part in the present reaction (Figure 1). Apparently, the electronic nature of the 2-nitrovinyl group positioned at carbon-4 of MOB 2 influenced the cycloaddition reaction in the 20 formation of Diels-Alder adducts 4 or the dimer 5. During the competition between external dienophile 3 (leading to 4) and dienophilic MOB 2 (leading to dimer 5), the steric factors favour the formation of bicyclo[2.2.2]octenones 4. The differences in such steric effects are less in the reaction of MOB 7, bearing 2-
25 nitrovinyl group at carbon-3, while competing with external dienophile 3 (leading to 8) and dienophilic MOB 7 (leading to dimer 9).

Table 3 [3+2] Cycloaddition reactions of bicyclo[2.2.2]ocetnones $\mathbf{4 c}-\mathbf{e}^{\mathrm{a}, \mathrm{b}}$

a) All the reactions were carried out with bicyclo[2.2.2] octenone derivative 4 (0.3 mmol), sodium azide (0.45 mmol) and $5 \mathrm{~mol} \%$ of $p-\mathrm{TSA}$ in DMF (2 mL) at $60^{\circ} \mathrm{C}$. b) Pure and isolated yields.

40

Conclusion

In summary, we have demonstrated an efficient Diels-Alder cycloaddition of in situ generated nitrovinyl substituted ${ }_{45}$ orthobenzoquinone monoketals with a variety of 2π-components providing the title compounds with diverse functionalities. The reactivity of novel MOBs, investigated in this study, is noteworthy and these results add up to the known chemistry of MOBs. Further exploration of the reactivity of ${ }_{50}$ orthobenzoquinone monoketals and monoimines is in progress in
our laboratory.

Experimental

General Methods

${ }_{55}$ All solvents and reagents were purchased at the highest commercially quality and used without further purification. Reactions were monitored by Thin layer chromatography on Merck pre-coated 0.25 mm silica gel plates ($60 \mathrm{~F}-254$) using UV light as visualizing agent and/or iodine as developing agent. ${ }_{60}$ Preparative thin-layer chromatography (TLC) carried out on 0.25
mm E. RANKEM silica gel "G" on glass plate using visualizing in iodine chamber, Melting points are uncorrected. IR spectra of the compounds were recorded on a Thermo Nicolet FT-IR Nexus ${ }^{\text {TM }}$ and are expressed as wavenumbers $\left(\mathrm{cm}^{-1}\right)$. NMR spectra were recorded in CDCl_{3} and using TMS as internal standard on Brüker AMX-500 instrument. HRMS were recorded on a Brüker micrOTOF ${ }^{\text {TM }}$-Q-II mass spectrometer (ESI-MS). Chemical shifts of ${ }^{1} \mathrm{H}$ NMR spectra were given in parts per million with respect to TMS and the coupling constant J was measured in Hz . The ${ }_{10}$ signals from solvent $\mathrm{CDCl}_{3}, 7.26$ and 77.0 ppm are set as the reference peaks in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, respectively. The following abbreviations were used to explain the multiplicities: s $=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublet, ddd $=$ doublet of doublet of doublet, $\mathrm{td}=$ triplet of doublet, $\mathrm{dt}=$ doublet of triplet, $\mathrm{dq}=$ doublet of quartet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet.

Reactions of nitrovinyl-guaiacol 1 with alkenes:

Method A: To a solution of nitrovinyl-guaiacol $1(0.097 \mathrm{~g}, 0.5$ ${ }_{20} \mathrm{mmol}$) and dienophile ($\mathbf{3}, 5 \mathrm{mmol}$, 10 equiv) in dry $\mathrm{MeOH}(5 \mathrm{~mL}$) solid diacetoxyiodobenzene (DIB, $0.193 \mathrm{~g}, 0.6 \mathrm{mmol}, 1.2$ equiv.) was added portion-wise at room temperature and stirred for 10 min . After the completion of the reaction, as indicated by the TLC, the solvent was evaporated and the crude reaction mixture ${ }_{25}$ was purified by silica gel column chromatography by using ethyl acetate ($10-20 \%$) in hexanes as an eluting system to afford pure bicyclo[2.2.2]octenones 4a-d.

Method B: To a stirred solution of nitrovinyl-guaiacol $1(0.097 \mathrm{~g}$, ${ }_{30} 0.5 \mathrm{mmol}$) and an alkene $\mathbf{3}$ ($5 \mathrm{mmol}, 10$ equiv) in dry MeOH (2 mL), a dry methanolic solution (10 mL) of diacetoxyiodobenzene (DIB, $0.193 \mathrm{~g}, 0.6 \mathrm{mmol}, 1.2$ equiv) was added drop-wise at $0{ }^{\circ} \mathrm{C}$ during 10 min and then the contents were stirred further for 15 min at room temperature. After completion of the reaction, as 35 indicated by the TLC, the solvent was evaporated and the crude reaction mixture was purified by silica gel column chromatography by using ethyl acetate ($10-30 \%$) in hexanes as an eluent to furnish the Diels-Alder cycloadducts $4 \mathrm{e}-\mathrm{j}$.
${ }_{40}$ Reactions of nitrovinyl-guaiacol $\mathbf{6}$ with alkenes:
Method B: To a stirred solution of nitrovinyl-guaiacol $6(0.097 \mathrm{~g}$, 0.5 mmol) and an alkene 3 (5 mmol , 10 equiv) in dry MeOH (2 mL), a dry methanolic solution (15 mL) of diacetoxyiodobenzene 45 (DIB, $0.241 \mathrm{~g}, 0.75 \mathrm{mmol}, 1.5$ equiv) was added drop-wise at 0 ${ }^{\circ} \mathrm{C}$ during 15 min and then the contents were stirred further for 30 min at room temperature. After completion of the reaction, as indicated by the TLC, the solvent was evaporated and the crude reaction mixture was purified by silica gel column ${ }_{50}$ chromatography by using ethyl acetate ($10-30 \%$) in hexanes as an eluent to furnish the Diels-Alder cycloadduct $\mathbf{8}$ and dimer 9 .
($1 S^{*}, 4 R^{*}, 7 S^{*}$)-(E)-7-Ethoxy-3,3-dimethoxy-5-(2-nitrovinyl)bi-cyclo[2.2.2]oct-5-en-2-one (4a): Method A. Reaction time: 10 ${ }_{55} \mathrm{~min}$. Yield: $0.141 \mathrm{~g}(95 \%)$ as viscous yellow liquid. IR (KBr): $v_{\max }$ 2920, 1734, 1631, 1521, 1380, 1104, $1055 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J$
$=2.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.32$ $60(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{q}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{ddd}, J=3.0$, $8.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.36$ (td, $J=3.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.2$ ($C=\mathrm{O}$), $138.6(C), 136.9(\mathrm{CH}), 135.9(\mathrm{CH}), 135.9(\mathrm{CH}), 93.1(\mathrm{C}), 74.8$ $(\mathrm{CH}), 64.4\left(\mathrm{CH}_{2}\right), 55.4(\mathrm{CH}), 50.9\left(\mathrm{CH}_{3}\right), 49.3\left(\mathrm{CH}_{3}\right), 38.5(\mathrm{CH})$, ${ }_{65} 29.6\left(\mathrm{CH}_{2}\right), 15.0\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. HRMS (ESI+): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 320.1104$, found 320.1104.
($1 S^{*}, 4 R^{*}, 7 S^{*}$)-(E)-7-butoxy-3,3-dimethoxy-5-(2-nitrovinyl)bi-cyclo[2.2.2]oct-5-en-2-one (4b): Method A. Reaction time: 10 70 min . Yield: $0.152 \mathrm{~g}(94 \%)$ as viscous yellow liquid. IR (KBr): $v_{\max } 2956,1743,1629,1518,1453,1342,1101,1054 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (d, J $=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.79$ (dd, $J=2.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.29$
$75(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.50$ (ddd, $J=2.5,8.0,13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.50-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.3(C=\mathrm{O}), 138.7(C)$, $137.0(\mathrm{CH}), 136.0(\mathrm{CH}), 93.3(\mathrm{C}), 75.1(\mathrm{CH}), 69.0\left(\mathrm{CH}_{2}\right), 55.5$ $(\mathrm{CH}), 51.1\left(\mathrm{OCH}_{3}\right), 49.5\left(\mathrm{OCH}_{3}\right), 38.7,(\mathrm{CH}), 31.6\left(\mathrm{CH}_{2}\right), 29.7$ ${ }_{80}\left(\mathrm{CH}_{2}\right), 19.2\left(\mathrm{CH}_{2}\right), 13.7\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. HRMS (ESI+$): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 348.1417$, found 348.1415 .
($\left.1 R^{*}, 2 R^{*}, 6 R^{*}, 7 S^{*}\right)$-(E)-11-(2-nitrovinyl)-8,8-dimethoxy-3-oxatricyclo[5.2.2.0 ${ }^{2,6}$]undec-10-en-9-one (4c): Method A. Reaction ${ }_{85}$ time: 10 min . Yield: $0.137 \mathrm{~g}(93 \%)$ as viscous yellow liquid. IR (KBr): $v_{\max }$ 2949, 1740, 1629, 1521, 1343, 1084, $1036 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75$ (d, $\left.J=13.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.25(\mathrm{~d}, J$ $=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=0.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=3.0$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 (dt, $J=2.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.79 (dd, $J=3.0,6.0$ $\left.{ }_{90} \mathrm{~Hz}, 1 \mathrm{H}\right), 3.57-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{t}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{dq}, J=3.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.09(\mathrm{~m}$, 1H), $1.39-1.31(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $198.8(C=\mathrm{O}), 137.6(\mathrm{C}), 137.2(\mathrm{CH}), 137.0(\mathrm{CH}), 136.7(\mathrm{CH})$, $92.8(\mathrm{C}), 78.9(\mathrm{CH}), 68.8\left(\mathrm{CH}_{2}\right), 56.4(\mathrm{CH}), 51.0\left(\mathrm{CH}_{2}\right), 49.5$ ${ }_{95}\left(\mathrm{CH}_{2}\right), 43.1(\mathrm{CH}), 37.7(\mathrm{CH}), 30.0\left(\mathrm{CH}_{2}\right)$ ppm. HRMS (ESI+): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 318.0948, found 318.0945 .
($1 S^{*}, 4 R^{*}, 7 S^{*}$)-(E)-7-phenyl-3,3-dimethoxy-5-(2-nitrovinyl)bi-cyclo[2.2.2]oct-5-en-2-one (4d): Method A. Reaction time: 10 min. Yield: $0.151 \mathrm{~g}(92 \%)$ as viscous yellow liquid. IR (KBr): $v_{\text {max }} 2945,1730,1629,1559,1341,1130,1062 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75$ (d, $\left.J=13.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.35(\mathrm{~d}, J=13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}$, $\left.{ }_{105} 2 \mathrm{H}\right), 6.71(\mathrm{dd}, J=1.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ (dd, $J=1.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.35$ (s, 3H), 2.63 (ddd, $J=3.0,10.0,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.65$ (ddd, $J=3.0$, $6.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.4$ (C=O), 142.8 (C), 139.7 (C), 137.1 (CH), $136.9(\mathrm{CH}), 135.7$
${ }_{110}(\mathrm{CH}), 128.7(\mathrm{CH}), 127.2(\mathrm{CH}), 127.1(\mathrm{CH}), 93.3(\mathrm{C}), 56.8(\mathrm{CH})$, $50.9\left(\mathrm{CH}_{3}\right), 49.8\left(\mathrm{CH}_{3}\right), 40.8(\mathrm{CH}), 39.9(\mathrm{CH}), 29.3\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. HRMS (ESI+): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 352.1155$, found 352.1155 .

115 ($1 S^{*}, 4 R^{*}, 7 S^{*}$)-(E)-7-(4-methoxyphenyl)-3,3-dimethoxy-5-(2nitro vinyl)bicyclo[2.2.2]oct-5-en-2-one (4e): Method B.

Reaction time: 25 min . Yield: $0.140 \mathrm{~g}(78 \%)$ as viscous yellow liquid. IR (KBr): $v_{\text {max }} 3099,2977,2946,2842,1733,1628,1515$, 1458, 1345, 1247, 1184, 1087, $1028 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.73(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.43(\mathrm{~m}, 1 \mathrm{H})$, $3.43(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.56(\mathrm{~m}, 1 \mathrm{H})$, 1.60-1.56 (m, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.5$ ($C=0$), 158.6 (C), 139.7 (C), 137.1 (C), 137.1 (C), 135.7 (CH), ${ }_{10} 134.8(\mathrm{CH}), 128.2(\mathrm{CH}), 114.1(\mathrm{CH}), 93.3(\mathrm{C}), 57.3\left(\mathrm{CH}_{3}\right), 55.2$ $(\mathrm{CH}), 50.9\left(\mathrm{CH}_{3}\right), 49.8\left(\mathrm{CH}_{3}\right), 40.2(\mathrm{CH}), 39.9(\mathrm{CH}), 29.3\left(\mathrm{CH}_{2}\right)$ ppm. HRMS (ESI +): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 382.1261, found 382.1261.
${ }_{15}\left(\mathbf{1} S^{*}, 4 R^{*}, 7 S^{*}\right)-(\boldsymbol{E})$-7-(3,4-dimethoxyphenyl)-3,3-dimethoxy-5-(2-nitrovinyl)bicyclo[2.2.2]oct-5-en-2-one (4f): Method B. Reaction time: 25 min . Yield: $0.141 \mathrm{~g}(73 \%)$ as yellow solid. MP: $131{ }^{\circ} \mathrm{C}$. IR (KBr): $v_{\max } 3099,2943$, 2837, 2842, 1738, 1622, 1514, 1458, 1341, 1260, 1147, 1079, $1029 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500
${ }_{20} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.78-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J .=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.55(\mathrm{~m}$, $2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.43$ (s, 3H), $3.39(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.55(\mathrm{~m}, 1 \mathrm{H})$, 1.65-1.57 (m, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.5$ $25(C=\mathrm{O}), 149.0(C), 148.2(C), 139.8(C), 137.3(C H), 137.1(C H)$, $135.7(\mathrm{CH}), 135.4(\mathrm{C}) 118.8(\mathrm{CH}), 111.4(\mathrm{CH}), 111.1(\mathrm{CH}), 93.4$ (C), $57.3(\mathrm{CH}), 55.9\left(\mathrm{OCH}_{3}\right), 51.0\left(\mathrm{OCH}_{3}\right), 49.9\left(\mathrm{OCH}_{3}\right), 40.6$ $(\mathrm{CH}), 40.0(\mathrm{CH}), 29.4\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. HRMS (ESI+): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 412.1366$, found 412.1366 .
30
($1 S^{*}, 4 R^{*}, 7 S^{*}$)-(\boldsymbol{E})-7-(3,4,5-trimethoxyphenyl)-3,3-dimethoxy-5-(2-nitrovinyl)bicyclo[2.2.2]oct-5-en-2-one (4g): Method B. Reaction time: 25 min . Yield: $0.155 \mathrm{~g}(74 \%)$ as yellow solid. MP: $187{ }^{\circ} \mathrm{C}$. IR (KBr): $v_{\text {max }} 3105,2937,2834,1741,1625,1591$, 1509, 1463, 1340, 1241, 1129, 1077, $1004 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.71(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6,26(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 9 \mathrm{H})$, $3.49-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}$, $3 \mathrm{H}), 2.64-2.57(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 ${ }_{40} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.3$ ($C=\mathrm{O}$), 153.3 (C), 139.9 (C), 138.5 (C), $137.4(\mathrm{CH}), 137.3(\mathrm{C}), 136.8(\mathrm{CH}), 135.4(\mathrm{CH}), 104.5(\mathrm{CH}), 93.3$ $(C), 60.8\left(\mathrm{OCH}_{3}\right), 57.0(\mathrm{CH}), 56.2(\mathrm{CH}), 51.1\left(\mathrm{OCH}_{3}\right), 49.8$ $\left(\mathrm{OCH}_{3}\right), 41.2(\mathrm{CH}), 40.0(\mathrm{CH}), 29.5\left(\mathrm{CH}_{2}\right)$ ppm. HRMS (ESI+): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 442.1472, found ${ }_{45} 442.1466$.
($1 S^{*}, 4 R^{*}, 7 S^{*}$)-(\boldsymbol{E})-7-(2,5-dimethoxyphenyl)-3,3-dimethoxy-5-(2-nitrovinyl)bicyclo[2.2.2]oct-5-en-2-one (4h): Method B. Reaction time: 25 min . Yield: $0.168 \mathrm{~g}(86 \%)$ as orange solid. Mp : ${ }_{50} 160{ }^{\circ} \mathrm{C}$. IR (KBr): $v_{\max } 3107,2938,2839,1741,1625,1591$, $1464,1339,1241,1129,1081,1005 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.70(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.78-6.74 (m, 1H), 6.72-6.67 (m, 2H), $6.46(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.98(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{dd}, J=$ $\left.{ }_{55} 1.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}$, $3 \mathrm{H}), 2.62-2.53(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{ddd}, \mathrm{J}=2.0,6.0,13.0 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.6$ ($C=\mathrm{O}$), 153.3 (C), $151.1(C), 139.5(C), 137.6(C H), 137.1(C H), 135.9(C H), 132.1$
$(\mathrm{C}), 114.5(\mathrm{CH}), 111.1(\mathrm{CH}), 110.8(\mathrm{CH}), 93.5(\mathrm{C}), 55.9\left(\mathrm{OCH}_{3}\right)$, ${ }_{60} 55.7\left(\mathrm{OCH}_{3}\right), 55.2(\mathrm{CH}), 51.0\left(\mathrm{OCH}_{3}\right), 49.9\left(\mathrm{OCH}_{3}\right), 39.9(\mathrm{CH})$, $33.4(\mathrm{CH}), 27.8\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. HRMS (ESI+): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 412.1366$, found 412.1368 .
$\left(1 S^{*}, 4 R^{*}, 7 S^{*}\right)$-(\boldsymbol{E})-7-(3,5-dimethoxyphenyl)-3,3-dimethoxy-5-
65 (2-nitrovinyl)bicyclo[2.2.2]oct-5-en-2-one (4i): Method B. Reaction time: 25 min . Yield: $0.126 \mathrm{~g}(65 \%)$ as yellow solid. MP: $166{ }^{\circ} \mathrm{C}$. IR (KBr): $v_{\max } 3100,2950,2845,1740,1600,1503$, $1464,1335,1205,1158,1055 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=$
$\left.{ }_{70} 6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.32(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s} .6 \mathrm{H}), 3.48(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.42 (s, 4H), 3.37 (s, 1H), 3.34 (s, 3 H), 2.64-2.55 $(\mathrm{m}, 1 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $199.3(C=\mathrm{O}), 161.0(C), 145.2(C), 139.7(C), 137.2(C H), 136.8$ $(\mathrm{CH}), 135.6(\mathrm{CH}), 105.7(\mathrm{CH}), 98.3(\mathrm{CH}), 93.3(\mathrm{C}), 56.7(\mathrm{CH})$, ${ }_{75} 55.3\left(\mathrm{OCH}_{3}\right), 51.0\left(\mathrm{OCH}_{3}\right), 49.8\left(\mathrm{OCH}_{3}\right), 41.0(\mathrm{CH}), 40.0(\mathrm{CH})$, $29.3\left(\mathrm{CH}_{2}\right)$ ppm. HRMS (ESI +): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{7} \mathrm{Na}[\mathrm{M}$ $+\mathrm{Na}]^{+}: 412.1366$, found 412.1366 .
($\left.1 S^{*}, 4 R^{*}, 7 S^{*}\right)$-(E)-7-(4-methylphenyl)-3,3-dimethoxy-5-(2-
${ }_{80}$ nitrovinyl)bicyclo[2.2.2]oct-5-en-2-one (4j): Method B. Reaction time: 25 min . Yield: $0.102 \mathrm{~g}(60 \%)$ as viscous yellow liquid. IR (KBr): $v_{\text {max }} 3101,2944,2845,1740,1627,1514,1338$, $1129,1084 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74(\mathrm{~d}, J=13.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.96$ ${ }_{85}(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.44(\mathrm{~m}, 2 \mathrm{H})$, $3.43(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 263-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.31$ $(\mathrm{s}, 3 \mathrm{H}), 1.62(\mathrm{dd}, J=6.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}) \quad \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.5$ ($C=\mathrm{O}$), 139.9 (C), 139.8 (C), 137.2 (CH), $137.1(\mathrm{CH}), 137.0(\mathrm{C}), 135.8(\mathrm{CH}), 129.5(\mathrm{CH}), 127.2(\mathrm{CH}), 93.4$
${ }_{90}(\mathrm{C}), 57.1(\mathrm{CH}), 51.0\left(\mathrm{OCH}_{3}\right), 49.4\left(\mathrm{OCH}_{3}\right), 40.6(\mathrm{CH}), 40.1$ $(\mathrm{CH}), 29.4\left(\mathrm{CH}_{2}\right) 20.9\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. HRMS (ESI+): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 366.1311$, found 366.1310.

$\left(1 S^{*}, 2 S^{*}, 7 R^{*}, 8 R^{*}\right)$-7,11-(bis-2-nitrovinyl)-3,3,10,10-tetra ${ }_{5}$ methoxytricyclo $\left[6 \cdot 2.2 .0^{2,7}\right]$ dodeca-5,11-diene-4,9-dione (5):

To a solution of nitrovinyl-guaiacol $\mathbf{1}(0.097 \mathrm{~g}, 0.5 \mathrm{mmol})$ in dry $\mathrm{MeOH}(5 \mathrm{~mL})$ solid diacetoxyiodobenzene $(0.193 \mathrm{~g}, 0.6 \mathrm{mmol}$, 1.2 equiv.) was added portion-wise at room temperature and 100 stirred for 10 min . The solution turned to orange-pale brown colour immediately after the addition of DIB. After the completion of the reaction, as indicated by the TLC, the orangebrownish solution was evaporated and the crude reaction mixture was purified by silica gel column chromatography by using ethyl 105 acetate ($30-40 \%$) in hexanes as an eluting system to afford pure Diels-Alder dimer 5.

Reaction time: 10 min . Yield: $0.106 \mathrm{~g}(94 \%)$ as yellow solid. MP: $190{ }^{\circ} \mathrm{C}$. IR (KBr): $v_{\max } 2947,1743,1708,1630,1528,1511$, 110 1383, 1342, 1135, 1053, 965, 818, $733 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.54(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.45-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.31(\mathrm{~m}, 2 \mathrm{H})$, $1153.27(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $197.9(C=\mathrm{O}), 190.9(C=\mathrm{O}), 144.0(\mathrm{CH}), 140.9(\mathrm{CH}), 140.7(\mathrm{CH})$,
$138.8(\mathrm{CH}), 137.4(\mathrm{C}), 137.0(\mathrm{CH}), 134.4(\mathrm{CH}), 129.2(\mathrm{CH}), 97.3$ $(C), 94.0(\mathrm{C}), 58.0(\mathrm{CH}), 51.0\left(\mathrm{OCH}_{3}\right), 50.7\left(\mathrm{OCH}_{3}\right), 50.2\left(\mathrm{OCH}_{3}\right)$, $48.9\left(\mathrm{OCH}_{3}\right), 48.2(\mathrm{C}), 43.5(\mathrm{CH}), 41.4(\mathrm{CH}) \mathrm{ppm}$. HRMS (ESI+): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 473.1166$, found 573.1164.
($1 S^{*}, 4 R^{*}, 7 S^{*}$)-(E)-7-Ethoxy-3,3-dimethoxy-6-(2-nitrovinyl)bi-cyclo[2.2.2]oct-5-en-2-one (8a): Reaction time: 45 min . Yield: $0.049 \mathrm{~g}(33 \%)$ as yellow solid. MP: $152^{\circ} \mathrm{C}$. IR (KBr): $v_{\max } 3091$, 2957, 2916, 2831, 1744, 1698, 1626, 1523, 1459, 1241, 1117, $1056 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.06-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H}), 3.50-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H})$, 3.28 ($\mathrm{s}, 4 \mathrm{H}$), 2.46 (ddd, $J=2.5,8.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{td}, J=$ ${ }_{15} 3.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 199.7(\mathrm{C}=\mathrm{O})$, $144.4(\mathrm{CH}), 136.6(\mathrm{CH}), 136.5$ $(\mathrm{CH}), 130.0(\mathrm{C}), 93.5(\mathrm{C}), 73.6(\mathrm{CH}), 64.7\left(\mathrm{CH}_{2}\right), 53.9(\mathrm{CH})$, $50.7\left(\mathrm{OCH}_{3}\right), 49.6\left(\mathrm{OCH}_{3}\right), 39.4(\mathrm{CH}), 29.7\left(\mathrm{CH}_{2}\right), 15.2\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI +): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: ${ }_{20} 320.1104$, found 320.1104 .
($\left.1 S^{*}, 4 R^{*}, 7 S^{*}\right)$-(E)-7-butoxy-3,3-dimethoxy-6-(2-nitrovinyl)bi -cyclo[2.2.2]oct-5-en-2-one (8b): Reaction time: 45 min . Yield: $0.076 \mathrm{~g}(46 \%)$ as viscous yellow liquid. IR (KBr): $v_{\text {max }} 3090$, ${ }_{25} 2957,2863,1744,1636,1522,1459,1342,1259,1101,1054 \mathrm{~cm}^{-}$ ${ }^{1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.65(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 1 \mathrm{H}), 3.40-3.28(\mathrm{~m}, 2 \mathrm{H})$, $3.26(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 1 \mathrm{H})$, ${ }_{30} 1.44-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.19(\mathrm{~m}, 2 \mathrm{H}), 0.81$ $(\mathrm{t}, J=7.5,3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.8$ $(C=\mathrm{O}), 144.5(\mathrm{CH}), 136.6(\mathrm{CH}), 130.1(C), 93.6(C), 73.8(\mathrm{CH})$, $69.2\left(\mathrm{CH}_{2}\right), 53.9(\mathrm{CH}), 50.6\left(\mathrm{OCH}_{3}\right), 49.6\left(\mathrm{OCH}_{3}\right), 39.4(\mathrm{CH})$, $31.7\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 19.2\left(\mathrm{CH}_{2}\right), 13.7\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. HRMS (ESI+): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 348.1417$, found 348.1413.
($\left.1 R^{*}, 2 R^{*}, 6 R^{*}, 7 S^{*}\right)$-(E)-10-(2-nitrovinyl)8,8-dimethoxy-3-oxatricyclo[5.2.2.0 ${ }^{2,6}$] undec-10-en-9-one (8c): Reaction time: 45 ${ }_{40} \mathrm{~min}$. Yield: $0.049 \mathrm{~g}(33 \%)$ as yellow solid. MP: $136{ }^{\circ} \mathrm{C}$. IR (KBr): $v_{\max } 3099,2925,2854,1746,1629,1505,1452,1343,1210$, 1138, 1095, $1037 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66$ (d, J $=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.42(\mathrm{dd}, J=3.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dt}, J=3.0,8.0 \mathrm{~Hz}, 1 \mathrm{H})$,
${ }_{45} 3.70(\mathrm{dd}, J=2.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=$ $2.5,7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.98-2.93(\mathrm{~m}, 1 \mathrm{H})$, $2.08-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 199.5(\mathrm{C}=\mathrm{O}), 142.8(\mathrm{CH}), 137.4(\mathrm{CH}), 136.1(\mathrm{CH})$, $131.9(C), 93.3(\mathrm{C}), 78.4(\mathrm{CH}), 69.0\left(\mathrm{CH}_{2}\right), 55.1(\mathrm{CH}), 50.6$ ${ }_{50}\left(\mathrm{OCH}_{3}\right), 49.7\left(\mathrm{OCH}_{3}\right), 43.9(\mathrm{CH}), 38.5(\mathrm{CH}), 30.7\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. HRMS (ESI+): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 318.0948$, found 318.0948.
($1 S^{*}, 4 R^{*}, 7 S^{*}$)-(\boldsymbol{E})-7-phenyl-3,3-dimethoxy-6-(2-nitrovinyl)bi${ }_{55}$ cyclo[2.2.2]oct-5-en-2-one (8d): Reaction time: 45 min . Yield: $0.078 \mathrm{~g}(48 \%)$ as yellow solid. MP: $128{ }^{\circ} \mathrm{C}$. IR (KBr): $v_{\max } 3090$, 2937, 1740, 1629, 1510, 1452, 1337, 1125, 1089, $1057 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.17$
(m, 3H), 7.12 (d, $J=70 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.63$ ${ }_{60}(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.41$ (s, 3H), $3.34(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{ddd}, J=2.5,9.5,13.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.73$ (ddd, $J=2.5,6.0,13.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.8$ ($C=\mathrm{O}$), $145.4(\mathrm{CH}), 142.0(C), 136.7$ $(\mathrm{CH}), 136.2(\mathrm{CH}), 130.0(\mathrm{CH}) 128.8(\mathrm{CH}), 127.3,(\mathrm{CH}), 127.0$
${ }_{65}(\mathrm{CH}), 93.5(\mathrm{C}), 56.1(\mathrm{CH}), 50.5\left(\mathrm{OCH}_{3}\right), 49.8\left(\mathrm{OCH}_{3}\right), 40.6$ $(\mathrm{CH}), 39.4(\mathrm{CH}), 28.2\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. HRMS (ESI+): m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 352.1155$, found 352.1143 .
($1 S^{*}, 4 R^{*}, 7 S^{*}$)-(\boldsymbol{E})-7-(4-methoxyphenyl)-3,3-dimeth-oxy-6-(2-
${ }_{70}$ nitrovinyl)bicyclo[2.2.2]oct-5-en-2-one (8e): Reaction time: 45 min . Yield: $0.120 \mathrm{~g}(67 \%)$ as viscous yellow liquid. IR (KBr) : $v_{\max } 3104,2945,2834,1740,1629,1514,1459,1338,1250$, 1179, 1127, 1091, $1056 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.61(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=70 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=$ $\left.{ }_{5} 8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.74 (s, 3H), $3.48(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~s}$, 3 H), 3.33 (s, 3H), $3.29(\mathrm{~s}, 1 \mathrm{H}), 2.56-2.49(\mathrm{~m}, 1 \mathrm{H}), 1.67$ (dd, $J=$ $5.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.0$ $(C=\mathrm{O}), 158.7(\mathrm{CH}), 145.5(\mathrm{CH}), 136.7(\mathrm{CH}), 136.3(\mathrm{CH}), 134.0$ 8о (C), $130.9(C), 128.0(C H), 114.1(C H), 93.5(C), 56.4(C H), 55.1$ $\left(\mathrm{OCH}_{3}\right), 50.6\left(\mathrm{OCH}_{3}\right), 49.8\left(\mathrm{OCH}_{3}\right), 40.5(\mathrm{CH}), 38.7(\mathrm{CH}), 28.5$ $\left(\mathrm{CH}_{2}\right)$ ppm. HRMS (ESI+): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}]^{+}: 382.1261$, found 382.1251.
${ }_{85}\left(\mathbf{1} S^{*}, 4 R^{*}, 7 S^{*}\right)$-(\boldsymbol{E})-7-(3,4-dimethoxyphenyl)-3,3-dimethoxy-6-(2-nitrovinyl)bicyclo[2.2.2]oct-5-en-2-one (8f): Reaction time: 45 min . Yield: $0.136 \mathrm{~g}(70 \%)$ as yellow solid. MP: $142{ }^{\circ} \mathrm{C}$. IR (KBr): $v_{\text {max }} 3090,2926,2843,1745,1623,1514,1462,1334$, 1254, 1136, 1091, $1038 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ ${ }_{90} 7.65(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.70(\mathrm{~m}$, $2 \mathrm{H}), 6.60-6.56(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.43(\mathrm{~m}$, $2 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{t}, J=11.5 \mathrm{~Hz}$, 1 H), 1.67 (dd, $J=5.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}) ~ p p m .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 199.9(C=\mathrm{O}), 149.0(C), 148.3(C), 145.6,(\mathrm{CH}) 137.0$ ${ }_{95}(\mathrm{CH}), 136.3(\mathrm{CH}), 134.7(C), 131.1(C), 118.9(\mathrm{CH}), 111.3(\mathrm{CH})$, $110.7(\mathrm{CH}), 93.5(\mathrm{C}), 56.3\left(\mathrm{OCH}_{3}\right), 55.9\left(\mathrm{OCH}_{3}\right), 55.9(\mathrm{CH}), 50.7$ $\left(\mathrm{OCH}_{3}\right), 50.0\left(\mathrm{OCH}_{3}\right), 40.6(\mathrm{CH}), 39.2(\mathrm{CH}), 28.9\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. HRMS (ESI +): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 412.1366$, found 412.1367 .
100
($\left.1 S^{*}, 4 R^{*}, 7 S^{*}\right)$-($\left.\boldsymbol{E}\right)$-7-(3,4,5-trimethoxyphenyl-3,3-dimethoxy-6-(2-nitrovinyl)bicyclo[2.2.2]oct-5-en-2-one (8g): Reaction time: 45 min . Yield: $0.104 \mathrm{~g}(50 \%)$ as viscous yellow liquid. IR (KBr): $v_{\text {max }} 3090,2938,2834,1740,1628,1512,1459,1340,1240$, $1051127,1095 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66(\mathrm{~d}, J=13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=70 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.26$ (s, 2H), 3.77 (s, 3H), 3.75 (s, 6H), 3.46-3.42 (m, 2H), 3.39 (s, $3 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}) 2.59-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.59(\mathrm{~m}$,
1H) $\mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.5$ ($C=\mathrm{O}$), 153.3 $110(C), 145.6(C H), 138.0(C), 137.2(C H), 137.0(C H), 136.1(C)$, $131.0(\mathrm{C}), 104.2(\mathrm{CH}), 93.4(\mathrm{C}), 60.8\left(\mathrm{OCH}_{3}\right), 56.1\left(\mathrm{OCH}_{3}\right), 55.8$ $(\mathrm{CH}), 50.6\left(\mathrm{OCH}_{3}\right), 49.9\left(\mathrm{OCH}_{3}\right), 40.5(\mathrm{CH}), 39.6(\mathrm{CH}), 29.1$ $\left(\mathrm{CH}_{2}\right)$ ppm.HRMS (ESI +): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{8} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}]^{+}: 442.1472$, found 442.1472.

Abstract

($\left.1 S^{*}, 4 R^{*}, 7 S^{*}\right)$-(E)-7-(2,5-dimethoxyphenyl)-3,3-dimethoxy-6-(2-nitrovinyl)bicyclo[2.2.2]oct-5-en-2-one (8h):Reaction time: 45 min . Yield: $0.136 \mathrm{~g}(70 \%)$ as viscous yellow liquid. IR (KBr): $v_{\text {max }}$ 3096, 2946, 2836, 1740, 1628, 1501, 1461, 1339, 1220, s 1126, 1093, 1050, $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57$ (d, J $=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.75(\mathrm{~m}, 1 \mathrm{H})$, $6.69-6.61(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.02(\mathrm{~m}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 4 \mathrm{H}), 3.37(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H})$, 2.48-2.42 (m, 1H), 1.70-1.65 (m, 1H), ppm. ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 200.3$ ($C=0$), 153.4 (C), 150.9 (C), 145.2 (CH), 136.6 (CH), 136.5 (CH), 131.4 (C), 130.9 (C), 114.2 (CH), 111.3 (CH), $111.1(\mathrm{CH}), 93.8(\mathrm{C}), 55.9\left(\mathrm{OCH}_{3}\right), 55.6\left(\mathrm{OCH}_{3}\right), 54.1(\mathrm{CH}), 50.6$ $\left(\mathrm{OCH}_{3}\right), 49.9\left(\mathrm{OCH}_{3}\right), 40.6(\mathrm{CH}), 31.6(\mathrm{CH}), 26.5\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. HRMS (ESI +): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{7} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{\dagger}\right]^{\dagger} 412.1366$, ${ }_{15}$ found 412.1354 .

($1 S^{*}, 4 R^{*}, 7 S^{*}$)-(E)-7-(3,5-dimethoxyphenyl)-3,3-dimethoxy-5-

 (2-nitrovinyl)bicyclo[2.2.2]oct-5-en-2-one (8i): Reaction time: 45 min . Yield: $0.095 \mathrm{~g}(49 \%)$ as yellow solid. MP: $124{ }^{\circ} \mathrm{C}$. IR 20 (KBr): $v_{\text {max }} 3090,2966,2842,1736,1630,1598,1522,1456$, 1345, 1204, 1153, 1096, $1055 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H})$, $3.46-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 4 \mathrm{H}), 2.53(\mathrm{ddd}, J=2.5$, $\left.{ }_{25} 9.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.68$ (ddd, $\left.J=2.5,6.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 199.7 ($C=\mathrm{O}$), 160.9 (C), $145.4(\mathrm{CH})$, $144.5(\mathrm{C}), 136.9(\mathrm{CH}) 136.3(\mathrm{CH}), 130.9(\mathrm{C}), 105.5(\mathrm{CH}), 98.6$ $(\mathrm{CH}), 93.5(\mathrm{C}), 55.9(\mathrm{CH}), 55.2\left(\mathrm{OCH}_{3}\right), 50.6\left(\mathrm{OCH}_{3}\right), 50.0$ $\left(\mathrm{OCH}_{3}\right), 40.5(\mathrm{CH}), 39.6(\mathrm{CH}), 28.4\left(\mathrm{CH}_{2}\right)$ ppm. HRMS (ESI+): ${ }_{30} \mathrm{~m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 412.1366$, found 412.1366.
($\left.1 S^{*}, 4 R^{*}, 7 S^{*}\right)$-(\boldsymbol{E})-7-(4-methylphenyl)-3,3-dimethoxy-5-(2-

nitro vinyl)bicyclo[2.2.2]oct-5-en-2-one (8j): Reaction time: 45 ${ }_{35} \mathrm{~min}$. Yield: $0.096 \mathrm{~g}(56 \%)$ as viscous yellow liquid. IR (KBr): $v_{\text {max }} 3092,2945,2833,1740,1629,1515,1457,1338,1268$, 1127, 1091, $1054 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62(\mathrm{~d}, J$ $=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.46(\mathrm{~m}$, $\left.{ }_{40} 1 \mathrm{H}\right), 3.45-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 1 \mathrm{H})$, $2.52-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.0(C=\mathrm{O}), 145.5(\mathrm{CH}), 139.0(C)$, $137.0(C), 136.8(\mathrm{CH}), 136.3(\mathrm{CH}), 130.9(C), 129.5(\mathrm{CH}), 126.9$ $(\mathrm{CH}), 93.5(\mathrm{C}), 56.3(\mathrm{CH}), 50.6\left(\mathrm{OCH}_{3}\right), 49.9\left(\mathrm{OCH}_{3}\right), 40.6$ ${ }_{45}(\mathrm{CH}), 39.1(\mathrm{CH}), 28.4\left(\mathrm{CH}_{2}\right), 20.9\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI+): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 366.1311, found 366.1316.
$\left(1 S^{*}, 4 R^{*}, 7 S^{*}\right)$-(E)-7-acetyl-3,3-dimethoxy-6-(2-nitrovinyl)bi${ }_{50}$ cyclo[2.2.2]oct-5-en-2-one (8k): Reaction time: 45 min . Yield: $0.032 \mathrm{~g}(25 \%)$ as viscous yellow liquid. IR (KBr): $v_{\text {max }} 3110$, 3049, 2947, 2831, 1745, 1709, 1629, 1511, 1451, 1333, 1266, 1193, 1135, 1096, $1050 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.57 (d, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=$ $\left.{ }_{55} 7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.62(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H})$, 3.21-3.16 (m, 1H), 2.46-2.41 (m, 1H), 2.15 (s, 1H), 1.64-1.58 $(\mathrm{m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 204.9(\mathrm{C}=\mathrm{O})$, $199.6(C=\mathrm{O}), 144.2(\mathrm{CH}), 137.9(\mathrm{CH}), 135.4(\mathrm{CH}), 131.5(C)$,
$93.7(\mathrm{C}), 50.6\left(\mathrm{OCH}_{3}\right), 50.0(\mathrm{CH}), 49.4\left(\mathrm{OCH}_{3}\right), 46.3(\mathrm{CH}), 39.7$
${ }_{60}(\mathrm{CH}), 28.0\left(\mathrm{CH}_{3}\right), 24.0\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$.
($1 S^{*}, 4 R^{*}, 7 S^{*}$)-(\boldsymbol{E})-7-methoxycarbonyl-3,3-dimethoxy-6-(2-nitrovinyl)bicyclo[2.2.2]oct-5-en-2-one (81): Reaction time: 45 min . Yield: $0.042 \mathrm{~g}(27 \%)$ as viscous yellow liquid. IR (KBr) : ${ }_{65} \nu_{\max } 3101,2955,2919,2845,1740,1632,1521,1440,1342$, 1263, 1128, 1096, $1057 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59$ (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.74-3.67$ (m, 2H), 3.65 (s, 3H), 3.34 (s, 3H), 3.30 (s, $3 \mathrm{H}), 3.18-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.80(\mathrm{~m}, 1 \mathrm{H})$ $70 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.3(C=\mathrm{O}), 172.3(C=\mathrm{O})$, $145.4(\mathrm{CH}), 137.5(\mathrm{CH}), 135.4(\mathrm{CH}), 131.1(C), 93.6(C), 52.5$ $\left(\mathrm{OCH}_{3}\right), 50.6\left(\mathrm{OCH}_{3}\right), 50.1(\mathrm{CH}), 49.8\left(\mathrm{OCH}_{3}\right), 39.7(\mathrm{CH}), 38.7$ $(\mathrm{CH}), 24.1\left(\mathrm{CH}_{2}\right)$ ppm. HRMS (ESI +): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 334.0897$, found 334.0877.
75
($1 S^{*}, 2 S^{*}, 7 R^{*}, 8 R^{*}$)-6,12-(bis-2-nitrovinyl)-3,3,10,10-tetramethoxytricyclo[6.2.2.0 ${ }^{2,7}$]dodeca-5,11-diene-4,9-dione (9)
To a solution of nitrovinyl-guaiacol $6(0.097 \mathrm{~g}, 0.5 \mathrm{mmol})$ in dry $\mathrm{MeOH}(5 \mathrm{~mL})$ solid diacetoxyiodobenzene $(0.193 \mathrm{~g}, 0.6 \mathrm{mmol}$, so 1.2 equiv.) was added portion-wise at room temperature. The solution was turned to orange-pale brown colour immediately after the addition of DIB and slowly changed into yellowish turbid solution. After the completion of the reaction in 45 min , as indicated by the TLC, the solvent was evaporated and the crude ${ }_{85}$ reaction mixture was purified by silica gel column chromatography by using ethyl acetate ($30-50 \%$) in hexanes as an eluting system to afford pure Diels-Alder dimer 9 as yellow solid.
${ }_{90}$ Reaction time: 45 min . MP: $207{ }^{\circ} \mathrm{C}$. Yield: 0.092 g (82\%) as yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.0(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.75$ (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ (dd, $J=2.5,14.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.00(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.88(\mathrm{~s}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H})$, ${ }_{95} 3.20(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 199.2(C=\mathrm{O})$, 191.8 ($C=\mathrm{O})$, $146.6(C)$, $143.4(\mathrm{CH}), 142.9(\mathrm{CH}), 138.0(\mathrm{CH}), 135.3(\mathrm{CH}), 134.5(\mathrm{CH})$, $133.5(\mathrm{CH}), 133.4(\mathrm{CH}), 97.6(\mathrm{C}), 93.4(\mathrm{C}), 51.2(\mathrm{CH}), 49.9$ $\left(\mathrm{OCH}_{3}\right), 49.3\left(\mathrm{OCH}_{3}\right), 49.0\left(\mathrm{OCH}_{3}\right), 47.9\left(\mathrm{OCH}_{3}\right), 40.3(\mathrm{CH})$, $10037.6(C H), 36.1(C H)$ ppm. HRMS (ESI +): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{10}[\mathrm{M}+\mathrm{Na}]^{+} 473.1166$ Found: 473.1152.

Synthesis of triazole-substituted bicyclo[2.2.2]octenones 10a-c
${ }_{105}$ Nitroolefin ($\left.\mathbf{4 c} \mathbf{c} \mathbf{e}, 0.3 \mathrm{mmol}\right)$ and $\mathrm{NaN}_{3}(0.45 \mathrm{mmol})$ were stirred in DMF (3 mL). Then p-TsOH (0.15 mmol) was carefully added to the mixture and the contents were allowed to stir at $60^{\circ} \mathrm{C}$ in air for 3 h . After completion of the reaction, as detected by TLC, the reaction mixture was cooled to room temperature, quenched with ${ }_{110} \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The residue was purified by silica gel column chromatography by using ethyl acetate ($10-30 \%$) in hexanes to furnish the trizoles 10a-c.
$\left(1 R^{*}, 2 R^{*}, 6 R^{*}, 7 S^{*}\right)$-(E)-8,8-dimethoxy-11-(1H-1,2,3-triazol-4-yl)-3-oxatricyclo $\left[5.2 .2 .0^{2,6}\right]$ undec-10-en-9-one (10a): This product was obtained from $\mathbf{4 c}$. Reaction time: 3 h . Yield: 0.063 g (72\%) as viscous yellow liquid. IR (KBr): $v_{\text {max }} 3447,2949,1732$, s 1632, 1512, 1459, 1250, 1180, 1135, 1096, 1057, 912, 829, 730, $530 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}$, 3 H), $3.27(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{q}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.06(\mathrm{~m}, 1 \mathrm{H})$, ${ }_{10} 1.52-1.42(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.4$ $(C=O), 145.8(C), 134.5\left(\mathrm{CH}_{2}\right), 130.0(C H), 121.7(C H), 93.5$ $(C), 78.9(\mathrm{CH}), 69.2\left(\mathrm{CH}_{2}\right), 54.9(\mathrm{CH}), 50.7\left(\mathrm{OCH}_{3}\right), 50.0$ $\left(\mathrm{OCH}_{3}\right), 44.3(\mathrm{CH}), 38.4(\mathrm{CH}), 30.2\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$.
$15\left(1 S^{*}, 4 R^{*}, 7 S^{*}\right)$-(E)-7-phenyl-3,3-dimethoxy-5-(1H-1,2,3-triazol-4-yl)bicyclo[2.2.2]oct-5-en-2-one (10b): This product was obtained from 4d. Reaction time: 3 h . Yield: $0.071 \mathrm{~g}(73 \%)$ as viscous yellow liquid. IR (KBr): $v_{\max } 3257,2954,1733,1603$, 1453, 1324, 1209, 1136, 1096, 987, 909, 1054, 842, 765, 701, ${ }_{20} 616 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.22$ (m, 1H), $7.20(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.54$ (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}$, $3 \mathrm{H}), 3.41(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.70-2.63(\mathrm{~m}, 1 \mathrm{H})$, $1.75-1.70(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.1$ $25(C=\mathrm{O}), 145.1(C), 143.7(C), 137.1(C), 128.6(C H), 127.4(C H)$, $126.8(\mathrm{CH}), 121.1(\mathrm{CH}), 93.9(\mathrm{C}), 55.1(\mathrm{CH}), 50.5\left(\mathrm{OCH}_{3}\right), 50.2$ $\left(\mathrm{OCH}_{3}\right), 41.3(\mathrm{CH}), 40.3(\mathrm{CH}), 29.9\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. HRMS (ESI+): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 348.1318, found 348.1318 .

30
($1 S^{*}, 4 R^{*}, 7 S^{*}$)-(E)-7-(4-methoxyphenyl)-3,3-dimethoxy-5-(1H-1,2,3-triazol-4-yl)bicyclo[2.2.2]oct-5-en-2-one (10c): This product was obtained from $\mathbf{4 e}$. Reaction time: 3 h . Yield: 0.080 g (76\%) as viscous yellow liquid. IR (KBr): $v_{\max } 3439,2929,2857$, ${ }_{35}$ 1737, 1632, 1452, 1218, 1143, 1095, 1047, 908, 848, 730, 600 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ $(\mathrm{s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}$, $1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.64(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.68(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }_{40}{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.1$ ($C=\mathrm{O}$), 158.5 (C), 144.7, $137.1(C), 135.9(C), 128.5(C H), 121.2(\mathrm{CH}), 114.0(\mathrm{CH}), 93.5$ (C), $55.6(\mathrm{CH}), 55.3\left(\mathrm{OCH}_{3}\right), 50.6\left(\mathrm{OCH}_{3}\right), 50.2\left(\mathrm{OCH}_{3}\right), 41.4$ $(\mathrm{CH}), 39.7(\mathrm{CH}), 30.1\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$.

${ }_{45}$ Acknowledgement

The authors sincerely thank Council of Scientific and Industrial Research (CSIR), New Delhi (research grant No. 02(0231)/15/EMR-II) for financial support, DST-FIST program for providing HRMS facility and Prof. U. P. Singh for collecting ${ }_{50}$ X-ray crystallographic data. SS thanks UGC and RTN thanks CSIR for research fellowships.

Note and references:

*Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-
55247 667, Uttarakhand, India. Fax: + (91) 133227 3560; Tel: + (91) 133228 5438.

E-mail: ramakpeddinti@gmail.com, rkpedfcy@iitr.ac.in
\dagger Electronic Supplementary Information (ESI) available: [Copies of ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR Spectra of all products, 2D NMR spectra of compound 8a, Selected ${ }^{1} \mathrm{H}$

60 and ${ }^{13} \mathrm{C}$ NMR chemical shifts of the cycloadducts $\mathbf{4 a}-\mathbf{j}$ and $\left.\mathbf{8 a}-\mathbf{k}\right]$. See DOI: $10.1039 / \mathrm{x} 0 \mathrm{xx} 00000 \mathrm{x}$

1. For books on hypervalent iodine chemistry see: (a) A. Varvoglis, The Organic Chemistry of Polycoordinated ${ }_{65}$ Iodine; VCH: New York, NY, 1992; (b) A. Varvoglis, Hypervalent Iodine in Organic Synthesis; Academic: London, 1997; (c) Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis; T. Wirth, Ed. Topics in Current Chemistry; Springer: Berlin, Heidelberg, New York,
70 NY, 2003; Vol. 224; (d) R. M. Moriarty, O. Prakash, Hypervalent Iodine in Organic Chemistry: Chemical Transformations; Wiley-Interscience: New York, NY, 2008.
2. For review articles on hypervalent iodine chemistry, see: (a) P. J Stang, and V. V. Zhdankin, Chem. Rev., 1996, 96, 75 1123-1178; (b) T. Kitamura and Y. Fujiwara, Org. Prep. Proced. Int., 1997, 29, 409; (c) A. Varvoglis, Tetrahedron, 1997, 53, 1179-1255; (d) T. Wirth and U. H. Hirt, Synthesis, 1999, 1271-1287; (e) G. F. Koser, Aldrichimica Acta, 2001, 34, 89-102; (f) T. Wirth, Angew. Chem., Int. Ed., 2001, 40, 2812-2814; (g) V. V. Zhdankin and P. J. Stang, Chem. Rev., 2002, 102, 2523-2584; (h) P. J. Stang, J. Org. Chem. 2003, 68, 2997-3008; (i) T. Wirth, Angew. Chem., Int. Ed., 2005, 44, 3656-3665; (j) R. M. Moriarty, J. Org. Chem., 2005, 70, 2893-2903; (k) R. D. Richardson and T. Wirth, Angew. 85 Chem., Int. Ed., 2006, 45, 4402-4404; (1) V. V. Zhdankin and P. J. Stang, Chem. Rev., 2008, 108, 5299-5358; (m) E. A. Merritt and B. Olofsson, Angew. Chem., Int. Ed., 2009, 48, 9052-9070; (n) M. Uyanik and K. Ishihara, Chem. Coттип., 2009, 2086-2099.
${ }_{90}$ 3. For reviews on MOB chemistry, see: (a) L. Pouységu, D. Deffieux and S. Quideau, Tetrahedron, 2010, 66, 2235-2261; (b) C.-C. Liao, Pure Appl. Chem., 2005, 77, 1221-1234; (c) D. Magdziak, S. J. Meek and T. R. R. Pettus, Chem. Rev., 2004, 104, 1383-429; (d) C.-C. Liao and R. K. Peddinti, Acc. Chem. Res., 2002, 35, 856-866; (e) V. Singh, Chem. Res., 1999, 32, 324-333; For reviews on asymmetric dearomatizations, see: (f) A. M. Harned, Tetrahedron Lett., 2014, 55, 4681-4689; (g) C.-X. Zhuo, W. Zhang and S.-L. You, Angew. Chem., Int. Ed., 2012, 51, 12662-12686; For the generation of benzoquinone monoimines, see: (h) N. Bodipati and R. K. Peddinti, Org. Biomol. Chem., 2012, 10, 1958-1961; (i) N. Bodipati and R. K. Peddinti, Org. Biomol. Chem., 2012, 10, 4549-4553.
3. (a) D.-S. Hsu, P.-Y. Hsu and C.-C. Liao, Org. Lett., 2001, 3, 263-265; (b) C.-F. Yen and C.-C. Liao, Angew. Chem., Int. Ed., 2002, 41, 4090-4093; (c) D-S. Hsu and C.-C. Liao, Org. Lett., 2007, 9, 4563-4565; (d) Y.-Y. Chou and C.-C. Liao, Org. Lett., 2013, 15, 1584-1587; (e) S. Dong, E. Hamel, R. Bai, D. G. Covell, J. A. Beutler, and J. A. Porco Jr., Angew. Chem., Int. Ed., 2009, 48, 1494-1497.
4. (a) S. K. R. Parumala and R. K. Peddinti, Org. Lett., 2013, 15, 3546-3549; (b) S. K. Chittimalla, C. Bandi, S. Putturu, R. Kuppusamy, K. C. Boellaard, D. C. A. Tan and D. M. J. Lum, Eur. J. Org. Chem., 2014, 2565-2575; (c) S. K. R. Parumala, S. R. Surasani and R. K. Peddinti, New J. Chem.,

2014, 38, 5268-5271; (d) S. K. Chittimalla, R. Kuppusamy and N. Akavaram, Synlett, 2015, 613-618.
6. (a) S. R. Surasani, S. K. R. Parumala and R. K. Peddinti, Org. Biomol. Chem., 2014, 12, 5656-5668; (b) S. R. $5 \quad$ Surasani and R. K. Peddinti, Tetrahedron Lett. 2011, 52, 4615-4618; (c) S. R. Surasani, V. S.Rajora, N. Bodipati and R. K. Peddinti, Tetrahedron Lett. 2009, 50, 773-775.
7. R. T. Naganaboina and R. K. Peddinti, Tetrahedron, 2015, 71, 6245-6253.
10 8. (a) A. Srivastava, G. Shukla, A. Nagaraju, G. Kumar Verma, K. Raghuvanshi, R. C. F. Jonesc and M. S. Singh, Org. Biomol. Chem., 2014, 12, 5484-5491; (b) Y. Tachikawa, Y. Nagasawa, S. Furuhashi, L. Cui, E. Yamaguchi, N. Tada, T. Miurab and A. Itoh, RSC $A d v$., 2015, 5, 9591-9593; (c) S. V. Kumar, S. Muthusubramanian and S. Perumal, RSC $A d v ., 2015,5,30826-30832$; (d) A. Sagar, V. N. Babu, A. Dey, D. S. Sharada, Tetrahedron Lett., 2015, 56, 2710-2713
9. (a) R. T Louis-Ferdinand and G. C Fuller, Toxicol. Appl. Pharmacol., 1970, 16, 668-674; (b) N. Latif, N. Mishriky, N. S. Girgis, S. Arnos, Indian J. Chem., 1980, 19B, 301304; (c) N. Milhazes, R. Calheiros, M. P. M. Marquez, J. Garrido, M. N. D. S. Cordeiro, C. Rodrigues, S. Quinteira, C. Novais, L. Peixe and F. Borges, Bioorg. Med. Chem., 2006, 14, 4078-4088; (d) J. M. Werner, K. Eger and H. J. Steinfelder. Apoptosis 2007, 12, 235-246; (e) W.-Y. Wang, P.-W. Hsieh, Y.-C. Wu, and C.-C. Wu, Biochem. Pharmacol., 2007, 74, 601-611; (f) F. P. Villar, F. T. D. Lima, C. L. Veber, A. R. M. Oliveira, A. K. Calgarotto, S. Marangoni and S. L. Da Silva, Toxicon, 2008, 51, 14671478.
10. (a) J. Zhang, J. Yao, J. Liu, S. Xue, Y. Li and C. Wang, $R S C$ Adv., 2015, 5, 48580-48585; (b) C. Ravi, D. C. Mohan, N. N. K. Reddy and S. Adimurthy, RSC Adv., 2015, 5, 4296142965; (c) Y. Chen, G. Nie, Q. Zhang, S. Ma, H. Li, and Q. 35 Hu, Org. Lett., 2015, 17, 1117-1121.
11. (a) X. Ren, C. He, Y. Feng, Y. Chai, W. Yao, W. Chen and S. Zhang, Org. Biomol. Chem., 2015, 13, 5054-5060; (b) R. Zhang, G. Yin, Y. Li, X. Yan and L. Chen, RSC Adv., 2015, 5, 3461-3464.
40 12. For a recent paper on the Diels-Alder reactions of 3-oxobut1 -enyl MOBs, see: E. Georgopanou, K-I. Martini, P. Pantazis, P. Pelagias, P. Voulgari and L. P. Hadjiarapoglou, J. Org. Chem., DOI: 10.1021/acs.joc.5b01755.
13. 4h: CCDC 1053109.
${ }_{45}$ 14. (a) S. K. Chittimalla, S. Laxmi, A. C. M. Liing, J. L. K. Jun, R. Kuppusamy, S. Putturu and C. Bandi, RSC Adv., 2015, 5, 29391-29396; (b) J. Gagnepain, R. Méreau, D. Dejugnac, J.M. Léger, F. Castet, D. Deffieux, L. Pouységu and S. Quideau, Tetrahedron, 2007, 63, 6493-6505; (c) D.
${ }_{50}$ Deffieux, I. Fabre, A. Titz, J.-M. Léger and S. Quideau, J. Org. Chem., 2004, 69, 8731-8738; (d) S. Quideau, M. A. Looney, L. Pouységu, S. Ham and D. M. Birney, Tetrahedron Lett., 1999, 40, 615-618; (e) C.-C. Liao, C.-S. Chu, T.-H. Lee, P. D. Rao, S. Ko, L. D. Song and H.-C. Shiao, J. Org. Chem., 1999, 64, 4102-4110.
15. X.-J. Quan, Z.-H. Ren, Y.-Y. Wang and Z.-H. Guan, Org. Lett., 2014, 16, 5728-5731.

Cite this: DOI: 10.1039/c0xx00000x

Expedient Synthesis of Nitrovinyl Substituted Bicyclo[2.2.2]octenone Scaffolds

Shivangi Sharma, Ram Tilak Naganaboina and Rama Krishna Peddinti*

