This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Fe-Doped Anatase TiO$_2$/Carbon Composite as Anode with Superior Reversible Capacity for Lithium Storage

Yanqing Lai, Wenwen Liu, Jing Fang, Furong Qin, Mengran Wang, Fan Yu, Kai Zhang*

School of Metallurgy and Environment, Central South University, 932 Lushan South Road, Changsha 410083, PR China

* Corresponding author: chinamcsu@163.com (Kai Zhang)
Abstract: This paper reports an economic and effective wet chemistry process to prepare Fe-doped anatase TiO$_2$/carbon composite with excellent performance in lithium-ion batteries. The as-prepared materials possess large BET specific area and high conductivity, owing to the existence of iron and carbon, which is conducive to electrolyte permeation and in favor of accelerating the electrochemical kinetics. When used as anode materials for advanced lithium storage, it leads to much better electrochemical performance than the pure TiO$_2$, delivering an initial discharge capacity of 381.7 mA h g$^{-1}$ with a drop of less than 1% from the 2nd cycle to the 300th cycle at a high current density of 10 C (1 C = 170 mA g$^{-1}$).

Keywords: Fe doped; Anatase TiO$_2$; Carbon composite; Lithium storage
Introduction

In order to meet the demands of various types of future portable electronic devices, essential efforts have been made to develop advanced lithium ion batteries (LIBs) in the past few years. Graphite as the most common anode materials have been widely applied in commercial LIBs. However, it is easy to form lithium dendrite and thermally instable of solid-electrolyte interphase (SEI) film because of its low operating voltage (below 0.2 V vs Li/Li$^+$), thus causing safety hazards and capacity fading.

In this regard, TiO$_2$ has received considerable attention as a replaceable anode material for graphite, due to its unique features, including low cost, environmental benignity, small volume change (< 4%), good cycling stability and high discharge voltage plateau (above 0.8 V vs Li/Li$^+$). Different kinds of polymorphs of titania such as anatase, rutile and TiO$_2$ (B) have recently been investigated as anode materials for LIBs. Among the three common crystal forms of TiO$_2$, anatase is the most extensively studied, because of its stable crystal phase of nanometer dimensions. Nevertheless, it presents poor ionic and electrical conductivity, which will limit its real performance in LIBs. More seriously, anatase TiO$_2$ offers a low theoretical capacity of 170 mA h g$^{-1}$, which directly affects its commercial application.
So as to address the above issues, researchers have taken a myriad of effective strategies. The most popular way is to tune the shape at the nanoscale (hollow sphere, nanotube, nanosheet, etc), because these morphologies with higher specific surface areas can support more active surface sites compared with solid counterparts. Another widely-used measure is to incorporate with secondary phase, such as graphene, Ag, iron oxide and NiO, owing to their superior electronic conductivity or higher theoretical capacity. However, it is typically difficult to provide a durable and homogeneous electron transport path that blankets the entire surface of the particles. Moreover, these methods always require too many sophisticated processes to ensure materials uniformity and integrity. Recently, heterogeneous element doping (B, C, Fe, F etc) has also aroused increasing interests in the field of LIBs, and it has been confirmed to exhibit improved capacity and rate capability. Substitutional doping of TiO₂ presents a quite challenging obstacle in thermodynamic solubility on account of low solubility for most dopants. Only when most of them are located in desirable position, may it be helpful for providing mobile charge carriers. Taking these reasons into consideration, combining the merits of carbon and doping, such as fluorine-doped carbon coated mesoporous TiO₂ and N-doped TiO₂ nanorods decorated with carbon dots, has been reported. The researches also show that, to a great degree, it is indeed possible to
improve the electrochemical properties of lithium-ion batteries. Specifically, Ji et.al. 29 have demonstrated that carbon dots supported upon N-doped TiO\textsubscript{2} nanorods can sustain a capacity of 185 mA h g-1 with 91.6\% retention even at a high rate of 3350 mA g-1 over 1000 cycles. To the best of our knowledge, so far, Fe-doped anatase TiO\textsubscript{2}/carbon composites have not been used as anode materials in LIBs.

Herein, we report a wet chemistry process to obtain Fe-doped anatase TiO\textsubscript{2}/carbon composite (FC-TiO\textsubscript{2}) with high rate capability for the high power application of LIBs, where substitutional Fe atoms for lattice Ti, locate in the bulk and the surface layer of the crystals. Meanwhile, the remaining of carbon decorates on the composites. The doping of iron could not only restrain the growth of TiO\textsubscript{2} crystallite so that form tiny particles, but also largely narrow the band gap, thus enhancing the conductivity of TiO\textsubscript{2}. Additionally, the carbon in the FC-TiO\textsubscript{2} can support a conductive secondary phase. Based on these improvements, the FC-TiO\textsubscript{2} micro-materials display excellent electrochemical performances, such as a high capacity around 222.4 mA h g-1 at the current rate of 3 C and a reversible capacity over 158 mA h g-1 after 300 cycles at the heavy current rate of 10 C.

Experimental section
Materials and synthesis

The synthesis of Fe-doped anatase TiO$_2$/carbon composite was accomplished via a wet chemistry process, which involves hydrolysis of tetrabutyl titanate (TBT) in a mixture of ethylene glycol and FeCl$_3$·6H$_2$O, followed by heating at 500 °C (Fig 1). Typically, 50 mL of ethylene glycol and 0.48 g of FeCl$_3$·6H$_2$O were well blended in a beaker, and then 5 mL of TBT was added to the well-distributed yellow solution with vigorous mechanical stirring. Afterward, it was transferred into an electric oven and heated at 180 °C for 5 h. When it cooled to room temperature, the yellow precipitate was collected and rinsed with anhydrous alcohol several times until the filtrate turned colorless and clear. After being dried at 70 °C in a conventional oven for 12 h, one portion of the as-prepared sample was calcined in a tube furnace at 500 °C for 2 h under an air atmosphere, which was aimed to remove carbon element. The sample was signed as F-TiO$_2$. Meanwhile, the residual was heated under an argon atmosphere, while the temperature and time kept the same, labeled as FC-TiO$_2$. As comparison, the TiO$_2$/carbon composite (C-TiO$_2$) and pure TiO$_2$ were also been prepared under otherwise identical conditions, just without FeCl$_3$·6H$_2$O as additive.
Sample characterization

The morphological analyses were characterized by a scanning electron microscope (SEM, JEOL, JSM-5612LV) and STEM (Tecnai G2 F20). The as-prepared specimens were characterized by X-ray diffraction (XRD, Rigaku3014) which were made with Cu Kα radiation. X-ray photoelectron spectroscopy (XPS, ESCA LAB 250Xi) was utilized to analyze the chemical state in the FC-TiO₂ material. N₂ adsorption–desorption (Micrometrics ASAP 2020) measurements were employed to investigate the textural properties. The surface area and the pore size distribution was analyzed by the Brunauer–Emmett–Teller (BET) and the Barrett–Joyner–Halenda (BJH) method, respectively. The carbon content in the FC-TiO₂ composite was measured by high frequency infrared ray carbon sulphur analyser (CS-600, US) and thermo-gravimetric analysis (TGA, SDT Q600). Inductively coupled plasma-atomic emission spectrometer (ICP-AES, Thermo Electron corporation, US) was conducted in determining the concentration of iron.

Electrochemical Measurements

The electrochemical performances were carried out in CR2025 coin-type cells with a lithium plate serving as the counter and reference electrode. The
working electrodes were prepared by casting the homogeneous slurry in which the obtained samples were mixed with super-P and polyvinylidene fluoride (PVDF) at a weight ratio of 70:20:10 in N-methyl pyrrolidinone (NMP) on the copper foil current collector. The electrodes were dried under vacuum at 60 °C overnight and then pressed into disks (10 mm, diameter). The cells were assembled in a dry and high-purity argon-filled glove box, employing 1 M LiPF$_6$ in ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC) with a volume ratio of 1:1:1 as electrolyte and celgard-2400 as separator. Galvanostatic testing was carried out with LAND battery circler over the voltage range of 3.0 to 0.01 V (vs. Li$^+$/Li). Cyclic voltammetry (CV) tests were recorded at a scan rate of 0.02 mV S$^{-1}$ in the voltage range from 0.01 to 3.0 V. The electrochemical impedance spectroscopy (EIS) measurements were conducted using PARSTAT 2273 electrochemical measurement system, and they were carried out at opencircuit potential by applying an AC voltage of 5 mV amplitude in the 0.01 Hz–100 kHz frequency range. All these tests were operated in the room temperature (25°C).

Results and discussion

The morphologies of pure TiO$_2$ and modified TiO$_2$ powders are shown in **Fig 2. Fig 2a-2d** display the SEM images of the whole as-prepared
samples. It is obvious that all of them possess similar micro-structures that looks like irregular prism structure. After being modified by carbon and iron, the length and width of the prism slightly decreased. From the TEM images of FC-TiO$_2$ (Fig 2e), many pores can be found.

In order to ulteriorly confirm the specific surface area of all the materials and the diameter of these pores, the N$_2$ adsorption–desorption isotherm curves (Fig 3) of all the specimen have been investigated. It can be clearly showed from the images that they show a well-defined adsorption step and exhibit a typical type-IV isotherm, which is aimed at determining the BET surface area (Fig 3a) and BJH pore size distribution (Fig 3b). Apparently, all of them represent the mesoporous characteristics. The F-TiO$_2$ has the highest BET specific surface area of 66.07 m2 g$^{-1}$, which is almost 1.8 times higher than that of pure TiO$_2$ samples of 38.02 m2 g$^{-1}$. After the F-TiO$_2$ and the pure TiO$_2$ samples being modified by carbon, their BET specific surface area has a little decline, about 52.27 m2 g$^{-1}$ for FC-TiO$_2$ and 27.66 m2 g$^{-1}$ for C-TiO$_2$. As it can be seen from the BJH pore size distribution (Fig 3b), all of them display an unimodal peak. With the exception of the C-TiO$_2$, the majority of pores of other three samples is around 5-15 nm. This may be ascribed that when the pure TiO$_2$ is modified by carbon, a part of carbon will cover the inside of the mesoporous, thus decreasing the pore size and the specific surface area.
As shown in Fig 2f, thermo gravimetric analysis (TGA) was performed to investigate the accurate carbon content in the FC-TiO₂ composite. The TGA curve depicts the rate of weight of the FC-TiO₂ composite under air atmosphere. On the basis of TGA curve, three thermal events can be observed. The first 8.58% mass loss below 300 °C is contributed to the evaporation of residual ethanol and moisture. With the temperature further increasing, the second 14.56% mass loss in the range from 300 to 450 °C is assigned to the oxidation of carbon which is coated on the surface of the FC-TiO₂ composite. The last 1.8% mass loss between 600 and 800 °C could correspond to the oxidation of residual carbon forming a Ti-O-C structure, which agrees with the XPS spectrogram (Fig 4c). However, iron and titanium will be oxidized in the air, thus making the weight of the material increase, which means the carbon content measured by TGA is a little higher than the actual weight. Therefore, high frequency infrared ray carbon sulphur analyser (CS600) is used to investigate the accurate carbon content. According to the result, 13.34 wt% carbon is found in the composite. Moreover, according to the ICP result, it reveals that there is only 0.18 wt% iron in the composite. Therefore, more than 85 wt% is titanium and oxygen.

Fig 4a shows the XRD patterns of the whole samples, revealing that the TiO₂ crystals are indexed to an anatase phase (JCPDS no. 21-1272),
except for C-TiO$_2$. It is obvious that the peak of C-TiO$_2$ is too broad to identify the phases correctly, but they are strikingly similar to the poor crystalline carbon30. Moreover, there is no reflection corresponding to titanium oxide seeing in the XRD pattern because of the loss of crystallinity or formation of amorphous structures during pyrolysis. Additionally, for pure TiO$_2$ samples, there is a small peak at 27.4° which is from rutile phase. But for other modified samples, the peak disappears. These evidences imply that the crystalline phase slightly changes during the recombination process. Further observation shows that, in contrast to pure TiO$_2$, the XRD peak intensities of the FC-TiO$_2$ anatase steadily become weaker and the width of the XRD diffraction peaks of the FC-TiO$_2$ anatase becomes slightly wider, indicating that the smaller TiO$_2$ crystallites has formed and the degree of crystallinity has decreased31. This is ascribed to the facts that Fe substitution not only lowers the crystallization of TiO$_2$ but also slightly restrains the growth of TiO$_2$ crystallite32.

In order to determine the composition and identify the chemical states of FC-TiO$_2$, X-ray photoelectron spectroscopy (XPS) analysis was also carried out. The high resolution XPS results are shown in Fig 4b-f. From the XPS survey spectra of FC-TiO$_2$ (Fig 4b), Ti, O, Fe, and C are easily found on the surface of the composite, which together with XRD (Fig 4a) and the
corresponding energy-dispersive X-ray spectroscopy (EDS) mapping (Fig 5) confirmed that the Fe, C atoms are uniformly dispersed inside the TiO$_2$ micro particles. The carbon state in FC-TiO$_2$ was assessed by C 1s core levels, in which the C 1s peaks can be fitted as three peaks at binding energies of 284.6, 285.1 and 289 eV, as shown in Fig 5C. The first two value are assigned to adventitious carbon contamination, which cannot be eliminated33. While the last one implies the presence of C–O bonds34, and the data reveals that the carbon may be incorporated into the interstitial positions of the TiO$_2$ lattice33 or substitute for some of the lattice atoms35,36 and form a Ti-O-C structure, which is well consistent with the TGA curve.

Fig 4d presents the O 1s XPS spectra of FC-TiO$_2$. One accurate peak of O 1s is located at about 530.4 eV, whose energy is equal to the O 1s electron binding energy for TiO$_2$, corresponding to lattice oxygen of TiO$_2$37. Two peaks of Ti 2p3/2 and Ti 2p1/2 at 459.3 eV and 464.9 eV with better symmetry are shown in the high-resolution XPS spectrum (Fig 4e), which are assigned to the lattice titanium in TiO$_2$38. Between these two peaks, there is a separation distance about 5.6 eV, which agrees well with the energy reported for TiO$_2$39. On account of the low doping level, the Fe signals are quite weak. These results can be easily found in the higher solution XPS spectra of the Fe 2p3/2 region (Fig 4f). However, there is still a obvious peak located at 714.4 eV. It can be ascribed to Fe$^{3+}$ ion40. It is
clear that this is not because of Fe$^{3+}$ in Fe$_2$O$_3$ (at 715.7 eV) \(^\text{41}\), but because of the FeCl$_3$$\cdot$6H$_2$O dopant. Since the radius of Fe$^{3+}$ is similar with Ti$^{4+}$, the Fe$^{3+}$ could be incorporated into the lattice of TiO$_2$, forming Ti–O–Fe bonds in the FC-TiO$_2$ micro-particles after calcination \(^\text{31}\).

Various preliminary electrochemical characterizations of the as-synthesized FC-TiO$_2$ particles with respect to Li insertion/extraction were carried out to evaluate potential applicability in the lithium storage. The insertion and extraction of lithium to and from the anatase lattice proceeds according to the equation:

$$\text{TiO}_2 + n\text{Li}^+ + n\text{e}^- \leftrightarrow \text{Li}_n\text{TiO}_2$$

When n equals 1, the theoretical capacity of TiO$_2$ will obtain 336 mA h g$^{-1}$. In general, the insertion coefficient n is close to 0.5 in anatase at a slower charge/discharge process \(^\text{42}\). It is described by the space group \(I4_1/amd\) that the anatase phase has a tetragonal structure \(^\text{43}\). A Ti ion is surrounded by a distorted oxygen octahedron. Between these octahedrons, there are plenty of vacant octahedral and tetrahedral sites in which Li$^+$ ions are accommodated. Moreover, it is worth noting that it will result in a phase transition from a Li-poor (tetragonal) phase to a Li-rich (orthorhombic, cubic spinel, cubic rocksalt, etc.) phase with Li-ion insertion \(^\text{44}\).
Fig 6a highlights the typical charge/discharge voltage profiles of the FC-TiO₂ electrode for the 1st, 2nd, 3rd and 50th cycles at a current rate of 3 C between 0.01 and 3.0 V. As a result, although a high capacity of 486.4 mA h g⁻¹ (corresponding to an n-value of 1.45) can be delivered in the initial discharge, the corresponding charge capacity is only 199.3 mA h g⁻¹. In the comparative experiment, the pure TiO₂ has a lower capacity of 364 mA h g⁻¹ in the first discharge with the corresponding charge capacity of 122.8 mA h g⁻¹ (Fig 6b). The large capacity loss in the initial cycle may mainly result from the interfacial reaction between TiO₂ and the electrolyte, which is common to most lithium intercalation hosts. Moreover, the irreversible capacity decay may reflect the poor intrinsic conductivity of TiO₂. Upon lithium extraction, the surface region of TiO₂ will become highly insulating. Noting that the initial coulombic efficiency of FC-TiO₂ (40.97%) is higher than that of pure TiO₂ (33.74%), the fact could attribute to the carbon decorated on the surface of TiO₂. On one hand, it can reduce the conduct areas between TiO₂ and electrolyte to decrease the irreversible side effects. On the other hand, it can improve the conductivity of TiO₂, thus increasing the extent of the reverse reaction in the initial charge process. Fortunately, from the second cycle, the charge/discharge curves are almost identical, suggesting that the electrochemical process is stable during the lithium-insertion/extraction reactions. Fig 6c and 6d show the cyclic
voltammograms (CV) of FC-TiO$_2$ and TiO$_2$ electrodes measured at a scanning rate of 0.02 mV s$^{-1}$ for the first two scans. Obviously, in each scan there is one apparent single pair of sharp cathodic/anodic peaks for Li-ion intercalation/deintercalation processes on the CV plots of both the two samples48. They are located at ~1.6 and ~2.1 V for pure TiO$_2$, ~1.7 and ~1.95 V for FC-TiO$_2$, respectively. It is clear that the separation between reduction and oxidation peaks (ΔV) of FC-TiO$_2$ markedly decreases in contrast to that of the pure TiO$_2$, which means the existence of iron and carbon can reduce the polarization of the anode/electrolyte interface in Li-ion batteries and leads to a better charge/discharge reversibility of TiO$_2$.43 On the other hand, it also exhibits a small irreversible capacity and relatively little difference between the first and the second scans, implying that this electrode possesses excellent cycling stability and reversibility.

The electrochemical properties of modified and pure TiO$_2$ were investigated in lithium half-cells. As shown in Fig 7, all the modified samples shows higher performance than that of pure TiO$_2$, with the FC-TiO$_2$ specimen possessing the highest specific capacity and the best cycling performance. Clearly, Fig 7a exhibits the cycling performance of all the obtained samples at a constant current density of 3 C. After 50 cycles, a preponderant cyclic retention of FC-TiO$_2$ with perfect reversible capacity of
222.8 mA h g\(^{-1}\) is significantly higher than that of C-TiO\(_2\) and F-TiO\(_2\) (135.4 and 124.6 mA h g\(^{-1}\), respectively), even twice larger than that of TiO\(_2\) (103.4 mA h g\(^{-1}\)). More importantly, its coulombic efficiency approaches almost 100% after first several cycles. This outcome shows that when TiO\(_2\) is only modified by carbon or doped with iron followed by using as anode for LIBs, the electrochemical performance of them has a little improved. In addition, comparing with the pure TiO\(_2\) sample, the FC-TiO\(_2\) sample demonstrates more outstanding capacity retention of 158.6 mA h g\(^{-1}\) at a heavy current rate of 10 C after a long-term cycling performance of 300 cycles, with an irreversible capacity loss of less than 1% after the second cycle (Fig 8a), which is at a relatively high level by comparing with those of the reported anode materials. The details are described in the Table 1. The results can be attribute to relatively high surface area, which is conducive to electrolyte permeation and in favor with accelerating the electrochemical kinetics. Furthermore, the FC-TiO\(_2\) also exhibits excellent rate capability at charge/discharge current rates ranging from 1 to 20 C, as shown in Fig 7b. High capacities of 306.1, 234.2, 208.1, 165.1, 124.6 and 95.5 mA h g\(^{-1}\) can be delivered at current rates of 1, 2, 3, 5, 10 and 20 C, respectively, which is the highest among all the samples. More importantly, a stable high discharge capacity of 208.6 mA h g\(^{-1}\) can be attained when the current density is switched back to 3 C. These results explicitly testify the excellent lithium
storage performances of FC-TiO$_2$ in terms of long cycle life and a good rate
capability for the fast charging/discharging process. In brief, comparing with
pure TiO$_2$, more outstanding electrochemical performance of the as-prepared
FC-TiO$_2$ as anode materials for LIBs can be ascribed to several perspectives.
First, the smaller impedance can be favor with accelerating the
electrochemical kinetics. Second, the higher BET specific surface provides
enough surface sites and electrolyte/electrode interface, which ensures a
better penetration of electrolyte so that it is helpful to lower current densities
at the electrode/electrolyte interface. Additionally, the more porous structure
can shorten the transmission distance of Li$^+$, thus speeding up the rate of
lithium insertion and extraction. All these features can explain why FC-TiO$_2$
provides improved electrochemical process and offers high specific capacity
especially at high current rates.

To further verify the improved electrochemical performance of
FC-TiO$_2$ micro particles, electrochemical impedance spectroscopy (EIS) was
carried out for the FC-TiO$_2$ and pure TiO$_2$ cathodes before cycling with
frequency from 0.01 Hz to 100 kHz, and both of the ac impedance spectrums
are illustrated in Fig 8b. As it can be seen, the Nyquist plots of both
electrodes are characteristic of a semicircle at high frequency, corresponding
to the absence of a SEI layer on the electrode surface, as well as an inclined
line in the low frequency region, reflecting the solid-state diffusion of Li-ions within the electrode24. Apparently, the charge-transfer resistance of FC-TiO\(_2\) electrode is lower than that of pure TiO\(_2\) electrode, it can be ascribed to the existence of iron25 and carbon49 in the TiO\(_2\) micro-particles.

Conclusions

In summary, Fe-doped anatase TiO\(_2\)/carbon composite with superior reversible capacity has been successfully synthetized by a facile and economic wet chemistry process. Compared with pure TiO\(_2\), the as-prepared FC-TiO\(_2\) not only provides with a large BET specific surface area and a high pore volume, but also it possesses improved conductivity. As an anode material for advanced lithium storage, it exhibits high capacity and good capacity retention. This great improvement is attributed to the optimization of the material design in the composition, which can advance the commercial use of TiO\(_2\) anode materials.

Acknowledgments

The research leading to these results has received funding from the China Postdoctoral Science Foundation funded project (2015M570685) and National Natural Science Foundation of China (Grant no. 51404304), Natural Science Foundation of Hunan Province (14JJ2001). The authors also
thank the Fundamental Research Funds for the Central Universities of Central South University (2015zzts186) and other supports from the Engineering Research Centre of Advanced Battery Materials, the Ministry of Education, China.

References

42. X. D. Sun, C. L. Ma, Y. D. Wang and H. D. Li, Nanotechnology, 2004, 15, 1535.

Fig 1. Illustration of the synthesis processes for FC-TiO$_2$.

Fig 2. SEM images of (a) FC-TiO$_2$, (b) C-TiO$_2$, (c) F-TiO$_2$, (d) TiO$_2$ and (e) TEM image of FC-TiO$_2$; (f) TGA curve recorded for the FC-TiO$_2$ composite under air flow.
Fig 3. (a) Nitrogen adsorption and desorption isotherm and (b) pore size distribution of the whole pure and modified TiO$_2$.

Fig 4. (a) Room temperature powder X-ray diffraction patterns of pure and modified TiO$_2$ micro-spheres. R: rutile. X-ray photoelectron spectroscopy (XPS) spectra of FC-TiO$_2$: (b) survey; (c) C 1s peaks; (d) O 1s peaks; (e) Ti 2p peaks and (f) Fe 2p peaks.
Fig 5. (a) ADF-STEM image of the FC-TiO₂ and the corresponding elemental mapping for (b) carbon, (c) titanium, (d) iron and (e) oxygen.

Fig 6. Discharge-charge voltage profiles of the FC-TiO₂ (a) and TiO₂ (b) electrodes for the 1ˢᵗ, 2ⁿᵈ, 3ʳᵈ and 5₀ᵗʰ cycles at a current rate of 3 C between 0.01 and 3.0 V. Cyclic voltammetries (CVs) of the FC-TiO₂ (c) and TiO₂ (d) electrodes at a scan rate of 0.02 mV s⁻¹ for the first two scans.
Fig 7. (a) Cycling performance (discharge capacities) at the current rate of 3 C between 0.01 and 3.0 V. (b) Cycling performance (discharge capacities) at various charge–discharge current rates of pure and modified TiO$_2$ between 0.01 and 3.0 V.

Fig 8. (a) Long-term cycling performance at the heavy current rate of 10 C between 0.01 and 3.0 V. (b) Electrochemical impedance spectra (EIS) of the FC-TiO$_2$ and TiO$_2$ electrodes.
Table 1. The comparison of different doped TiO$_2$ as anode for LIBs.

<table>
<thead>
<tr>
<th>Anode</th>
<th>Current density (mA g$^{-1}$)</th>
<th>Cycle Number</th>
<th>Capacity (mA h g$^{-1}$)</th>
<th>Rs (year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N doped TiO$_2$</td>
<td>33.6</td>
<td>100</td>
<td>180.7</td>
<td>4 (2014)</td>
</tr>
<tr>
<td>Mesoporous TiO$_2$/Graphene/Mesoporous TiO$_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>graphene@mesoporous TiO$_2$ nanocrystals@carbon nanosheets</td>
<td>200</td>
<td>100</td>
<td>110</td>
<td>17(2015)</td>
</tr>
<tr>
<td>B doped TiO$_2$</td>
<td>1680</td>
<td>300</td>
<td>119.4</td>
<td>23 (2014)</td>
</tr>
<tr>
<td>C doped TiO$_2$</td>
<td>70</td>
<td>30</td>
<td>211</td>
<td>24 (2008)</td>
</tr>
<tr>
<td>Fe doped TiO$_2$</td>
<td>56</td>
<td>100</td>
<td>170</td>
<td>25 (2014)</td>
</tr>
<tr>
<td>F doped TiO$_2$</td>
<td>85</td>
<td>100</td>
<td>157</td>
<td>26 (2009)</td>
</tr>
<tr>
<td>F doped carbon coated mesoporous TiO$_2$</td>
<td>84</td>
<td>100</td>
<td>210</td>
<td>28 (2015)</td>
</tr>
<tr>
<td>Carbon dots supported upon N doped TiO$_2$ nanorods</td>
<td>3350</td>
<td>1000</td>
<td>185</td>
<td>29 (2015)</td>
</tr>
<tr>
<td>Nb doped TiO$_2$</td>
<td>16.75</td>
<td>—</td>
<td>140</td>
<td>50 (2013)</td>
</tr>
<tr>
<td>Sn doped TiO$_2$</td>
<td>84</td>
<td>80</td>
<td>252.5</td>
<td>51 (2013)</td>
</tr>
<tr>
<td>Sn doped TiO$_2$</td>
<td>382</td>
<td>500</td>
<td>240</td>
<td>52 (2015)</td>
</tr>
<tr>
<td>Carbon/Fe doped anatase TiO$_2$ Composite</td>
<td>1700/510</td>
<td>300/50</td>
<td>158.6/222.4</td>
<td>In this article</td>
</tr>
</tbody>
</table>

In this article