This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Expeditious, catalyst-free, three-component synthesis of fused tetrahydropyridines in water

Perumal Vinoth, a P. S. Ram Prasad, a Thavaraj Vivekanand, a C. Uma Maheswari, a Subbiah Nagarajan, b J. Carlos Menéndez b and Vellaisamy Sridharan a

A catalyst-free, three-component reaction between amino alcohols, 1,3-dicarbonyl compounds and α,β-unsaturated aldehydes was developed for the synthesis of fused tetrahydropyridines in water. The β-enaminone formation-initiated domino sequence afforded oxazolo[3,2-a]pyridines and pyrido[2,1-b][1,3]oxazines diastereoselectively in good yields involving Michael addition, intramolecular cyclization and iminium ion cyclization steps. This environmentally benign protocol is highly atom-economical where the only side product was two molecules of water and no catalyst or reagent was employed. Besides, in a single operation, four new bonds including two C-N, one C-O and one C-C bonds and two heterocyclic rings were created. The reaction was also effective in various green solvents such as glycerol, PEG-200 and lactic acid.

Introduction

Reactions that create several bonds in a single operation to generate complex molecules are remarkably important in contemporary organic synthesis. Among the several families of reactions discovered, multicomponent reactions hold a prominent place in generating diverse products in one-pot. These multicomponent reactions contribute great extent to green chemistry owing to atom- and step-economy, waste reduction and high overall yields. Moreover, the number of steps of a synthetic sequence is significantly reduced and the purification of the intermediates is completely avoided in these reactions. The primary multicomponent reactions including Ugi, Hantzsch, Beginelli, Passerini, Povarov and Strecker reactions were generally found to be efficient to access biologically significant molecules including a large number of heterocyclic compounds. For instance, the simple and most common nitrogen heterocycles present in drug molecules, natural products and biologically active compounds including pyroles, pyridines, and their benz-fused analogs such as indoles and quinolines were conveniently synthesized by means of multicomponent reactions.

Pyridines and their partially hydrogenated analogs including dihydro- and tetrahydropyridines are ubiquitous heterocyclic fragments of natural products and bioactive compounds. A large number of natural compounds exemplified by vitamin B6, nicotine, and commercial drug molecules actos, nifedipine and felodipine contain this scaffold. Furthermore, these analogs exhibit numerous interesting biological activities such as anti-inflammatory, antidepressant, anticonvulsant, anti-asthmatic, calcium channel blocking activity and many others. Consequently the development of synthetic methods to access pyridines and their partially hydrogenated derivatives is an essential goal in organic synthesis. Especially, 1,2,3,4-tetrahydropyridines are significant owing to their unique pharmacological activities and their application in food chemistry.

Tetrahydropyridines fused with other heterocyclic fragments such as pyrido[2,1-b][1,3]oxazines and oxazolo[3,2-a]pyridines are known to show versatile pharmacological properties. For instance, pyrido[2,1-b][1,3]oxazines bear anti-inflammatory, spasmylic and antihypertensive activities, and oxazolo[3,2-a]pyridines displayed significant reversal of multi-drug resistance in Leishmania. In addition, oxazolo[3,2-a]pyridines are efficient antihypertensive and serve as excellent precursors to access chiral piperidine derivatives and alkaloids. Despite their significant bioactivity profile, methods allowing direct access to these fused tetrahydroquinolines remained scarce. Generally, oxazolo[3,2-a]pyridines had been achieved by the reaction between enamines and amino alcohols under reflux condition albeit in lower yields. Recently, Wan and co-workers have reported a three-component procedure starting from enals, electron-deficient alkynes and hydroxyl-functionalized amines under acidic conditions. Furthermore, a two-step, Michael addition-condensation sequence have also been developed for the synthesis of oxazolo[3,2-a]pyridines. Most of these two-component protocols suffer with the difficulties associated with the isolation and purification of the acid-sensitive and unstable enamines and low yields in addition to the restriction in the substitution patterns.

Results and Discussion

In view of the increasing importance of oxazolo[3,2-a]pyridines and pyrido[2,1-b][1,3]oxazines, we envisioned to develop a simple, three-component procedure starting from readily available 1,3-dicarbonyl compounds, cinnamaldehyde derivatives and amino alcohols in the absence of any catalyst to access these fused tetrahydroquinolines in a single operation. We have previously reported a four-component synthesis of 1,4,5,6-tetrahydropyridines in the presence of cerium(IV) ammonium nitrate catalyst and the application of this protocol was extended to access a number of heterocyclic systems. Herein, we further explore this methodology to access oxazolo[3,2-a]pyridines and pyrido[2,1-b][1,3]oxazines in water with the use of no catalyst. Lhommet and co-workers have also reported a related procedure restricted only to acrolein and with low yields. The combination of multicomponent technique, use of...
water or a green solvent as the reaction medium and involvement of no reagent or catalyst would be the ideal strategy to develop perfect green synthetic procedure that would address most of the twelve principles of green chemistry.\(^2\)

Our study commenced with a three-component reaction between ethanalamine 1a, ethyl acetoacetate 2a and cinnamaldehyde 3a in the presence of 5 mol% of CAN\(^\text{2+}\) in water and the results are summarized in Table 1. Expectedly, the reaction proceeded smoothly to afford product 4a as a single diastereomer in 69% yield at 25 °C in a span of two hours reaction time, and change of catalyst to InCl\(_3\) did not improve the yield significantly (entries 1 and 2). To our delight, the catalyst-free condition was superior in water to the previous reactions furnishing a maximum yield of 75% (entry 3). With an aim to improve the yield, in the absence of any catalyst, we tuned the reaction condition by increasing the reaction time and temperature (entries 4-6). Nonetheless, no significant improvement in yield was noticed although the reaction was completed in one hour at 80 °C. Other modifications including the increase of the quantity of the reaction medium or use of 1.5 equivalents of amino alcohol 1a were found to improve the yield further. In fact, use of large amount of water as reaction medium suppressed the yield to 66% (entries 7 and 8). Screening of other green solvents including glycerol, PEG-200 and lactic acid were also effective to provide the product. In all the three solvents, the reaction was completed in two hours, however, with almost identical yields of the previous conditions (entries 9-11). In a screen of solvents, we investigated a number of common organic solvents such as ethanol, acetonitrile, THF, DCM, DCE, toluene and dioxane (entries 12-18). Although the product was obtained in all the tested solvents, acetonitrile, DCM and DCE were superior affording around 80% of the product without any catalyst. Finally, we retained water as the reaction medium for its environmentally benign nature and other well-known benefits. No significant change in yield was observed when 3-propanolamine was used as the substrate under optimized reaction conditions (entries 19 and 20).

With the optimal reaction conditions in hand, we investigated the scope and limitations of the methodology. At the outset, the substituted cinnamaldehydes 3 bearing both electron-releasing and withdrawing groups were synthesized in good yields involving a Heck reaction between aryl halides and acrolein diethyl acetal in the presence of palladium acetate followed by acid-catalyzed deprotection.\(^2\)\(^6\) A number of 1,3-dicarbonyl compounds 2, and \(\alpha,\beta\)-unsaturated aryl aldehydes 3 were employed combining with ethanalamine 1a and 3-propanolamine 1b to access a variety of oxazolo[3,2-\(a\)]pyridines 4 and pyridino[2,1-\(b\)][1,3]oxazines 5 (Table 2). In most cases the products were obtained as a single trans diastereomer, however, in some cases small amounts (<10%) of the cis diastereomer was observed in the crude \(^1\)H-NMR spectra. Although ethyl and \(t\)-butyl acetoacetates afforded the products in good yields, ethyl benzoylacetate was found to be less efficient (62-65% yield, entry 7) and 2b. Besides \(\beta\)-ketoesters, 1,3-diketones were also effective furnishing the products in good yields (entries 8, 15 and 16). The reaction also tolerated alkylic substituents at C-2 position apart from methyl group (entries 5 and 14). Cinnamaldehyde derivatives bearing both electron-donating (Me, OMe) and withdrawing groups (F) afforded the corresponding products without significant change in their reactivities.

The observed trans diastereoselectivity of compounds 4 and 5 were unambiguously assigned with the help of \(^1\)H-NMR coupling constant values of a representative compound 4g. The \(H_a\), \(H_b\), \(H_c\), and \(H_d\) hydrogens of compound 4g appeared at 4.55 (dd, \(J = 10.2, 3.6\) Hz), 2.28 (ddd, \(J = 12.3, 3.6, 2.4\) Hz), 1.74 (ddd, \(J = 12.0, 10.2, 5.7\) Hz) and 4.32 (dd, \(J = 5.7, 2.4\) Hz) ppm respectively (Figure 1). The coupling constants of \(H_a\) confirmed its axial position owing to the presence of a diaxial coupling with hydrogen \(H_c\) (10.2 Hz) besides

![Figure 1. Trans diastereoselectivity assignment based on \(^1\)H-NMR coupling constants.](https://example.com/figure1.png)

\[4g: \text{trans} \quad (\text{Observed diastereoisomer}) \]

\[\begin{align*}
H_a & : 4.55 (\text{dd, } J = 10.2, 3.6\text{ Hz}) \\
H_b & : 4.32 (\text{dd, } J = 5.7, 2.4\text{ Hz}) \\
H_c & : 2.28 (\text{ddd, } J = 12.3, 3.6, 2.4\text{ Hz}) \\
H_d & : 1.74 (\text{ddd, } J = 12.0, 10.2, 5.7\text{ Hz}) \\
H_e & : 4.55 (\text{dd, } J = 10.2, 3.6\text{ Hz}) \\
H_f & : 4.32 (\text{dd, } J = 5.7, 2.4\text{ Hz})
\end{align*}\]

\[\begin{array}{c}
\text{4g: cis} \\
\end{array}\]

\[\begin{align*}
H_a & : 4.55 (\text{dd, } J = 10.2, 3.6\text{ Hz}) \\
H_b & : 4.32 (\text{dd, } J = 5.7, 2.4\text{ Hz}) \\
H_c & : 2.28 (\text{ddd, } J = 12.3, 3.6, 2.4\text{ Hz}) \\
H_d & : 1.74 (\text{ddd, } J = 12.0, 10.2, 5.7\text{ Hz}) \\
H_e & : 4.55 (\text{dd, } J = 10.2, 3.6\text{ Hz}) \\
H_f & : 4.32 (\text{dd, } J = 5.7, 2.4\text{ Hz})
\end{align*}\]

Table 1. Optimization of reaction conditions

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cpd</th>
<th>Reaction medium</th>
<th>Catalyst (5 mol%)</th>
<th>Temp. (°C)</th>
<th>Reaction time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4a</td>
<td>H(_2)O</td>
<td>-</td>
<td>25</td>
<td>2</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td>4a</td>
<td>H(_2)O</td>
<td>InCl(_3)</td>
<td>25</td>
<td>2</td>
<td>71</td>
</tr>
<tr>
<td>3</td>
<td>4a</td>
<td>H(_2)O</td>
<td>-</td>
<td>25</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>4a</td>
<td>H(_2)O</td>
<td>-</td>
<td>25</td>
<td>2</td>
<td>76</td>
</tr>
<tr>
<td>5</td>
<td>4a</td>
<td>H(_2)O</td>
<td>-</td>
<td>50</td>
<td>2</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>4a</td>
<td>H(_2)O</td>
<td>-</td>
<td>80</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>7</td>
<td>4a</td>
<td>H(_2)O</td>
<td>-</td>
<td>25</td>
<td>2</td>
<td>66</td>
</tr>
<tr>
<td>8</td>
<td>4a</td>
<td>H(_2)O</td>
<td>-</td>
<td>25</td>
<td>2</td>
<td>76</td>
</tr>
<tr>
<td>9</td>
<td>4a</td>
<td>Glycerol</td>
<td>-</td>
<td>25</td>
<td>2</td>
<td>70</td>
</tr>
<tr>
<td>10</td>
<td>4a</td>
<td>PEG-200</td>
<td>-</td>
<td>25</td>
<td>2</td>
<td>73</td>
</tr>
<tr>
<td>11</td>
<td>4a</td>
<td>Lactic acid</td>
<td>-</td>
<td>25</td>
<td>2</td>
<td>71</td>
</tr>
<tr>
<td>12</td>
<td>4a</td>
<td>EtOH</td>
<td>-</td>
<td>25</td>
<td>2</td>
<td>74</td>
</tr>
<tr>
<td>13</td>
<td>4a</td>
<td>MeCN</td>
<td>-</td>
<td>25</td>
<td>2</td>
<td>78</td>
</tr>
<tr>
<td>14</td>
<td>4a</td>
<td>THF</td>
<td>-</td>
<td>25</td>
<td>2</td>
<td>73</td>
</tr>
<tr>
<td>15</td>
<td>4a</td>
<td>DCM</td>
<td>-</td>
<td>25</td>
<td>5</td>
<td>79</td>
</tr>
<tr>
<td>16</td>
<td>4a</td>
<td>DCE</td>
<td>-</td>
<td>25</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>17</td>
<td>4a</td>
<td>Toluene</td>
<td>-</td>
<td>25</td>
<td>5</td>
<td>74</td>
</tr>
<tr>
<td>18</td>
<td>4a</td>
<td>Dioxane</td>
<td>-</td>
<td>25</td>
<td>5</td>
<td>76</td>
</tr>
<tr>
<td>19</td>
<td>5a</td>
<td>H(_2)O</td>
<td>InCl(_3)</td>
<td>25</td>
<td>2</td>
<td>71</td>
</tr>
<tr>
<td>20</td>
<td>5a</td>
<td>H(_2)O</td>
<td>InCl(_3)</td>
<td>25</td>
<td>2</td>
<td>68</td>
</tr>
</tbody>
</table>
Table 2. Scope and limitations of the methodology

<table>
<thead>
<tr>
<th>Entry</th>
<th>Product (4, 5)</th>
<th>Yield (%)<sup>b</sup></th>
<th>Entry</th>
<th>Product (4, 5)</th>
<th>Yield (%)<sup>b</sup></th>
<th>Entry</th>
<th>Product (4, 5)</th>
<th>Yield (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td></td>
<td></td>
<td>62</td>
<td></td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>83</td>
<td>8</td>
<td></td>
<td>61</td>
<td>14</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>80</td>
<td>9</td>
<td></td>
<td>73</td>
<td>15</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>73</td>
<td>10</td>
<td></td>
<td>77</td>
<td>16</td>
<td></td>
<td>74</td>
</tr>
</tbody>
</table>
Reaction conditions: unless otherwise noted, all reactions were carried out with 1 (1.3 mmol), 2 (1 mmol) and 3 (1 mmol) in 1 mL water for 2 h at 25 °C without any catalyst. Isolated yield.

We also investigated the possibility of utilizing o-aminophenols to access the benz-fused oxazolo[3,2-a]pyridines 12. However, in the reaction between o-aminophenols 10, ethyl acetoacetate 2a and cinnamaldehyde 3a under our optimized conditions the sole isolated product was imine 11 derived from compounds 10 and 3a (Scheme 2). Modifications of reactions conditions including temperature, solvent and use of Lewis acid catalyst were unsuccessful to obtain the expected product.

Scheme 2. Attempts to benz-fused oxazolo[3,2-a]pyridines

We have proposed a mechanism for the three-component reaction between amino alcohols 1, 1,3-dicarbonyl compounds 2 and α,β-unsaturated arylaldehydes 3 involving sequential enamine formation, Michael additions, intramolecular cyclization and intramolecular iminium ion cyclization steps. Initial reaction between amino alcohols 1 and 1,3-dicarbonyl compounds 2 affords the enamine intermediate A, which undergoes Michael addition with compounds 3 to furnish intermediate B generating the initial C-N and C-C bonds.21,22 Subsequent intramolecular cyclization followed by dehydration affords iminium ion D through the intermediacy of 6-hydroxy-1,4,5,6-tetrahydropyridine C with the second new C-N bond. Final intramolecular nucleophilic cyclization of species D provides oxazolo[3,2-a]pyridines 4 and pyrido[2,1-b][1,3]oxazines 5. The observed trans stereochemistry could be explained through the attack of the hydroxyl nucleophile in the iminium ion D' from the opposite side of the aryl substituent.20,19 Formation of product 5a in 76% yield starting from isolated enamine A.
derived from 3-propanolamine 1b and ethyl acetoacetate 2a, and cinnamaldehyde 3a under the optimized reaction conditions supports the enamine formation-initiated mechanism (Scheme 3).

Conclusions
In conclusion, we have developed an environmentally benign, three-component protocol for the synthesis of oxazolo[3,2-a]pyridines and pyrido[2,1-b][1,3]oxazines starting from readily available starting materials. The reaction between amino alcohols, 1,3-dicarbonyl compounds and α,β-unsaturated arylaldehydes in water and in the absence of any catalyst afforded the products in good yields. The reaction was found to be highly diastereoselective affording the trans products exclusively in most of the cases. This procedure is also highly atom- and step-economical since only two molecules of water were obtained as the side product, and two heterocyclic rings were constructed by creating four new bonds (one C-C, two C-N and one C-O) in a single operation. The reaction proceeded via a domino enamine formation, Michael addition, intramolecular cyclization and iminium ion cyclizations sequence.

Experimental
General
All reagents and solvents were purchased from commercial suppliers (Avra, Alfa Aesar, Sigma-Aldrich, CDH) and used without further purification. The reactions were monitored by thin-layer chromatography using Merck silica gel 60 F254 and visualized by UV detection or using p-anisaldehyde stain or molecular iodine. Melting points were recorded on a melting point apparatus in capillaries and are uncorrected. 1H- and 13C-NMR spectra were recorded in CDCl3 or DMSO-d6 at room temperature on a Bruker Avance 300 spectrometer operating at 300 MHz for 1H and 75 MHz for 13C. Chemical shifts (δ) are expressed in ppm using TMS as internal standard and coupling constants (J) are given in Hz. Infrared (IR) spectra were obtained in an Agilent Cary630 FTIR spectrometer with a diamond ATR accessory for solid and liquid samples, requiring no sample preparation and the major frequencies were reported in cm−1. Elemental analyses were determined at the CAI de Microanálisis Elemental, Universidad Complutense, by using a Leco 932 CHNS combustion microanalyzer.

To a stirred suspension of amino alcohol 1 (1.3 mmol) in water (1 mL) was added 1,3-dicarbonyl compound 2 (1.0 mmol) followed by α,β-unsaturated arylaldehyde 3 (1.0 mmol). The resulting mixture was allowed to stir at 25°C for 2 h. After completion of the reaction, as indicated by TLC, the reaction mixture was diluted with dichloromethane and then washed with water followed by brine. The organic layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was purified by silica column chromatography using pet ether-ethyl acetate mixture as eluent (90:10 v/v).

Characterization data for representative compounds:
Ethyl 5-methyl-7-phenyl-3,7,8a-tetrahydro-2H-oxazolo[3,2-a]pyridine-6-carboxylate (4a). Yellow viscous liquid; yield: 75%; IR (neat): 2932.2, 2844.2, 1681.3, 1553.8, 1287.0, 1118.2 cm−1; 1H NMR (300 MHz, CDCl3) δ 0.98 (t, J = 7.2 Hz, 3H, CH2CH3), 1.64-1.73 (m, 1H, Hc), 2.27-2.30 (dt, J = 12.6, 3.3 Hz, 1H, Hb), 2.59 (s, 3H, CH3), 3.52-3.63 (m, 2H, NCH2), 3.82-3.88 (m, 1H, OCH2CH2N), 3.94 (q, J = 7.2 Hz, 2H, OCH2CH3), 4.17-4.22 (m, 2H, OCH2CH2N & PhCH), 4.39 (dd, J = 10.5, 3.6 Hz, 1H, Hb), 7.11-7.17 (m, 3H, ArH), 7.22-7.26 (m, 2H, ArH); 13C NMR (75 MHz, CDCl3): δ 14.3 (CH3), 18.0 (CH3), 33.5 (PhCH).
38.1 (PhCH2), 46.3 (NCH3), 58.7 (COOCH2), 65.6 (OCH2), 84.5 (OCHN), 95.5 (C=CCOEt), 125.8 (ArCH), 127.5 (ArCH), 128.1 (ArCH), 146.5 (Ar-Quaternary), 152.5 (NC=CCOEt), 168.7 (CO). Anal. Calc. for C12H13NO3; C: 71.06; H: 7.37; N: 4.87. Found: C: 70.77; H: 7.28; N: 4.75.

Ethyl 5-methyl-7-p-tolyl-3,7,8a-tetrahydro-2H-oxazolo[3,2-a]pyridine-6-carboxylate (4b). Yellow viscous liquid; yield: 83%; IR (neat): 2954.1, 2866.8, 1670.1, 1567.9, 1420.9, 1290.9, 1123.5 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.94 (t, J = 7.2 Hz, 3H), 1.54-1.64 (m, 1H), 2.17 (dd, J = 12.0, 3.6, 2.4 Hz, 1H), 2.23 (s, 3H), 2.51 (s, 3H), 3.47-3.53 (m, 2H), 3.72-3.80 (m, 1H), 3.84-3.92 (m, 2H), 4.09-4.15 (m, 2H), 4.33 (dd, J = 10.5, 5.4 Hz, 1H), 6.94 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.4 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 14.3, 18.0, 21.0, 30.6, 37.6, 46.3, 58.7, 65.6, 84.6, 95.7, 127.4, 128.8, 135.2, 143.5, 152.2, 168.7. Anal. Calc. for C13H15NO3; C: 71.73; H: 7.69; N: 4.65. Found: C: 71.41; H: 7.61; N: 4.54.

Ethyl 7-(4-fluorophenyl)-5-methyl-3,7,8a-tetrahydro-2H-oxazolo[3,2-a]pyridine-6-carboxylate (4d). Yellow viscous liquid; yield: 73%; IR (neat): 2930.5, 2873.3, 1676.4, 1566.5, 1505.5, 1290.0, 1222.9, 1118.9 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.93 (t, J = 7.2 Hz, 3H), 1.58-1.65 (m, 1H), 2.16 (dd, J = 12.0, 3.6, 2.4 Hz, 1H), 2.51 (s, 3H), 3.48-3.54 (m, 2H), 3.74-3.92 (m, 3H) 4.11-4.15 (m, 2H), 4.30 (dd, J = 10.5, 3.6 Hz, 1H), 6.83-6.89 (m, 2H), 6.99-7.03 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 14.3, 18.0, 33.6, 37.4, 46.3, 58.8, 65.6, 84.3, 95.5, 114.8 (d, J = 21.0 Hz), 128.9 (d, J = 7.5 Hz), 142.2 (d, J = 3.0 Hz), 152.5, 161.2 (d, J = 241.5 Hz), 168.5. Anal. Calc. for C12H13FNO3; C: 66.87; H: 6.60; N: 4.49. Found: C: 66.59; H: 6.49; N: 4.45.

tert-Butyl 5-methyl-7-phenyl-3,7,8a-tetrahydro-2H-oxazolo[3,2-a]pyridine-6-carboxylate (4f). Colourless viscous liquid; yield: 82%; IR (neat): 2945.1, 2888.2, 1670.0, 1560.5, 1478.9, 1272.0, 1134.5 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.12 (s, 9H), 1.60-1.66 (m, 1H), 2.16 (dt, J = 12.0, 2.4 Hz, 1H), 2.48 (s, 3H), 3.46-3.55 (m, 2H), 3.74-3.82 (m, 1H), 4.07-4.15 (m, 2H), 4.34 (dd, J = 10.2, 3.3 Hz, 1H), 7.04-7.09 (m, 3H), 7.15-7.20 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 16.5, 26.9, 32.5, 37.5, 44.9, 64.3, 64.7, 68.3, 96.0, 124.4, 126.4, 126.7, 145.8, 150.2, 167.0. Anal. Calc. for C13H17NO3; C: 72.35; H: 7.99; N: 4.44. Found: C: 71.99; H: 7.84; N: 4.32.

Ethyl 6-methyl-8-phenyl-2,3,4,8,9,9a-hexahydropyrido[2,1-b][1,1]oxazin-7-yl]ethanone (5b). Pale yellow solid; yield: 65%; IR (neat): 2967.3, 2889.2, 1688.3, 1545.2, 1465.1, 1233.8, 1119.4 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.65 (t, J = 7.2 Hz, 3H), 1.25-1.30 (m, 1H), 1.72-1.85 (m, 1H), 2.14-2.22 (m, 1H), 2.26-2.35 (m, 1H), 2.79 (td, J = 12.9, 2.7 Hz, 1H), 3.20-3.25 (m, 1H), 3.64-3.69 (m, 3H), 4.04 (dd, J = 11.4, 4.8 Hz, 1H), 1.45 (t, J = 5.7 Hz, 1H), 4.42 (dd, J = 8.1, 4.2 Hz, 1H), 7.21-7.34 (m, 7H), 7.38-7.42 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 13.5, 26.0, 36.2, 37.2, 47.0, 58.9, 67.3, 84.0, 102.0, 126.0, 127.3, 127.9, 128.3, 128.8, 128.8, 137.5, 145.8, 154.4, 160.0. Anal. Calc. for C13H17NO3; C: 76.01; H: 6.93; N: 3.85. Found: C: 75.79; H: 6.89; N: 3.82.

Acknowledgements

Financial support from the Department of Science and Technology, DST (No. SB/FT/CS-006/2013) and the Council of Scientific and Industrial Research, CSIR (No. 02/019/14/EMR-II) is gratefully acknowledged. JCM acknowledges financial support from MICINN, grant CTQ2012-33272-BQ.

Notes and references

