

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	A study on	deactivation	of Cu-Zn-Al	catalyst	for	higher	alcohols
2	synthesis						

- 3 Yongjun Liu, Chaobo Liu, Xuan Deng, Wei Huang^{*}
- 4 Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province,
- 5 Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- 6 Corresponding author. Tel. /fax: +86 351 6018073
- 7 E-mail address: huangwei@tyut.edu.cn (W. Huang)

8 Abstract

9 Cu-Zn-Al catalyst without promoters, was prepared by complete liquid-phase method and tested 10 for a deactivation study in higher alcohols synthesis from syngas. Results showed that the selectivity of higher alcohols first increased from 36.0 % to 68.6 % then gradually decreased to 11 12 14.1 % with time on stream. Characterization results showed that Cu species and Zn species had 13 little changes whereas the phase of Al species changed after reaction. It was found that the Al 14 species of Cu-Zn-Al catalyst changed from AlOOH to Al₂O₃. The phase change weakened CO 15 dissociation and chain growth which led to the decrease of higher alcohols selectivity with time on 16 stream. It was suggested that AlOOH had the function of CO dissociation and chain growth, which 17 favored the formation of higher alcohols, whereas Al₂O₃ had no function of CO dissociation, 18 which caused the formation of methanol. 19

- 20
- 21

22 Key words: CO hydrogenation; Higher alcohols; Cu-Zn-Al catalyst; Deactivation;

23 **1. Introduction**

Higher alcohols have received considerable interest recently because of its potential as fuel and substitute for gasoline [1,2]. Currently, Cu-based catalysts for higher alcohols synthesis (HAS) from syngas are Cu-Co or Cu-Fe bimetallic catalysts and alkalis modified methanol synthesis catalysts [3-5]. On Cu-Co or Cu-Fe bimetallic catalysts, the Cu-X (X=F-T elements) center is thought to be the active site (dual site) for higher alcohol synthesis [6,7]. And alkalis is considered to play a key role in the synthesis of higher alcohols over alkalis modified methanol synthesis catalysts [5].

31 It is well known that Cu-Zn-Al catalysts are usually used to synthesize methanol from CO or 32 CO_2 hydrogenation [8,9]. Nonetheless, in our previous study, it was found that the selectivity of 33 ethanol over Cu-Zn-Al catalysts without promoters could reach an unexpected point, however, the 34 result is very difficult to reproduce [10]. At beginning, this novel phenomenon of ethanol 35 formation over Cu-Zn-Al catalysts without promoters is ascribed to the synergism of Cu⁰ and Cu⁺ 36 through experimental and theoretical studies [11,12]. But presently we have found that Al species 37 is also playing a key role in the formation of higher alcohols, not just as the role of a carrier in the 38 synthesis of methanol.

Therefore, in this paper, the Cu-Zn-Al catalyst without promoters was prepared by complete liquid-phase method and tested for a deactivation study in higher alcohols synthesis from syngas. To clarify the reason of catalyst deactivation, the structure of each metallic component of the catalyst was investigated before and after reaction. The correlation between the change of catalytic performance and the structural change was also discussed.

44 **2. Experimental**

\bigcirc
 _
C)
U)
0
Ā
U
1
×.
C)
1
V 7
()
O
Ě
YV.
>
Ο

45	2.1	Catalyst preparation
----	-----	----------------------

46	The Cu-Zn-Al slurry catalyst with the composition of Cu/Zn/Al= $2/1/0.8$ (atomic ratio) was
47	prepared by complete liquid-phase method. Typically, Aluminum isopropylate [(C ₃ H ₇ O) ₃ Al] was
48	dissolved in a mixture of deionized water with a certain amount of citric acid at 323 K and
49	maintained for 3 h, then the temperature was raised to 368 K and kept for 1 h. Next, the
50	$Cu(NO_3)_2 \cdot 3H_2O$ and $Zn(NO_3)_2 \cdot 6H_2O$ were dissolved in glycol and the mixture was slowly added
51	to the Al solution. The resulting Cu-Zn-Al solution was stirred at 368 K until a homogeneous sol
52	was obtained. The sol was aged at room temperature for 10 days to obtain a gel. At last, the gel
53	was dispersed in liquid paraffin, heated under $N_{\rm 2}$ atmosphere from 333 K to 573 K with a heating
54	rate of 5 K/min and kept for 8 h at 573 K. Then a slurry catalyst was subsequently obtained.
55	2.2 Catalyst characterization
56	The slurry catalyst was centrifuged, extracted by petroleum ether and dried at room temperature
57	before characterization.
58	Powder X-ray diffraction (XRD) patterns were recorded on a Rigaku D/MAX-2500
59	Diffractometer in a 20 range of 5-85°. Fourier transform infrared spectra (FTIR) were obtained on
60	an AVATAR 370 spectrometer. NH ₃ temperature-programmed desorption (NH ₃ -TPD-MS) were
61	performed to measure the basicity of the catalyst. ²⁷ Al-MAS-NMR measurements were performed
62	on a Bruker Avance DSX 500 spectrometer with a ²⁷ Al frequency of 130.4 MHz. Graphite furnace
63	atomic absorption spectrometry (GF AAS) were performed to quantify the composition of catalyst
64	formulation by SpectrAA-220 AAS equipment. X-ray photoelectron spectroscopy (XPS)
65	measurements were conducted using an ESCALAB 250 spectrometer. Thermogravimetric mass
66	spectrometry (TG-MS) analyses were performed by a Setaram SETSYS TGA coupled with a

RSC Advances Accepted Manuscript

67 hiden HPR20 QIC R&D mass spectrometry.

68 2.3 Catalytic activity test

69 CO hydrogenation to higher alcohols was carried out in a slurry reactor with a mechanical 70 magnetic agitator. The syngas (H₂/CO=2) was introduced into the reactor with a feed flow rate of 71 150 mL/min under 523 K, 4.5 MPa. The steady-state activity measurement was taken after at least 72 24 h on the stream. The gaseous products were analyzed online with a gas chromatograph 73 equipped with a flame ionization detector (FID) to detect gaseous hydrocarbons and a thermal 74 conductivity detector (TCD) to detect gaseous inorganic, respectively. The liquid products were 75 collected daily and analyzed offline using the gas chromatograph.

76 **3. Results and discussion**

77 *3.1. Catalytic performance*

78 The catalytic performance of Cu-Zn-Al catalyst for CO hydrogenation at 523 K with time on 79 stream (TOS) was listed in Table 1 and 2. CO conversion initially increased from 19.8 % at 24 h to 80 38.9 % at 48 h, then it gradually decreased to 32.0 % at 120 h with TOS. Meanwhile, the 81 selectivity of total alcohols first decreased from 31.4 % to 14.0 % at 72 h and then increased to 82 22.1 % at 120 h. Notably, the selectivity of dimethyl ether (DME) increased gradually with TOS, 83 and the selectivity of higher alcohols (C₂₊OH/ROH) increased from 36.0 % at 24 h to 68.6 % at 48 84 h and then gradually decreased to 14.1 % at 120 h. Moreover, the selectivity of CH_3OH and CH_4 85 first decreased and then increased overall, which illustrated that the functions of catalyst for CO 86 dissociation and propagation were weaken with TOS. The catalytic performance indicated that a 87 deactivation happened on Cu-Zn-Al catalyst in higher alcohols synthesis and the reason for the 88 catalyst deactivation would be clarified combining with the following characterization results.

89 *3.2. XRD analysis*

90	As discussed above, a deactivation happened on Cu-Zn-Al catalyst in the formation of higher
91	alcohols from the catalytic performance. It was speculated that some structural changes occurred
92	during the reaction. In order to confirm this speculation, the catalyst was subjected to analyse by
93	XRD, FT-IR, NH ₃ -TPD-MS, ²⁷ Al-MAS-NMR, XPS and TG-MS. Fig. 1 presented the XRD
94	patterns of Cu-Zn-Al catalyst before and after reaction (meant after 120 h reaction in the whole
95	manuscript). Only diffraction peaks of Cu^0 and ZnO could be detected, revealing that no new
96	species were formed during 120 h reaction. The XRD results illustrated that the structure of Cu
97	species or Zn species had little changes, which suggested that the deactivation of catalyst was not
98	caused by the structural changes of Cu species and Zn species.

99 3.3. FT-IR analysis

100 Since the low content of Al in the catalyst, the diffraction peaks of Al species could not be 101 detected by XRD. So the phases of Al species of Cu-Zn-Al catalyst before and after reaction 102 were confirmed by FT-IR. As indicated in Fig. 2a, all absorption bands at 3414, 1629, 1423, 1327, 1089, 939, 769, 586 cm⁻¹ were in agreement with the reported values of AlOOH, which 103 104 confirmed the formation of AlOOH [13,14]. The intensive bands at 3414, 1089 and 1327 cm⁻¹ 105 belonged to the vas (Al)O-H, vs Al-O-H and vas Al-O-H vibrations of AlOOH, respectively. The three strong bands at 939, 769, and 586 cm^{-1} were ascribed to the vibration mode of AlO₆. The 106 peak at 1423 cm⁻¹ corresponded to OH stretching vibrations. The shoulder at 1629 cm⁻¹ was the 107 108 feature of the bending mode of absorbed water. In Fig. 2b, the intensive bands at 688 and 540 cm^{-1} were ascribed to Al-O stretching vibrations, which was the principal feature of Al₂O₃ 109 110 [14,15]. The intensive band centered at 3434 cm⁻¹ and weak band at 1598 cm⁻¹ were attributed to

RSC Advances Accepted Manuscript

RSC Advances

111 the stretching vibrations of OH groups in the hydroxide structure as well as the physically 112 adsorbed water, respectively. All these facts confirmed that the phase of Al_2O_3 was obtained after 113 reaction. The FT-IR analysis illustrated that the structure of Al species had changed from AlOOH 114 to Al₂O₃ after 120 h reaction. 115 3.4. NH₃-TPD-MS analysis 116 Fig. 3 showed the NH₃-TPD-MS profiles of Cu-Zn-Al catalyst. As seen in Fig. 3, the amount of 117 weak acid decreased after 120 h reaction. Busca et al [16] reported that the dehydration of hydroxyl groups would induce some freed and defective Al^{3+} ions and then increase the density of 118 119 surface acid sites. This result indicated that the structure of Al species changed from AlOOH→ 120 Al₂O₃, which accompanied by the dehydration reaction: $2AlOOH \rightarrow Al_2O_3 + H_2O_2$. 121 3.5.²⁷Al-MAS-NMR analysis 122 Further evidence for the structural change of Al species before and after reaction could be obtained from the ²⁷Al-MAS-NMR spectra. Fig. 4 showed the ²⁷Al-MAS-NMR spectra of 123 124 Cu-Zn-Al catalyst before and after reaction. As seen in Fig. 4, the resonance at approximately +8 125 ppm corresponded to the octahedral AlO₆ site of AlOOH [17,18]. And the resonance at +65 ppm 126 was ascribed to the tetrahedral AlO₄ groups of Al₂O₃ [18]. This transformation in 27 Al NMR site

127 illustrated that a proportion of Al in the octahedral sites (AlOOH) had transformed to tetrahedral

128 sites (Al_2O_3) .

129 *3.6.* AAS analysis

In order to confirm that the deactivation of catalyst was not caused by the change of catalyst composition, the composition of Cu-Zn-Al catalyst was analyzed by GF AAS and the results were listed in table 3. As we described in the catalyst preparation, the atomic ratio of Cu:Zn:Al was kept

133	at 2:1:0.8 theoretically. However, from the GF AAS results, it was calculated that the atomic ratio
134	of Cu:Zn:Al was 1.8:1:0.3 before reaction and after reaction the atomic ratio of Cu:Zn:Al was
135	1.7:1:0.3. It could be seen that the composition of the catalyst before and after reaction was almost
136	unchanged, which indicated that the catalyst deactivation was not caused by the change of catalyst
137	composition. Since the slurry catalyst was centrifuged, extracted by petroleum ether, no matter
138	before reaction or after reaction, the aluminum concentration was lower than theoretical
139	composition, which might be the main reason why we could not detect either AlOOH or $\mathrm{Al}_2\mathrm{O}_3$
140	using XRD.
141	3.7. XPS analysis
142	In order to further confirm that the deactivation of catalyst was ascribed to the structural change
143	of Al species rather than the Cu species and Zn species, the Cu-Zn-Al catalyst before and after
144	reaction were analyzed by XPS and the binding energy (BE) of each component of the Cu-Zn-Al
145	catalyst before and after reaction were present in Table 4. As shown in Table 4, the $Cu2p_{3/2}$ BE
146	values were about 932.0 eV and no shake-up satellite peak between 940.0~945.0 eV (Fig. 5),
147	which indicated the absence of Cu^{2+} , and the $Zn2p_{3/2}$ BE values were less than 1022.0 eV which
148	could be assigned to ZnO [19, 20]. This was consistent with the XRD results. However, the Al $2p$
149	BE value before reaction was at 74.4 eV corresponding to Al-OH bonds, which was in agreement
150	with Al in AlOOH [21]. After reaction, the BE of Al2 p shifted to 73.7 eV corresponding to Al-O
151	bonds which was considered as Al_2O_3 [21].
152	3.8. TG-DTG analysis
153	Fig.6 presented the TG-DTG profiles of the Cu/Zn/Al catalyst before and after reaction. As

154 shown in Fig.6a, the thermal analysis of the Cu-Zn-Al catalyst showed four decomposition steps

155	before reaction. The first step at around 353 K was ascribed to desorption of physically adsorbed
156	water. The weak DTG step at about 563 K was responsible for the loss of layer structural water of
157	AlOOH. The strong step at about 713 K was attributed to the decomposition of AlOOH to $\gamma\text{-Al}_2\text{O}_3$
158	[22]. And the last step at about 1073 K was considered to be further conversion of γ -Al ₂ O ₃ to other
159	Al ₂ O ₃ . But after reaction, it could be found that the rate of weight loss decreased from DTG (curve
160	b), especially for the step of AlOOH to γ -Al ₂ O ₃ , which illustrated that a proportion of AlOOH had
161	converted to Al_2O_3 during reactions. Considering the reaction temperature was only 523 K, so
162	further studies were required to figure out what caused such structural change, which might be
163	beneficial to improve the stability of catalyst in the higher alcohols synthesis for our future work.
164	In order to direct prove that the formation of Al_2O_3 could deactivate the catalyst for the higher
165	alcohol synthesis. A Cu-ZnO-Al2O3 catalyst was prepared using Al2O3 as Al source and compared
166	it with the present study to investigate the formation of higher alcohols. The results were listed in
167	table 5 and 6. As seen in table 5 and 6, the selectivity of higher alcohols was only 7.2 %, which
168	was lower than that of the Cu-ZnO-AlOOH catalyst. This work further indicated that $\mathrm{Al}_2\mathrm{O}_3$ was
169	not beneficial to the formation of higher alcohols. In addition, F. Schüth [23] et al prepared ternary
170	Cu-ZnO-Al $_2O_3$ catalysts to obtain the greatest methanol synthesis activity. Wang [3] et al also
171	prepared a serious of alumina-supported copper-cobalt catalysts to investigate the formation of
172	higher alcohols, the results showed that methanol was the major product over monometallic
173	$Cu/\gamma Al_2O_{3.}$

174 It was widely accepted that a bi-functional (dual site) catalyst was required for higher alcohols 175 formation, on which one acted as CO non-dissociative adsorption and insertion, while the other 176 acted as CO dissociation and chain growth, the synergism between the dual site would benefit the

177	synthesis of higher alcohols [4,24,25]. In the stability study of this paper, the results showed that
178	the CO conversion and the selectivity of higher alcohols first increased at early stage and then
179	gradually decreased with time on stream, which was considered to be the structural change of
180	catalyst according to the characterization results. It could be speculated that AlOOH had the
181	function of CO dissociation and chain growth, which favored the formation of higher alcohols,
182	whereas Al_2O_3 had no function of CO dissociation. As a result, the main reason for the decrease of
183	higher alcohols selectivity was ascribed to the structural change of AlOOH \rightarrow Al ₂ O ₃ .
184	4. Conclusion
185	The deactivation process and the structural change of Cu-Zn-Al catalyst before and after

reaction were investigated. CO conversion and the selectivity of higher alcohols first increased at early stage and then gradually decreased with time on stream in HAS. During the reaction, a proportion of Al species of Cu-Zn-Al catalyst changed from AlOOH to Al₂O₃. Such structural change was the main reason for the deactivation of Cu-Zn-Al catalyst in the formation of higher alcohols. This result suggested that AlOOH had the function of CO dissociation and chain growth, which favored the formation of higher alcohols, whereas Al₂O₃ had no function of CO dissociation over Cu-Zn-Al catalyst without promoters.

193 Acknowledgements

This research was supported by Natural Science Foundation of China (21176167); the Key
Project of Natural Science Foundation of China (21336006); and the Doctoral Program of Higher
Education Priority Development Areas (20111402130002).

- 197 **Reference**
- 198 [1] J.J. Spivey and A. Egbebi, Chem. Soc. Rev. 2007, 36, 1514-1528.

RSC Advances Accepted Manuscript

- 199 [2] V. Subramani and S.K. Gangwal, Energy Fuels, 2008, 22, 814-839.
- 200 [3] J.J. Wang, P.A. Chernavskii, A.Y. Khodakov and Y. Wang, J. Catal., 2012, 286, 51-61.
- 201 [4] K. Xiao, Z.H. Bao, X.Z. Qi, X.X. Wang, L.S. Zhong, M.G. Lin, K.G. Fang and Y.H. Sun, Catal.
- 202 Commun., 2013, 40, 154-157.
- 203 [5] E. Heracleous, E.T. Liakakou, A.A. Lappas and A.A. Lemonidou, Appl. Catal. A: Gen. 2013,
- 455, 145-154.
- 205 [6] M. Gupta, M.L. Smith and J.J. Spivey, ACS Catal., 2011, 1, 641-656.
- 206 [7] K.G. Fang, D.B. Li, M.G. Lin, M.L. Xiang, W. Wei and Y.H. Sun, Catal. Today, 2009, 147,
- 207 133-138.
- 208 [8] M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F.
- 209 Girgsdies, P. Kurr, B.L. Kniep, M. Tovar, R.W. Fischer, J.K. Nørskov and R. Schlögl, Science,
 2012, 336, 893-897.
- 211 [9] Y. Yang, J. Evans, J.A. Rodriguez, M.G. White, P. Liu, Phys. Chem. Chem. Phys. 2010, 12,
- 2129909-9917.
- 213 [10] W. Huang, L.M. Yu, W.H. Li and Z.L. Ma, Front. Chem. Eng. China, 2010, 4, 472-475.
- 214 [11] Z.J. Zuo, L. Wang, Y.J. Liu and W. Huang, Catal. Commun., 2013, 34, 69-72.
- 215 [12] Z. J. Zuo, L. Wang, L.M. Yu, P.D. Han and W. Huang, J. Phys. Chem. C., 2014, 118,
- 216 12890-12898.
- 217 [13] Z. Tang, J.L. Liang, X.H. Li, J.F. Li, H.L. Guo, Y.Q. Liu and C.G. Liu, J. Solid State Chem.,
- 218 2013, 202, 305-314.
- 219 [14] L.M Zhang, W.C. Lu, R.R. Cui and S.S. Shen, Mater. Res. Bull., 2010, 45, 429-436.
- 220 [15] Z.J. Wang, H. Du, J.H. Gong, S.G. Yang, J.H. Ma and J. Xu. Colloid. Surf. A-Physicochem.

- 221 Eng. Asp., 2014, 450, 76-82.
- 222 [16] G. Busca, Catal. Today, 2014, 226, 2-13.
- 223 [17] F.J. Berry, R.L. Bilsborrow, A.J. Dent, M. Mortimer, C.B. Ponton, B.J. Purser and K.R.
- 224 Whittle, Polyhedron, 1999, 18, 1083-1087.
- [18] S. Jiansirisomboon and K.J.D. MacKenzie, Mater. Res. Bull., 2006, 41, 791-803.
- 226 [19] Z.H. Gao, W. Huang, L.H. Yin and K.C. Xie, Fuel Process. Technol., 2009, 90, 1442-1446.
- 227 [20] P. Gao, F. Li, H.J Zhan, N. Zhao, F.K. Xiao, W. Wei, L.S. Zhong, H. Wang and Y.H. Sun, J.
- 228 Catal., 2013, 298, 51-60.
- [21] T. Isobe, M. Shimizu, S. Matsushita and A. Nakajima, J. Asian Ceram. Soc., 2013, 1, 65-70.
- 230 [22] Y.F. Zhou, H.Y. Fu, X.J. Zheng, R.X. Li, H. Chen and X.J. Li, Catal. Commun., 2009, 11,
- 231 137-141.
- 232 [23] C. Baltes, S. Vukojevic and F. Schüth, J. Catal., 2008, 258, 334-344.
- 233 [24] K. Xiao, Z.H. Bao, X.Z. Qi, X.X Wang, L.S. Zhong, K.G. Fang, M.G. Lin and Y.H. Sun, J.
- 234 Mol. Catal. A, 2013, 378, 319-325.
- 235 [25] S.Z. Li, W.P. Ding, G.D. Meitzner and E. Iglesia, J. Phys. Chem. B, 2002, 106, 85-91.
- 236

- 238
- 239
- 240
- 241
- 242

RSC Advances Accepted Manuscript

243 Table Captions

- **Table 1** Catalytic performance of Cu-Zn-Al catalyst.
- **Table 2** Product distributions of Cu-Zn-Al catalyst.
- **Table 3** The composition of Cu-Zn-Al catalyst before and after reaction.
- 247 Table 4 XPS parameters of the Cu-Zn-Al catalyst before and after reaction.
- **Table 5** Catalytic performance of Cu-ZnO-Al₂O₃ catalyst.
- **Table 6** Product distributions of Cu-ZnO-Al₂O₃ catalyst.

- -

265	Figure captions
266	Fig. 1. XRD patterns of Cu-Zn-Al catalyst. (a) before reaction (b) after reaction
267	Fig. 2. FTIR spectra of Cu-Zn-Al catalyst. (a) before reaction (b) after reaction
268	Fig. 3. NH ₃ -TPD-MS profile of Cu-Zn-Al catalyst. (a) before reaction (b) after reaction
269	Fig. 4. ²⁷ Al-MAS-NMR spectra of Cu-Zn-Al catalyst. (a) before reaction (b) after reaction
270	Fig. 5. Cu 2p XPS spectra of Cu/Zn/Al catalyst. (a) before reaction (b) after reaction
271	Fig.6. TG-DTG profiles of Cu/Zn/Al catalyst. (a) before reaction (b) after reaction
272	
273	
274	
275	
276	
277	
278	
279	
280	
281	
282	
283	
284	
285	
286	

	Time /h	CO Conversion		Selectivit	ty (wt. %)				
	Time/n	(%)	ROH	HC	DME	CO ₂	$C_{2+}OH/KOH(\%)$		
	24	19.8	31.4	18.4	1.37	48.8	36.0		
	48	38.9	15.4	28.7	4.53	51.3	68.6		
	72	35.2	14.0	32.9	12.6	40.6	56.7		
	96	33.8	19.1	25.2	17.6	38.1	28.6		
	120	32.0	22.1	25.7	17.9	34.2	14.1		
288	Notes: Reac	tion conditions: T=5	23 K, P=4	.5 MPa, H	₂ /CO=2, fee	d low rate	e= 150 mL/min, ROH		
289	for total alco	hols and HC for hyd	for hydrocarbon, C ₂₊ OH/ROH for higher alcohols selectivity.						

Table 1 Catalytic performance of Cu-Zn-Al catalyst

2	n	n
2	Э	υ

315

316

	T . (1		ROH dis	tribution	(wt. %)			HC distribution (wt. %)				
	1 ime/n	MEOH	ETOH	PrOH	BuOH	РеОН	-	C1	C2	C3	C4	C5 ⁺
	24	64.0	20.3	5.8	7.3	2.6		29.7	33.8	17.5	15.2	3.8
	48	31.4	38.7	13.3	12.8	3.8		36.0	28.6	16.2	13.5	5.7
	72	43.3	25.8	10.9	13.7	6.3		43.0	22.3	15.3	12.2	7.1
	96	71.4	11.5	4.6	9.0	3.5		45.4	23.4	14.9	11.1	5.2
	120	85.9	3.6	2.0	7.0	1.5		44.3	24.2	14.6	11.3	5.7
303	_											
304												
305												
306												
307												
308												
309												
310												
311												
312												
313												

302 Table 2 Product distributions of Cu-Zn-Al catalyst

		GF AAS (mg/L)					
	Catalyst —	Cu	Zn	Al			
	before reaction	0.430	0.238	0.029			
	after reaction	0.408	0.240	0.032			
318							
319							
320							
321							
322							
323							
324							
325							
326							
327							
328							
329							
330							
331							
332							
333							
334							

317 Table 3 The composition of Cu-Zn-Al catalyst before and after reaction

	Metal component	Binding energy (eV)						
	Metal component	before reaction	after reaction					
	Cu2 <i>p</i> _{3/2}	932.0	932.1					
	$Zn2p_{3/2}$	1021.7	1020.6					
	Al2 <i>p</i>	74.5	73.7					
336	_		-					
337								
338								
339								
340								
341								
342								
343								
344								
345								
346								
347								
348								
349								
350								
351								

Table 4 XPS parameters of the Cu-Zn-Al catalyst before and after reaction

Catalyst	CO Conversion		Selectivi	ty (wt. %)		
	(%)	ROH	НС	DME	CO2	C ₂₊ OH/KOH (76
Cu-ZnO-Al ₂ O ₃	24.7	48.1	5.5	24.6	21.8	7.2
Notes: Reaction	conditions: T=523	K, P=4.5	MPa, H ₂ /	CO=2, feed	l low rate	= 150 mL/min, RC
for total alcohols	s and HC for hydroc	earbon, C ₂₊	OH/ROH	for higher	alcohols s	electivity.

352 **Table 5** Catalytic performance of Cu-ZnO-Al₂O₃ catalyst

	ROH distribution (wt. %)				F	HC distribution (wt. %)				
Catalyst	MEOH	ETOH	PrOH	BuOH	РеОН	C1	C2	C3	C4	C5+
Cu-ZnO-Al ₂ O ₃	92.8	2.9	1.0	2.2	1.1	31.7	22.4	20.8	16.8	8.2
										-
	Catalyst Cu-ZnO-Al ₂ O ₃	Catalyst MEOH Cu-ZnO-Al ₂ O ₃ 92.8	Catalyst MEOH ETOH Cu-ZnO-Al ₂ O ₃ 92.8 2.9	Catalyst MEOH ETOH PrOH Cu-ZnO-Al ₂ O ₃ 92.8 2.9 1.0	ROH distribution (wt. %) MEOH ETOH PrOH BuOH 2u-ZnO-Al2O3 92.8 2.9 1.0 2.2	Catalyst ROH distribution (wt. %) MEOH ETOH PrOH BuOH PeOH 2u-ZnO-Al2O3 92.8 2.9 1.0 2.2 1.1	Catalyst ROH distribution (wt. %) H MEOH ETOH PrOH BuOH PeOH C1 Cu-ZnO-Al ₂ O ₃ 92.8 2.9 1.0 2.2 1.1 31.7	ROH distribution (wt. %) HC distribution (wt. %) MEOH ETOH PrOH BuOH PeOH C1 C2 Cu-ZnO-Al ₂ O ₃ 92.8 2.9 1.0 2.2 1.1 31.7 22.4	Catalyst HC distribution (wt. %) HC distribution MEOH ETOH PrOH BuOH PeOH C1 C2 C3 Cu-ZnO-Al ₂ O ₃ 92.8 2.9 1.0 2.2 1.1 31.7 22.4 20.8	Catalyst HC distribution (wt. %) HC distribution (wt. %) MEOH ETOH PrOH BuOH PeOH C1 C2 C3 C4 2u-ZnO-Al ₂ O ₃ 92.8 2.9 1.0 2.2 1.1 31.7 22.4 20.8 16.8

371 **Table 6** Product distributions of Cu-ZnO-Al₂O₃ catalyst

385 Fig. 1. XRD patterns of Cu-Zn-Al catalyst. (a) before reaction (b) after reaction

399 Fig. 2. FTIR spectra of Cu-Zn-Al catalyst. (a) before reaction (b) after reaction

- . .

Fig. 3. NH₃-TPD-MS profile of Cu-Zn-Al catalyst. (a) before reaction (b) after reaction

440 Fig. 5. Cu 2p XPS spectra of Cu/Zn/Al catalyst. (a) before reaction (b) after reaction

450 **Fig.6.** TG-DTG profiles of Cu/Zn/Al catalyst. (a) before reaction (b) after reaction

Graphical abstract

