

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Optimization of bamboo autohydrolysis for the production of
2	xylo-oligosaccharides using response surface methodology
3	
4	Xiao Xiao, Chen-Zhou Wang, Jing Bian [*] and Run-Cang Sun [*]
5	Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University,
6	Beijing 100083, China
7	
8	* Corresponding author. Address: Beijing Key Laboratory of Lignocellulosic Chemistry,
9	Beijing Forestry University, 100083, Beijing, China (Jing Bian and Run-Cang Sun).
10	Tel/Fax: +86 10 62336592 (Jing Bian); +86 10 62336903 (Run-Cang Sun).
11	<i>E-mail address</i> : bianjing31@bjfu.edu.cn (Jing Bian); rcsun3@bjfu.edu.cn (Run-Cang
12	Sun);
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

23 ABSTRACT

24	Bamboo powder (10.0 g) was subjected to autohydrolysis with a solid to liquid ratio of
25	1:10 under non-isothermal conditions to produce xylo-oligosaccharides (XOS) with a
26	degree of polymerization of 2 to 6. The experiment was performed with two
27	independent variables (reaction temperature 152 - 208 °C and reaction time 1.72 - 58.28
28	min) to optimize the reaction condition by central composite design of response surface
29	methodology. The analysis of variance of the regression model of XOS yield was in
30	good agreement with the experimental results, and the predicted optimal condition for
31	the production of xylo-oligosaccharides was observed at 182 °C for 31 min with the
32	yield of 36.4%. Under the optimal reaction condition for the production of XOS,
33	relatively low concentrations of monosaccharides and byproducts were obtained. The
34	investigation of antioxidant activity revealed that XOS produced from autohydrolysis
35	exhibited a comparable scavenging activity with commercial antioxidant in superoxide
36	and hydroxyl radicals.
37	
38	
39	
40	
41	
42	
43	
44	

Page 3 of 32

1. Introduction

45

46	With the growing emphasis on human health, the production of healthy and
47	economically affordable foods for the world's population has been one of the greatest
48	challenges. Prebiotics are nutrients that have the potential to considerably influence the
49	physiology of human body by promoting the growth of beneficial bifidobacteria in
50	colon, and consequently influence the health. ¹ In recent years, more attentions have
51	been paid on the new prebiotics especially xylo-oligosaccharides (XOS). XOS are sugar
52	oligomers made up of 2 to 10 D-xylose units with β -1, 4 bonds, which naturally present
53	in bamboo shoots, fruits, vegetables, milk, and honey. ² However, few works are
54	available on the extraction of XOS present in these sources due to their low contents of
55	XOS.
56	Currently, the main process to obtain XOS is to degrade the hemicellulose fraction
57	from carbohydrate-rich lignocellulose by chemical, physical or biological methods. The
58	XOS derived from xylan show various applications in chemical, food, nutraceutical and
59	pharmaceutical industries, which could act as a prebiotics to promote the growth of
60	beneficial bifidobacteria in colon as well as low-calorie sweeteners and antioxidant
61	additives. ³ Actually, recent reports show that ingestion of 4 g of XOS per day for 3
62	weeks improves the intestinal microbiota among the elderly who are above 65 years
63	old. ^{4, 5} Besides, it also has the potential application in agricultural field as fodder
64	additives to enhance the growth of fish, livestock and pets. ⁶⁻⁸
65	The main procedure to generate XOS from biomass including enzymatic
66	hydrolysis, dilute acid hydrolysis, and autohydrolysis. The commercial XOS is mainly

67	produced by enzymatic hydrolysis of xylan extracted from biomass by alkaline, which
68	caused the entire deacelation, and exhibits a low solubility in water. ³ However, some
69	reports determined that acidic/acetyl XOS (XOS with glucuronic acid/acetyl
70	substitution) shows a high prebiotics benefit as compared to neutral XOS. ^{2, 9} Due to the
71	formation of too many monosaccharides as compared with XOS, and the large amount
72	of toxic byproducts such as furfural and 5-hydroxymethylfurfural (HMF), diluted acid
73	hydrolysis has limited application. ⁵ Autohydrolysis, an effective procedure to produce
74	XOS, is well known as an environmentally friendly and economical technology. In
75	autohydrolysis, hydronium ions derived from the autoionization of water act as a
76	catalyst cause the depolymerization of hemicelluloses to XOS, xylose and other sugar
77	degradation products. The partial cleavage of acetyl groups to acetic acids during the
78	autohydrolysis process results in the increase of hydronium ions concentration in the
79	reaction media, which also promote the hydrolysis efficiency. As an effective method to
80	produce oligosaccharides, autohydrolysis has the advantages of no chemical regents and
81	high selectivity separation. There are a lot of reports about XOS produced by
82	autohydrolysis from corncob wheat straw, rye straw, etc. ¹⁰⁻¹² The biological activity of
83	XOS is mainly influenced by the degree of polymerization and substitutions. ^{13, 14} Some
84	recent studies show that the XOS with low DP is of particular interest for prebiotic
85	applications. XOS with DP from 2 to 6 are non-digestible oligosaccharides (NDOs),
86	which show high value in food additives industries. ¹⁵ However, the XOS produced in
87	the above studies exhibited a wide range of degree of polymerization of 2 to 20 . ¹⁰⁻¹²
88	Previous study investigated the production of XOS by autohydrolysis, which contains a

89	large portion of high DP XOS (>6). ³ Bamboo powder was employed as the raw material
90	for autohydrolysis in the present work, since it has advantages of easy propagation,
91	rapid growth and high productivity. Furthermore, some reports show that XOS derived
92	from bamboo have a cytotoxic effect on human leukemia cells. ¹⁶ In this study, the
93	autohydrolysis process was optimized to find the best reaction condition for the
94	production of XOS (DP 2-6) by using response surface methodology (RSM), and the
95	influence of reaction temperature and time on the yield of XOS was investigated. ³ The
96	monosaccharides, byproducts and the antioxidant activity of XOS were also detected. ³
97	
98	2. Materials and methods
99	2.1. Raw materials
99 100	2.1. Raw materialsBamboo culms were collected in July, 2014 from Yunnan province, China. The raw
99 100 101	2.1. Raw materialsBamboo culms were collected in July, 2014 from Yunnan province, China. The rawmaterial was dried in an oven at 60 °C for 24 h and then ground in a mill to obtain a
99 100 101 102	2.1. Raw materials Bamboo culms were collected in July, 2014 from Yunnan province, China. The raw material was dried in an oven at 60 °C for 24 h and then ground in a mill to obtain a fraction of 40 to 80 mesh. After that, the obtained bamboo powder was dewaxed with
99100101102103	2.1. Raw materials Bamboo culms were collected in July, 2014 from Yunnan province, China. The rawmaterial was dried in an oven at 60 °C for 24 h and then ground in a mill to obtain afraction of 40 to 80 mesh. After that, the obtained bamboo powder was dewaxed withtoluene-ethanol (2:1 v/v) in a Soxhlet extractor for 6 h and destarched with water at 80
 99 100 101 102 103 104 	2.1. Raw materials Bamboo culms were collected in July, 2014 from Yunnan province, China. The raw material was dried in an oven at 60 °C for 24 h and then ground in a mill to obtain a fraction of 40 to 80 mesh. After that, the obtained bamboo powder was dewaxed with toluene-ethanol (2:1 v/v) in a Soxhlet extractor for 6 h and destarched with water at 80 °C for 6 h. The extractive-free sample was dried in an oven at 60 °C for 12 h and stored
 99 100 101 102 103 104 105 	2.1. Raw materials Bamboo culms were collected in July, 2014 from Yunnan province, China. The raw material was dried in an oven at 60 °C for 24 h and then ground in a mill to obtain a fraction of 40 to 80 mesh. After that, the obtained bamboo powder was dewaxed with toluene-ethanol (2:1 v/v) in a Soxhlet extractor for 6 h and destarched with water at 80 °C for 6 h. The extractive-free sample was dried in an oven at 60 °C for 12 h and stored for further use. ³ The standards of xylobiose, xylotriose, xylotetraose, xylopentaose and
 99 100 101 102 103 104 105 106 	2.1. Raw materials Bamboo culms were collected in July, 2014 from Yunnan province, China. The raw material was dried in an oven at 60 °C for 24 h and then ground in a mill to obtain a fraction of 40 to 80 mesh. After that, the obtained bamboo powder was dewaxed with toluene-ethanol (2:1 v/v) in a Soxhlet extractor for 6 h and destarched with water at 80 °C for 6 h. The extractive-free sample was dried in an oven at 60 °C for 12 h and stored for further use. ³ The standards of xylobiose, xylotriose, xylotetraose, xylopentaose and xylohexaose were purchased from Megazyme (Ireland), and other chemicals were
 99 100 101 102 103 104 105 106 107 	2.1. Raw materials Bamboo culms were collected in July, 2014 from Yunnan province, China. The raw material was dried in an oven at 60 °C for 24 h and then ground in a mill to obtain a fraction of 40 to 80 mesh. After that, the obtained bamboo powder was dewaxed with toluene-ethanol (2:1 v/v) in a Soxhlet extractor for 6 h and destarched with water at 80 °C for 6 h. The extractive-free sample was dried in an oven at 60 °C for 12 h and stored for further use. ³ The standards of xylobiose, xylotriose, xylotetraose, xylopentaose and xylohexaose were purchased from Megazyme (Ireland), and other chemicals were provided by Sigma-Aldrich.

110 Bamboo samples (10.0 g, oven-dried basis) and deionized water were mixed in a 1 L

111	stainless steel autoclave with mechanical stirring (Parr, USA) at a solid to liquor ratio of
112	1:10 g/g. The autoclave was heated by an external electrical furnace with the agitation
113	of 150 rpm, and the reaction temperature was measured with a type-J thermocouple for
114	different reaction times. A Proportional-Integral-Derivative (PID) controller was
115	employed to dominate the temperature, and cooling of the mixture was accomplished by
116	using circulating cold water.
117	
118	2.3. Analysis of autohydrolysis liquors
119	The liquors obtained by the autohydrolysis were filtered and stored to determine
120	monosaccharides, XOS and sugar degradation products. A high-performance
121	anion-exchange chromatography (HPAEC, Dionex ICS-3000, USA) system equipped
122	with a Carbopac PA-20 column (4×250 mm, Dionex, USA), and a Carbopac PA-100
123	column (4×250 mm, Dionex, USA) was employed to quantify the monosaccharides and
124	oligosaccharides in the liquor. The eluent of 100 mM NaAc in a 150 mM NaOH at a
125	flow rate of 0.4 mL/min and a column temperature of 30 $^{\circ}$ C was used to separate the
126	XOS. The degradation products were quantified and analyzed by an high-performance
127	liquid chromatography (HPLC, Agilent 1200 series, Agilent Technologies, USA)
128	equipped with a refractive index detector using a HPX-87H ion exclusion column
129	(7.8×300 mm, Bio-Rad Laboratories, USA). The mobile phase was 0.005M sulfuric
130	acid at flow rate of 0.6 mL/min with the column temperature of 50 °C. More details of
131	the analysis method were described in the previous literatures. ^{3, 17}
132	

RSC Advances Accepted Manuscript

The autohydrolysis variables were studied to determine the optimal conditions for the 134 maximum xylo-oligosaccharides yield. The influences of temperature and reaction time 135 were determined through a response surface methodology, and central composite design 136 (CCD) with a total of 11 experiments was employed to determine the best combination 137 of parameters for the autohydrolysis process. Four axial points, four fractional points 138 139 and three center points were carried out with the alpha factor of 1.414 for rotatable design. The yield of XOS was determined as the response variable Y. The variables 140 were coded according to the equation: 141 142 $x_i = (X_i - X_{i,0}) / \Delta X_i$ (1)(i=1, 2)where x_i is the coded value of the variable X_i , $X_{i,0}$ is the real value of X_i at the center 143 144 point, and ΔX_i is the step change. 145 The relationship of the variables and response was calculated by the quadratic regression equation:^{18, 19} 146 $Y = \beta_0 + \sum_{i=1}^{k} \beta_i X_i + \sum_{i=1}^{k} \beta_{ii} X_i^2 + \sum_{1 \le i \le i}^{k} \beta_{ij} X_i X_j$ 147 (2) 148 where k is the number of variables, X_i and X_i are independent variables, which influence 149 the response variable Y, β_0 is the constant term, β_i represents the coefficients of the linear parameters, β_{ii} is the quadratic coefficient and β_{ij} estimates the interaction 150 151 parameters. 152 The conditions of each run are shown in Table 1. The results were summarized and statistically analyzed by using Design-Expert software (version 8.0.6, StatEase Inc., 153 USA). Analysis of variance (ANOVA) was employed to estimate the regression model. 154

	-	-
1	-5	5
1	J	2

156 **2.5. Antioxidant activities**

157	The phenazine-methosulfate (PMS)-NADH method was employed for the generation of
158	O_2^- to investigate the superoxide radical scavenging assay. ²⁰ The mixture containing
159	varying concentrations of XOS samples (1 mL, 0.05-2 mg/mL), PMS (1 mL, 60 μ M),
160	NADH (1 mL, 676 μ M), and NBT (1mL, 144 μ M) in phosphate buffer (0.1 M, pH 7.4)
161	was incubated at room temperature for 5 min. The mixture was shaken for 1 h, and then
162	absorption was measured at 560 nm. The capability of scavenging to superoxide radical
163	was calculated using the following formula:
164	Superoxide radical scavenging effect (%) = $(1 - A_I/A_0) \times 100\%$ (3)
165	where A_1 is the absorbance of the sample mixed with reaction solution, and A_0 is the
166	absorbance of control. Superoxide radical scavenging assay was plotted as a function of
167	XOS concentration. From this graph, the XOS concentration needed to achieve
168	superoxide radical scavenging activity of 50% was defined as IC_{50} . Radical scavenging
169	index (RSI) was defined as the inverse of IC_{50} . The analysis was performed in triplicate.
170	The Fenton's system (Fe ²⁺ +H ₂ O ₂ \rightarrow Fe ³⁺ +OH ⁻ +OH ⁻) was employed to investigate
171	the hydroxyl radical scavenging assay of the XOS samples. The method was conducted
172	according to the previous literature reported by Smirnoff and Cumbes, and hydroxyl
173	radical was produced by the solution containing 2 mM EDTA-Fe ²⁺ (0.5 mL), 3% H_2O_2
174	(1 mL), 360 μ g/mL crocus in 4.5 mL sodium phosphate buffer (150 mM, pH7.4). ^{21, 22}
175	Subsequently, the XOS samples with different concentrations were added, and the
176	mixtures were incubated at room temperature for 30 min. The capabilities of scavenging

177	hydroxyl radical of the mixtures were measured at 520 nm using a UV 2300
178	spectrometer (Thermal Scientific, USA), and calculated using the following formula:
179	Hydroxyl radical scavenging effect (%) = $(1 - A_I/A_0) \times 100\%$ (4)
180	where A_1 is the absorbance of the samples, and A_0 is the absorbance of control. The
181	concentration required to quench 50% of the initial hydroxyl radical was defined as IC_{50} ,
182	and the analysis was performed in triplicate.
183	The free radical-scavenging activity was measured by the effect of scavenging
184	2,2-diphenyl-1-picrylhydrazyl radicals (DPPH) according to Li et al. ²³ 0.2 mM DPPH
185	solution in 50% methanol was prepared before UV measurements, and then different
186	concentrations of XOS samples (1 mL) were thoroughly mixed with 2 mL of freshly
187	prepared DPPH and 2 mL of methanol. The mixture was shaken vigorously and kept in
188	the dark at room temperature for 30 min. The capabilities of the samples to scavenge the
189	DPPH radicals were calculated using the following equation:
190	DPPH radical scavenging effect (%) = $(1 - A_l/A_0) \times 100\%$ (5)
191	where A_0 is the absorbance of control, and A_1 is the absorbance of the sample. The
192	concentration of the samples needed to achieve DPPH radical-scavenging activity of
193	50% was defined as IC ₅₀ , and the analysis was performed in triplicate.
194	
195	3. Results and discussion

196 **3.1. Composition of the raw materials**

197 The composition of the extractive-free bamboo powder was determined by the NREL

198 laboratory analytical procedure.²⁴⁻²⁶ As described in the precious literature, the

199	composition of destarched sample was ash 2.8%, moisture 9.3%, and lignin 25.9%
200	(Klason lignin 24.1% and acid-soluble lignin 1.8%). Cellulose (40.4%) was the most
201	significant portion of biomass, and hemicelluloses (21.6%) were measured as xylan
202	substituted with arabinose (0.8%), galactose (0.2%), mannose (0.1%), glucuronic acid
203	(0.1%) and acetyl groups (2.2%). The ratio of acetyl group to xylose was 0.27 mol/mol. ³
204	
205	3.2. Central Composite Design Model Fitting
206	Response surface methodology is an effective statistical method using quantitative data
207	from an appropriate experiment design to investigate and to simultaneously solve
208	multivariate equations, which has the advantages of reducing set of experiments to
209	determine the interactions of a mathematical model and the optimum conditions. ²⁷ Thus,
210	the reaction temperature and time were examined as factors to investigate the
211	correlation between the autohydrolysis variables to the XOS yield by using CCD. The
212	complete experiment variables design matrix together with the values of experimental
213	responses is presented in Table 1, and the ANOVA was carried out to select a suitable
214	model, to detect the significances of the model equation, and to investigate the model
215	terms. The following equation represents the description of XOS (2-6) yields from the
216	experimental responses:
217	$Y = 35.98 + 2.88X_i + 1.63X_j - 6.65X_iX_j - 13.89X_i^2 - 14.26X_j^2$
218	where X_i and X_j are represent reaction temperature and time, respectively.
219	In order to acquire a best fit model, ANOVA was employed to identify the adequacy

of the models. The ANOVA data are summarized in Tables 2 and 3, in which the

221	coefficient of determination R^2 was defined to explain variation to the total variation
222	and to demonstrate the agreement between the observed and predicted results. It was
223	suggested that R^2 value should be at least 0.80 for a good fit of a model. A high R^2
224	represents that predicted values for XOS yield are more accurate and closer to the actual
225	values. The R^2 (0.9823) in the present work (Table 2) indicated that 98.23% total
226	variation in XOS yield was attributed to the experimental variables. This illustrated that
227	a high correlation between the experimental values and theoretical predicts could be
228	observed by the model and expressed good enough fit (Fig. 1). Additionally, the Pred.
229	R^2 of 0.8741 was in reasonable agreement with the Adj. R^2 of 0.9646, exhibited a good
230	adjustment between the experiment and predicted values. As shown in Table 2, standard
231	deviation and coefficient of variation percent (CV %) in the present study were
232	reasonably low and acceptable, indicated a high reliability of the experiment.
233	The probability value (P-value) was employed to check the significance of the
234	coefficient, indicating the interaction between each independent variable. ¹⁸ P-values
235	<0.05 for the regression model are statistically significant. In the present work the
236	P-value of the model (0.0002) was significant enough with significance in lack of fit of
237	0.0016. The analysis also showed that <i>P</i> -values of X_i , X_j , X_iX_j , X_i^2 and X_j^2 were 0.0289,
238	0.1455, 0.0043, <0.0001 and <0.0001, respectively, demonstrating that the variables X_i ,
239	and quadratic variables $X_i X_j$, X_i^2 and X_j^2 affect XOS yield outstandingly. This illustrated
240	that the reaction temperature and time significantly affected the production of XOS, and
241	as compared with reaction time, the reaction temperature has a smaller <i>P</i> -value. The

RSC Advances Accepted Manuscript

243	coefficient, indicated that the effect of reaction temperature (0.0289) on the production
244	of XOS was greater than that of reaction time (0.1455) . Additionally, <i>F</i> -value is another
245	factor implies that the response surface model is significant. ²⁸ In the current study,
246	<i>F</i> -value of 55.42 (Table 3) indicated that there was only a 0.02% chance that a "Model
247	<i>F</i> -value" this large could occur due to noise.
248	
249	3.3. Optimization of the production of xylo-oligosaccharides
250	Response surface plots were built up by plotting the response (XOS production) against
251	two independent variables to identify the optimal conditions of each variable for
252	maximum XOS yield. Two-dimensional contour plots and three-dimensional response
253	surface plots in the present work were generated by Design-Expert as shown in Fig. 2.
254	In Figs. 2a and b, a quadratic effect of both reaction temperature and time was observed,
255	although temperature had a greater influence on the response. The benefit of reaction
256	temperature on XOS yield was observed in the range of 152-180 °C, and a further
257	increase in reaction temperature resulted in a rapid decline. On the other hand, similar
258	phenomenon could be found in reaction time, which positively affected the XOS yield
259	from 0 to 30 min, but led to the decrease after 30 min reaction. The decrease trend of the
260	yield was mainly due to the excessive degradation of xylan with both the raise of the
261	temperature and prolongation of time. The longer reaction time and/or higher reaction
262	temperature would generate more xylose and sugar degradation products, leading to the
263	decline of the XOS yield. The result illustrated that both variables significantly affected
264	the production of XOS, and the optimal reaction condition was obtained. In Fig. 2b, the

265	red zone represents the optimal reaction condition for the production of XOS, and the
266	predicted optimal point was observed (182 °C and 31 min). This indicated that the
267	production of XOS achieved the highest yield (36.1 %) at 182 °C for 31 min reaction,
268	which was a relatively high yield as compared with the result of enzymatic hydrolysis
269	(31.8%) and diluted acid $(13%)$ hydrolysis. ^{18, 29}
270	An additional experiment run was conducted under the predicted condition to verify
271	the present suggested model. Experimentally, the XOS yield of the autohydrolysis
272	reaction at 182 °C after 31 min was 36.4%, which showed no remarkable difference to
273	the predicted value, indicated that the model can mathematically represent XOS
274	production by autohydrolysis with the coefficient of 0.98. Furthermore, a relatively low
275	yield of monosaccharides and sugar degradation products were observed under the
276	optimal reaction condition, which was benefit for the further purification and utilization
277	of XOS (Table 1 and Fig. 3, the details will be discussed in the following parts).
278	
279	3.4. Formation of monosaccharides and degradation products during
280	autohydrolysis process
281	The liquors after autohydrolysis reaction contained not only XOS, but also a number of
282	monosaccharides and sugar degradation products (acetic acid, formic acid, furfural and
283	5-hydroxymethylfurfural, etc.). In the present study, the monosaccharides were detected
284	by HPAEC and the sugar degradation products were determined by HPLC. As the data
285	presented in Table 1 and Fig. 3, a lot of monosaccharides and sugar degradation
286	products were generated during the autohydrolysis process apart from XOS, especially

287	at a high temperature with a long reaction time. The concentration of monosaccharides
288	increased with the raise of reaction temperature and prolongation of reaction time, and
289	the highest values were achieved at 180 °C for 58.28 min (arabinose 0.43 g/L, galactose
290	0.25 g/L, glucose 2.58 g/L and xylose 6.34 g/L). However, a further increase in reaction
291	temperature and time caused a rapid decline of the concentration of monosaccharides,
292	which could be interpreted by the fact that a part of pentose and hexose were degraded
293	into furfural and HMF under the intensive reaction conditions. Moreover, the result also
294	revealed that the formation rate of monosaccharides was much lower than that of the
295	degradation rate, which led to the rapid decline of the concentration, could be certified
296	by the data of sugar degradation products. On the other hand, the concentration
297	variation of monosaccharides indicated that α -1, 2 and α -1, 3 bond cleaved in the early
298	stage due to the relatively high concentration of arabinose at a low reaction temperature.
299	In Fig. 3, the concentration of arabinose at a low reaction temperature was higher as
300	compared with others, demonstrated that arabinose was easier cleaved from xylan
301	backbone. The variation trends also revealed that arabinose was easier to be degraded
302	into furfural since the concentration decreased at 180 °C after 30 min (0.56 to 0.42 g/L
303	from 30 to 58.28 min).
304	Besides oligosaccharides and monosaccharides, some byproducts would be
305	performed during autohydrolysis process, especially under an intensive reaction
306	condition. Table 1 presents the main byproducts formatted during the reaction period,
307	which were furfural, HMF, acetic acid and formic acid. Furfural and HMF were the
308	degradation products of pentose and hexose, respectively, whose yield were remarkably

309	affected by the reaction temperature and time. As seen in Table 1, the maximum
310	concentrations of furfural and HMF in the present work were observed when the
311	reaction was conducted at an axial point (208.28 °C, 30 min; furfural 4.12 g/L, HMF
312	1.80g/L). The result revealed that the production of furfural and HMF exhibited a
313	positive correlation with the reaction temperature. On the other hand, as the data shown
314	in Table 1, the concentrations of furfural and HMF increased (the concentration of
315	furfural and HMF raised from 0 to 1.63 g/L and 0 to 0.36 g/l, respectively) with the
316	prolongation of reaction time (from 1.72 to 58.28 min) when the temperature was 180
317	°C, which indicated that a longer reaction time led to a higher concentration of furfural
318	and HMF. These results demonstrated that large amounts of the sugar degradation
319	product would be generated under the intensive reaction conditions. Since furfural and
320	HMF have negative effects on the further utilization of XOS, the formation of sugar
321	degradation products should be avoided during the XOS production process, which is
322	beneficial to the prospective purification and utilization. The concentrations of furfural
323	and HMF at the optimal reaction point (182 °C and 31 min) in the present work were
324	0.59 and 0.12 g/L, respectively, which were comparatively low to the XOS yield of
325	36.4% (equivalent to 7.85 g/L). In comparison to others, the result of furfural and HMF
326	in present study was lower than previous literatures of autohydrolysis and diluted acid
327	hydrolysis, which was positive for the further utilization of XOS. ^{30, 31}
328	Acetic acid is one of the main byproducts generated during autohydrolysis process,
329	which is produced by the release of acetyl groups attached on the xylan chain.
330	Additionally, it could be obtained by the degradation of furfural and HMF. The ester

331	linkage was cleaved when the autohydrolysis was conducted at a high temperature, and
332	led to the release of acetyl groups and the formation of acetic acid in the reaction media.
333	The acetic acid generated during the autohydrolysis process would be a diluted acid
334	catalyst and caused the decline of pH, resulted in the promotion of the reaction. The
335	concentration of acetic acid produced in the present study is shown in Table 1, where
336	the concentration was increased with the raise of reaction temperature and/or
337	prolongation of reaction time. Similar situation could be found in pH, which declined
338	with the raise of reaction temperature and/or prolongation of reaction time, indicating a
339	negative linear correlation with acetic acid concentration. Furthermore, the maximum
340	acetic acid concentration of 1.68 g/L was obtained at an axial point (208.28 °C, 30 min),
341	which also have the lowest pH (2.66) in the present work. However, under the optimal
342	reaction condition for XOS production (182 °C, 31 min), the detected acetic acid
343	concentration was only 0.61 g/L, equivalent to 18.9% of the initial acetyl groups. It
344	means that large amounts of acetyl groups were still attached on the chain of XOS in the
345	liquor and xylan in the residue. The previous findings in biology activity of XOS
346	revealed that the in vitro fermentation of acetylated XOS was much slower than that of
347	neutral XOS, which produced more organic acids, resulted in the promotion in the
348	prebiotic effect. ^{14, 32} The current result of acetic acid indicated that a lot of XOS
349	obtained in the present work was substituted with acetyl groups, which was positive for
350	the prospective utilization. Formic acid is another weak acid which could be presented,
351	and it is formed by the degradation of furfural and HMF during autohydrolysis
352	process. ³³ Thus, formic acid could only be observed at a high reaction temperature, and

353	it also played a role in diluted acid catalyst in the reaction. Similarly, the concentration
354	of formic acid was increased with the raise of reaction temperature and prolonging of
355	time, and the maximum formic acid concentration of 0.71 g/L was obtained at 200 $^{\circ}$ C
356	for 50 min. In addition, only 0.17 g/L formic acid was observed under the predicted
357	optimal reaction condition (182 °C, 31 min) in the present study, which was fairly low
358	as compared with the XOS yield.
359	In autohydrolysis process, hemicelluloses were degraded first at a low temperature
360	followed by lignin decomposed at intermediate temperature. Previous research about the
361	wheat bran showed that the lignin started to degrade at 170 °C and achieved to the
362	highest degradation at 220 °C, in which 30% of the initial ferulic acid was released into
363	the reaction media. ³⁴ In the present study, the degradation was occurred, which 9.7% of
364	the initial lignin was released under the optimal reaction condition (182 °C, 31 min).
365	The degradation compounds might be the ferulic acid, p-coumaric acid, and lignin
366	degradation products, which would be exactly investigated in our following studies. ³⁵
367	
368	3.5. Antioxidant activities of XOS
369	The antioxidant activity of XOS samples was investigated in comparison with
370	commercial antioxidants by three different methods. BHA and BHT are the two
371	commercial antioxidants control group, and the curves of the inhibitory effects of these

- 372 specimens are shown in Fig. 4. The XOS sample was generated under the optimal
- 373 reaction conditions (182 °C and 31 min).
- 374 Superoxide radical is the one of the oxygen radicals, which leads to H_2O_2 formation

375	by indirectly initiate lipid peroxidation, creating precursors of hydroxyl radicals. ³⁶ The
376	superoxide radical scavenging ability is obviously significant for the antioxidant
377	research, and Fig. 4a shows the superoxide radical scavenging activity of XOS samples
378	in the present work, and the radical-scavenging index (RSI) values of BHA, BHT and
379	XOS were 0.21, 0.79 and 0.95, respectively. Obviously, the result indicated that the
380	superoxide radical scavenging activity of all samples showed a concentration-dependent,
381	and BHA exhibited highest scavenging ability. The scavenging activity of XOS was
382	close to that of BHT, which demonstrated that the XOS obtained by autohydrolysis
383	exhibited an acceptable superoxide radical scavenging activity.
384	Hydroxyl radical is the most active oxygen radical, which induces severe damage to
385	the adjacent molecule. ³⁷ The superoxide radical scavenging activity of XOS samples in
386	the present work is shown Fig. 4b. It could be observed that the superoxide radical
387	scavenging activity of the samples raised with the increase of the concentration.
388	Moreover, the RSI value of XOS was 0.65, as compared to 0.17 for BHA and 0.57 for
389	BHT, respectively. This suggested that the XOS presented a comparable scavenging
390	activity with BHT, whereas the scavenging activity of BHA was much better than that
391	of BHT and XOS.
392	The investigation of scavenging activity of DPPH radical is a common procedure
393	for the evaluation of the free radical scavenging ability of natural products. The
394	scavenging ability of XOS obtained by autohydrolysis at optimal predicted reaction
395	condition is shown in Fig. 4c. The result suggested that all samples (BHA, BHT and
396	XOS) exhibited concentration-dependent antioxidant activity, and the RSI values of

397	BHA, BHT and XOS were 0.07, 0.34 and 0.84, respectively. The scavenging activity of
398	BHA increased rapidly with the growing concentration, while that of XOS exhibited a
399	relatively flat growth. The percent of inhibition of XOS gradually increased and reached
400	86.4% at the concentration of 2 mg/mL. Meanwhile, the DPPH radical scavenging
401	activity of XOS obtained in the present work was higher than that of maize XOS and
402	sugarcane bagasse XOS produced by enzymatic hydrolysis as reported in previous
403	literatures, which may be due to the presence of phenolic compounds degraded from
404	lignin during autohydrolysis process. ^{38, 39} The phenolic compounds in the obtained
405	liquor by autohydrolysis might enhance the antioxidant activity of XOS. According to
406	the previous literature, the antioxidant activity would decline after the purification of
407	XOS, since the degraded products had a positive effect on antioxidant activity and
408	would be removed. ³⁹ Besides, type of phenolic acids, the effects of degree of
409	polymerization, linkage type, substituted groups and position, ester linked phenolic
410	acids, and the presence of sugars with uronic/acetyl groups cannot be underestimated
411	since they played a very important role in the antioxidant activity of the XOS produced
412	by autohydrolysis. ³⁹

413

414 **4. Conclusion**

Bamboo powder was autohydrolyzed in a stainless steel autoclave to generate
xylo-oligosaccharides with low a degree of polymerizations (DP 2-6). The reaction
temperature and time significantly affected the production of XOS, and the optimal
reaction condition was observed by using response surface methodology. The analysis

419	indicated that autohydrolysis conducted at 182 °C for 31 min achieved the maximum
420	XOS yield of 36.4% with a relatively low concentration of monosaccharides and
421	byproducts. The investigation of antioxidant activity revealed that XOS by
422	autohydrolysis exhibited an acceptable scavenging activity in superoxide radical and
423	hydroxyl radical as compared with the commercial antioxidant BHT.
424	
425	Acknowledgements
426	The authors are grateful for the kind support from the Beijing Natural Science
427	Foundation (6154031), the National Natural Science Foundation of China (31400508,
428	31430092), Open Foundation of State Key Laboratory of Pulp and Papermaking
429	Engineering, South China University of Technology (No 201402).
430	
431	
432	
433	
434	
435	
436	
437	
438	
439	
440	

441	References
442	1 G. R. Gibson and M. B. Roberfroid, The Journal of Nutrition, 1995, 125, 1401-1412.
443	2 A. A. Aachary and S. G. Prapulla, Comprehensive Reviews in Food Science and
444	Food Safety, 2011, 10, 2-16.
445	3 X. Xiao, J. Bian, X. P. Peng, H. Xu, B. Xiao and R. C. Sun, Bioresour Technol, 2013,
446	138, 63-70.
447	4 Y. C. Chung, C. K. Hsu, C. Y. Ko and Y. C. Chan, Nutr Res, 2007, 27, 756-761.
448	5 D. O. Otieno and B. K. Ahring, Bioresour Technol, 2012, 112, 285-292.
449	6 B. Xu, Y. Wang, J. Li and Q. Lin, Fish Physiol Biochem, 2009, 35, 351-357.
450	7 P. Gullon, G. Pereiro, J. L. Alonso and J. C. Parajo, Bioresour Technol, 2009, 100,
451	5840-5845.
452	8 P. Moura, S. Marques, L. Alves, J. P. B. Freire, L. F. Cunha and M. P. Esteves,
453	Livestock Science, 2007, 108, 244-248.
454	9 P. Christakopoulos, P. Katapodis, E. Kalogeris, D. Kekos, B. J. Macris, H. Stamatis
455	and H. Skaltsa, Int J Biol Macromol, 2003, 31, 171-175.
456	10 G. Garrote, J. M. Cruz, H. Dominguez and J. C. Parajo, J Chem Technol Biotechnol,
457	2003, 78, 392-398.
458	11 D. Nabarlatz, A. Ebringerová and D. Montané, Carbohydr Polym, 2007, 69, 20-28.
459	12 B. Gullon, R. Yanez, J. L. Alonso and J. C. Parajo, Bioresour Technol, 2010, 101,
460	6676-6684.
461	13 S. A. Hughes, P. R. Shewry, L. Li, G. R. Gibson, M. L. Sanz and R. A. Rastall, J
462	Agric Food Chem, 2007, 55, 4589-4595.

- 463 14 K. M. J. Van Laere, R. Hartemink, M. Bosveld, H. A. Schols and A. G. J. Voragen,
- 464 J Agric Food Chem, 2000, 48, 1644-1652.
- 465 15 S. I. Mussatto and I. M. Mancilha, Carbohydr Polym, 2007, 68, 587-597.
- 466 16 H. Ando, H. Ohba, T. Sakaki, K. Takamine, Y. Kamino, S. Moriwaki, R. Bakalova,
- 467 Y. Uemura and Y. Hatate, Toxicol In Vitro, 2004, 18, 765-771.
- 468 17 F. Peng, J. L. Ren, F. Xu, J. Bian, P. Peng and R. C. Sun, J Agric Food Chem, 2009,
 469 57, 6305-6317.
- 470 18 J. Bian, P. Peng, F. Peng, X. Xiao, F. Xu and R. C. Sun, Food Chem, 2014, 156,
- 471 7-13.
- 472 19 T. Yoshida, S. Tsubaki, Y. Teramoto and J. Azuma, Bioresour Technol, 2010, 101,
 473 7820-7826.
- 474 20 J. Robak and R. J. Gryglewski, Biochem Pharmacol, 1988, 37, 837-841.
- 475 21 N. Smirnoff and Q. J. Cumbes, Phytochemistry, 1989, 28, 1057-1060.
- 476 22 J. Wang, F. Wang, Q. B. Zhang, Z. S. Zhang, X. L. Shi and P. C. Li, Int J Biol
- 477 Macromol, 2009, 44, 379-384.
- 478 23 M.-F. Li, S.-N. Sun, F. Xu and R.-C. Sun, Food Chem, 2012, 134, 1392-1398.
- 479 24 A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter and D. Templeton, Technical
- 480 Report, 2005, NREL/TP-510-42622.
- 481 25 A. Sluiter, B. Hames, D. Hyman, C. Payne, R. Ruiz, C. Scarlata, J. Sluiter, D.
- Templeton and J. Wolfe, Technical Report, 2008, NREL/TP-510-42621.
- 483 26 A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton and D. Crocker,
- 484 Technical Report, 2008, NREL/TP-510-42618.

485	27 J. Chen, D. Liu, B. Shi, H. Wang, Y. Cheng and W. Zhang, Carbohydr Polym, 2013,
486	93, 81-88.

487 28 B. Satari Baboukani, M. Vossoughi and I. Alemzadeh, Biosyst Eng, 2012, 111,

488 166-174.

- 489 29 O. Akpinar, K. Erdogan and S. Bostanci, Carbohyd Res, 2009, 344, 660-666.
- 490 30 G. Garrote, H. Domínguez and J. C. Parajó, Journal of Chemical Technology &
- 491 Biotechnology, 1999, 74, 1101-1109.
- 492 31 D. Nabarlatz, X. Farriol and D. Montane, Ind Eng Chem Res, 2005, 7746-7755.
- 493 32 H. Pastell, P. Westermann, A. S. Meyer, P. Tuomainen and M. Tenkanen, J Agric
- 494 Food Chem, 2009, 57, 8598-8606.
- 495 33 F. Carvalheiro, M. P. Esteves, J. C. Parajo, H. Pereira and F. M. Girio, Bioresour
- 496 Technol, 2004, 91, 93-100.
- 497 34 D. J. Rose and G. E. Inglett, J Agric Food Chem, 2010, 58, 6427-6432.
- 498 35 D. J. Yelle, P. Kaparaju, C. G. Hunt, K. Hirth, H. Kim, J. Ralph and C. Felby,
- 499 Bioenerg Res, 2012, 6, 211-221.
- 500 36 Y. J. Sun, B. Y. Yang, Y. M. Wu, Y. Liu, X. Gu, H. Zhang, C. J. Wang, H. Z. Cao, L.
- 501 J. Huang and Z. F. Wang, Food Chem, 2015, 178, 311-318.
- 502 37 O. Erel, Clin Biochem, 2004, 37, 112-119.
- 503 38 J. Bian, F. Peng, X.-P. Peng, P. Peng, F. Xu and R.-C. Sun, Bioresour Technol,
- 504 2013, 127, 236-241.
- 505 39 B. R. Veenashri and G. Muralikrishna, Food Chem, 2011, 126, 1475-1481.

Figure captions

- Fig. 1. The correlation between predicted and actual values.
- Fig. 2. Response surface (a) and contour plot (b) of XOS yield.
- Fig. 3. Concentration of monosaccharides generated during autohydrolysis.
- Fig. 4. Scavenging activity of superoxide radical (a), hydroxyl radical (b) and DPPH

free-radical (c) of XOS.

 Table 1 Experimental design (independent variables), pH, response and byproducts of

the CCD.

_	Coded variables		Real variables			Response Sugar degradation products (g/L)				
Run	V	V	Temp.	Time	pН	XOS	Acetic	Formic	F. af. as1	
	X_i	A_j	(°C)	(min)		yield (%)	acid	acid	Fullulai	HMF
1	-1	1	160	50	3.11	14.0	0.23	n.d. ^a	0.07	n.d.
2	0	0	180	30	3.02	36.0	0.57	0.16	0.53	0.07
3	0	1.414	180	58.28	2.77	10.1	0.81	0.38	1.63	0.36
4	-1	-1	160	10	3.71	0.1	0.11	n.d.	n.d.	n.d.
5	1.414	0	208.28	30	2.66	11.5	1.68	0.66	4.12	1.80
6	1	1	200	50	2.68	5.4	1.66	0.71	3.80	1.55
7	0	-1.414	180	1.72	3.65	1.7	0.14	n.d.	n.d.	n.d.
8	0	0	180	30	2.92	35.8	0.58	0.17	0.53	0.07
9	0	0	180	30	2.98	36.1	0.61	0.16	0.52	0.09
10	-1.414	0	151.72	30	3.50	1.8	0.09	n.d.	n.d.	n.d.
11	1	-1	200	10	2.86	18.1	1.07	0.23	1.02	0.23

^{*a*} n.d., not detected

Statistical Parameter	Value	Statistical Parameter	Value
Std. Dev.	2.6819	R ²	0.9823
Mean	15.507	Adj R ²	0.9646
C.V. %	17.2953	Pred R ²	0.8741
PRESS	255.5708	Adeq Precision	19.8443

 Table 2 Statistical parameters of ANOVA of the XOS predicted model.

Source	Sum of Squares	Degree of Freedom	Mean Square	F-Value	<i>p</i> -value Prob > F
Model	1993.33	5	398.67	55.42	0.0002
\mathbf{X}_i	66.31	1	66.31	9.22	0.0289
X_j	21.35	1	21.35	2.97	0.1455
$X_i X_j$	176.91	1	176.91	24.59	0.0043
X_i^2	1089.33	1	1089.33	151.44	< 0.0001
X_j^2	1147.58	1	1147.58	159.54	< 0.0001
Residual	35.97	5	7.19		
Lack of Fit	35.93	3	11.98	640.13	0.0016
Pure Error	0.037	2	0.019		
Corrected Total	2029.29	10			

Table 3 Analysis of variance of the model for XOS yields.

Fig. 3.

Table of Contents

Title: Optimization of bamboo autohydrolysis for the production of xylo-oligosaccharides using response surface methodology Author(s): Xiao Xiao, Chen-Zhou Wang, Jing Bian* and Run-Cang Sun* **Synopsis:** Bamboo was employed to generate xylo-oligosaccharides by using autohydrolysis, and the process was optimized via response surface methodology to achieve the highest yield.