RSC Advances

Concumisivi

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Table of contents entry

Purinyl N1-directed ortho-acylation of 6-anilinopurines was achieved in the presence of [Pd]-catalyst using aldehydes $/ \alpha$-oxocarboxylic acids as the acylating source.

Journal Name

ARTICLE

Palladium-catalysed ortho-acylation of 6-anilinopurines/purine nucleosides via C-H activation

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x
www.rsc.org/

Introduction

Aryl ketones are important building blocks in several biologically active natural products, pharmaceuticals and agrochemicals. ${ }^{1}$ Thus, construction of these motifs always attracts considerable attention from synthetic chemists. Among the numerous methods developed for the synthesis of aryl ketones, Friedel-Crafts acylation is the most accepted synthetic procedure. ${ }^{2}$ However, poor regioselectivity, limited functional group tolerance and using an over-stoichiometric amount of Lewis acid catalyst limits the scope of this reaction. Therefore, it is highly desirable to develop a mild and efficient method for the synthesis of aryl ketones.

Recently transition metal catalysed direct C-H bond acylation of arenes has been reported by several pioneering groups using aldehydes, ${ }^{3}$-oxocarboxylic acids, ${ }^{4}$ alcohols, ${ }^{5}$ toluene derivatives, ${ }^{6}$ benzylamines, ${ }^{7}$ benzyl chlorides/bromides, ${ }^{8}$ carboxylic acids, ${ }^{9}$ diketones ${ }^{10}$ or benzylic ethers ${ }^{11}$ as acylating source with the aid of directing groups. This direct acylation reaction is more atom economic and environmentally friendly alternative to the Friedel-Crafts acylation, which is commonly used for the synthesis of aryl ketones. Purine could also be used as a directing group for the ortho-C-H functionalization of aryl moieties. ${ }^{12}$ As our ongoing work on $\mathrm{C}-\mathrm{H}$ activation ${ }^{13}$ and modification of nucleoside derivatives, ${ }^{14}$ we herein report the palladium-catalysed orthoacylation of 6 -anilinopurines with aldehydes/ α-oxocarboxylic acids via purinyl N1 directed C-H bond activation. More importantly, this study provides the purine appended 2'aminoacetophenones/benzophenones, which may be used as active pharmaceutical ingredients. ${ }^{15}$

[^0]
Results and Discussion

To achieve ortho-acylation, we have initiated our studies by performing the reaction of 6 -anilinopurine 1a with 1-heptana in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$ with TBHP (3 equiv) as an oxidant under neat conditions at $110^{\circ} \mathrm{C}$ for 24 h . We were happy to find that ortho-acylated purine derivative 2a was obtained in 38% isolated yield (Table 1, entry 1). Inspired by this result, we proceeded to maximise the yield of the product 2a by varying the reaction parameters as depicted in Table 1. Among the solvents DMF, NMP, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{DCE}$, dioxane, toluene xylene and AcOH , only dioxane gave moderate yield (44\%). In the remaining cases, product $\mathbf{2 a}$ yield was poor or negligibl(Table 1, entries 2-9). Among the palladium catalysts, only palladium acetate gave better conversion to the acylated product 2a (Table 1, entries 10-12). Proper oxidant is alsc crucial for this reaction. Compared to TBHP, benzoyl peroxide or $\mathrm{H}_{2} \mathrm{O}_{2}$ or benzoquinone gave lower yields of the product $\mathbf{2} \mathbf{\varepsilon}$ (Table 1, entries 13-15). Gratifyingly, further optimisation revealed that reaction proceeds better ir dioxane/AcOH/DMSO (7/2/1, v/v/v) solvent mixture to afford the ortho-acylated product in good yield of 62%. Increasing the amount of catalyst $\mathrm{Pd}(\mathrm{OAc})_{2}$ from $5 \mathrm{~mol} \%$ to $10 \mathrm{~mol} \%$ improved the yield of the product $\mathbf{2 a}$ to 74% after isolation (Table 1, entry 17). Thus, the optimised reaction conditions for the present reaction were: $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, TBHP (3 equiv) and dioxane/AcOH/DMSO ($7 / 2 / 1, \mathrm{v} / \mathrm{v} / \mathrm{v}, 3 \mathrm{~mL}$) at $1100^{\text {² }}$ (oil bath temperature) for 24 h .

Table 1. Optimisation study for the [Pd]-catalysed ortho-acylation of 6-anilinopurines with aldehydes ${ }^{\text {a }}$

Entry	$\begin{gathered} \text { Catalyst (5 } \\ \mathrm{mol} \%) \end{gathered}$	Oxidant	Solvent	Yield $(\%)^{\text {b }}$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TBHP	-	38
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TBHP	DMF	trace
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TBHP	NMP	21
4	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TBHP	$\mathrm{CH}_{3} \mathrm{CN}\left(90^{\circ} \mathrm{C}\right)$	trace
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TBHP	DCE ($90{ }^{\circ} \mathrm{C}$)	23
6	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TBHP	dioxane	44
7	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TBHP	toluene	10
8	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TBHP	xylene	32
9	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TBHP	AcOH	trace
10	PdCl_{2}	TBHP	dioxane	18
11	$\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$	TBHP	dioxane	24
12	$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	TBHP	dioxane	trace
13	$\mathrm{Pd}(\mathrm{OAc})_{2}$	benzoyl peroxide	dioxane	ND
14	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{H}_{2} \mathrm{O}_{2}$	dioxane	31
15	$\mathrm{Pd}(\mathrm{OAc})_{2}$	benzoquin one	dioxane	16
16	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TBHP	$\begin{gathered} \text { dioxane/AcOH/ } \\ \text { DMSO (7/2/1, } \\ \mathrm{v} / \mathrm{v} / \mathrm{v}) \\ \hline \end{gathered}$	62
17	$\begin{gathered} \mathrm{Pd}(\mathrm{OAc})_{2}(10 \\ \mathrm{mol} \%) \end{gathered}$	TBHP	$\begin{gathered} \text { dioxane/AcOH } \\ \text { /DMSO (7/2/1, } \\ v / v / v)^{c} \\ \hline \end{gathered}$	74

${ }^{a}$ Reaction conditions: 1a (0.3 mmol), 1-heptanal (0.6 mmol), oxidant (3 equiv), solvent (3 mL), $110{ }^{\circ} \mathrm{C}$ (oil bath temperature). ${ }^{\mathrm{b}}$ Isolated yields. $\mathrm{ND}=$ not detected. ${ }^{\mathrm{c}}$ This solvent system was earlier used by Ge and coworkers. ${ }^{4 \mathrm{~b}}$

After having the optimised reaction conditions in hand, we examined the substrate scope by varying the 6 -anilinopurine derivatives and aldehydes (Table 2). Anilines bearing electrondonating or withdrawing substituents underwent crossdehydrogenative coupling (CDC) with heptanal smoothly and produced the corresponding acylated derivatives $\mathbf{2 a} \mathbf{- 2 h}$ in good to excellent yields (61-74\%). Bromo and chloro functional groups were well tolerated and afforded ortho-acyl derivatives 2d and 2e. These products can pave way for further manipulation via cross-coupling reactions utilising the $-\mathrm{Br} /-\mathrm{Cl}$ functionalities. The reaction is highly regioselective when performed with meta-substituted amines. In these cases, only one regioisomer was observed and the sterically less hindered C-H position was acylated. Under these catalytic conditions ortho-substituted 6 -anilinopurines did not furnish the corresponding acyalted derivatives. ${ }^{4 \mathrm{a}, 5 \mathrm{~b}}$ We have also
examined the effect of purine N 9 -substituent on the course of the reaction. Thus, the reaction of (9 -isopropyl-9H-purin- 6 - $\mathrm{y}^{\prime \prime}$. phenyl-amine 1 i with heptanal afforded the ortho-acylated derivative $\mathbf{2 i}$ in good yield (70\%). The generality of the methodology was then extended to 6 -anilinopurine nucleosi ϵ 1j with 1-heptanal and 1-hexanal; in both the cases we have isolated the corresponding ortho-acylated nucleosides $2 \mathbf{j}$ and $\mathbf{2 k}$ respectively, in decent yields (54-56\%). The reaction workea well in the case of simple 2 -anilinopyrimidine, though.

We then investigated the effect of a wide range of alkyl aldehydes. The reaction worked well with isovaleraldehyde (a branched aldehyde) and produced the acylated derivative $\mathbf{2 r}$. in good yield (68\%). Cyclohexane carboxaldehyde alsc participated in this coupling and gave the corresponding ketone $\mathbf{2 o}$ in 60% yield. It is noteworthy that citronellal, a monoterpenoid could also provide the acylated derivative $\mathbf{2 p}$ in moderate yield (54\%). Rather surprisingly, aryl aldehyd underwent oxidation to the corresponding carboxylic aci under these conditions. Thus, we observed the reactivity difference between the other directing group assisted crodehyodrogenative coupling (CDC) reaction of aryl aldehydes with the purine directed CDC reactions. ${ }^{3}$ The structure of one of the acylated derivatives (2m) was further confirmed by using X -ray crystallography (Figure 1).
Table 2. Scope of the ortho-acylation reaction with 6-anilinopurines and aldehydes ${ }^{a}$

Entry No.	Substrate	Product	Yield (\%)
1			74
2			71

C

```
-
``` \(-\) \(=\) 1
4
4
4
(
\begin{tabular}{|c|c|c|c|}
\hline 10 & & & 56 \\
\hline 11 & 1j & & \\
\hline 12 & \begin{tabular}{l}
 \\
1k
\end{tabular} & \begin{tabular}{l}
 \\
21
\end{tabular} & \\
\hline 13 & 1a & & 71 \\
\hline 14 & 1a & & \\
\hline 15 & 1a & & \\
\hline 16 & 1a & & 54 \\
\hline
\end{tabular}
\({ }^{a}\) Reaction conditions: amine \(\mathbf{1}(0.3 \mathrm{mmol})\), aldehyde \((0.6 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{r}\), \(\%\)), TBHP (3 equiv) and dioxane/AcOH/DMSO (\(7 / 2 / 1, \mathrm{v} / \mathrm{v} / \mathrm{v}, 3 \mathrm{~mL}\)) at \(110^{\circ} \mathrm{C}\) (oll bath temperature) for 24 h . \({ }^{b}\) Isolated yield.

Figure 1. Molecular structure of compound \(\mathbf{2 m}\). Selected bond lengths [\(\AA\)] with esd's in parentheses: \(\mathrm{C}(24)-\mathrm{O}(1) 1.2263(17), \mathrm{C}(24)-\mathrm{C}(23) 1.490(2), \mathrm{N}(10)-\mathrm{C}(18) 1.3964(19)\), \(N(10)-C(6) 1.3621(18), N(9)-C(11) 1.4604(18)\).

Plausible mechanistic pathway for the ortho-acylation using aldehydes
Based on previous reports, \({ }^{3}\) a plausible pathway is outlined for Pd-catalysed ortho-acylation in Scheme 1. Initially, through the chelate-directed C-H activation of purine N1 atom, the sixmembered cyclopalladated intermediate \(\mathbf{I}\) is formed. The reaction of aldehyde with TBHP generates reactive acyl and OH radicals which react with intermediate I to produce the \(\mathrm{Pd}(\mathrm{IV})\) intermediate II. \({ }^{3}\) Finally, species II undergoes reductive elimination leading to the formation of acylated derivative \(\mathbf{2 a}\) (or \(\mathbf{2 b - 2 p}\)). The active \(\mathrm{Pd}(I I)\) is regenerated for next catalytic cycle.

Scheme 1 Plausible reaction pathway for the formation of ortho-acylated derivatives from 6-anilinopurines with aldehydes

Palladium-catalysed \(\mathrm{C}\left(s p^{2}\right)\)-H bond acylation of 6-anilinopurines with \(\alpha\)-oxocarboxylic acids
The above \(\mathrm{Pd}(\mathrm{OAc})_{2} /\) TBHP catalytic system was applicable to alkyl aldehydes only; aryl aldehydes under those catalytic conditions were oxidized to corresponding carboxylic acids. We overcame this drawback by choosing \(\alpha\)-oxocarboxylic acid as the acylating source. \(\mathrm{Ag}_{2} \mathrm{O}\) and \(\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\) were used as oxidant and co-oxidant respectively (Scheme 2), under conditions
similar to that available in the literature. \({ }^{4 \mathrm{~b}}\) Thus, the reaction of 6 -anilinopurine 1a with phenylglyoxylic acid in the presenc of \(\mathrm{PdCl}_{2}\) (\(10 \mathrm{~mol} \%\)) afforded the corresponding acylated derivative 3a in good yield (64\%). Although \(\mathrm{Pd}(\mathrm{OAc})_{2}\) alsc worked, the yield was lower (50\%). Under these cataly \({ }^{\circ} \mathrm{C}\) conditions, we have examined the substrate scope with respect to \(4-\mathrm{Cl}\) and \(3-\mathrm{OMe}\) substituted anilinopurines (\(1 \mathbf{e}\) and 1j) also. In both the cases, the corresponding ortho-aroy, derivative was isolated in good yield. Arylglyoxylic acids containing \(\mathrm{Me}, \mathrm{F}\) or Br functional groups are well tolerated under these conditions and afford the ortho-aroyl derivatives \(\mathbf{3 d} \mathbf{- 3 g}\) in good yields. It is noteworthy that the reaction alsc proceeded smoothly with 2-ketobutyric acid (an alkyl \(\alpha\) oxocarboxylic acid) by furnishing the ortho-acyl derivative 3 . in \(63 \%\) yield. Thus, our protocol is applicable for both aryl and alkyl \(\alpha\)-oxocarboxylic acids.

\(\mathrm{FG}=\mathrm{H}, \mathrm{Cl}, \mathrm{OMe}\)
\(\mathrm{FG}=\mathrm{H}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \quad\) 3a (64\%) \(\mathrm{FG}=4-\mathrm{Cl}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \quad\) 3b (55\%) \(\mathrm{FG}=3-\mathrm{OMe}, \mathrm{R}=2,4,6-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{2}\) 3c (63\%) \(\mathrm{FG}=\mathrm{H}, \mathrm{R}=2,4,6-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{2} \quad\) 3d (60\%) \(\mathrm{FG}=\mathrm{H}, \mathrm{R}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4} \quad 3 \mathrm{e}\) (61\%) \(\mathrm{FG}=\mathrm{H}, \mathrm{R}=4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4} \quad 3 \mathrm{f}(66 \%)\) \(\mathrm{FG}=\mathrm{H}, \mathrm{R}=4-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4} \quad \mathbf{3 g}(58 \%)\) \(\mathrm{FG}=\mathrm{H}, \mathrm{R}=n-\mathrm{Pr}\) 3h (63\%)

Scheme 2 Synthesis of ortho-aroyl 6-anilinopurines using \(\alpha\)-oxocarboxylic acids as acylating source

\section*{Conclusions}

In summary, we have developed an efficient method for the Pd-catalysed oxidative orho-acylation of 6 -anilinopurines with alkyl aldehydes via C-H bond activation. A broad range of functional groups and a variety of alkyl aldehydes were wel' tolerated under these catalytic conditions. This protocol was also successfully applied on 6 -anilinopurine nucleoside. 2' Aminobenzophenones are synthesized by using \(\alpha-\) oxocarboxylic acids as the acylating source. Further studies or mechanistic investigation are currently going on in our laboratory.

\section*{Experimental Section}

General Comments. Solvents were dried according to known methods as appropriate. \({ }^{16}{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\) spectra \(\left({ }^{1} \mathrm{H}, 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}\right.\), 100 MHz) were recorded using a 400 MHz spectrometer \(\mathrm{CDCl}_{3}\) with shifts referenced to \(\mathrm{SiMe}_{4}(\delta=0)\). IR spectra we , recorded on an FTIR spectrophotometer. Melting points wern determined by using a local hot-stage melting point apparat is and are uncorrected. Elemental analyses were carried out on a

CHN analyser. Mass spectra were recorded using LC-MS and HRMS (ESI-TOF analyser) equipment.
General procedure for the ortho-acylation of 6-anilinopurine derivatives with aldehydes: Synthesis of compounds 2a-2p
A mixture of 6-anilinopurine (0.3 mmol) and \(\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol}\) \%) was taken in a Schlenk tube under \(\mathrm{N}_{2}\). To this, dioxane/AcOH/DMSO (7/2/1, v/v/v, 3 mL) solvent mixture was added and stirring was continued at rt for 10 min . To this mixture, aldehyde (0.6 mmol) and TBHP (0.9 mmol) were added. The contents were heated with stirring at \(110{ }^{\circ} \mathrm{C}\) (oil bath temperature) for 24 h . After cooling to rt , the reaction mixture was extracted with EtOAc (\(3 \times 30 \mathrm{~mL}\)) and water. The combined organic phase was washed with brine solution (30 mL), dried over anh. \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) and concentrated in vacuo. The crude product was purified by column chromatography on silica gel using \(n\)-hexane-EtOAc (4:1) mixture as the eluent.
Compound 2a. Yield 0.092 g (\(74 \%\)); white solid; \(\mathrm{mp}=164-168\) \({ }^{\circ} \mathrm{C}\); \(\operatorname{IR} u_{\text {max }}(\mathrm{KBr}): 3284,3059,1615,1576,1480,1449,1256\), 1151, 1024, 891, 725, \(700 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta\) \(12.66(\mathrm{~s}, 1 \mathrm{H}), 9.27(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{~s}, 1 \mathrm{H}), 7.99-7.97(\mathrm{~m}\), 1 H), \(7.93(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{t}, \mathrm{J}\) \(\sim 7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 2 \mathrm{H}), 3.06(\mathrm{t}, \mathrm{J} \sim 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.76(\mathrm{~m}\), \(2 \mathrm{H}), 1.40-1.26(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (100 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 204.8,152.7,152.2,150.1,142.4,141.5,135.7\), 134.5, 131.2, 129.1, 128.4, 127.7, 121.8, 121.6, 120.9, 120.8, 47.3, 40.0, 31.7, 29.1, 24.8, 22.6, 14.1; HRMS (ESI): Calcd. for \(\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}\left[\mathrm{M}^{+}+\mathrm{H}\right]: m / z 414.2295\). Found: 414.2302.
Compound 2b. Yield 0.091g (71\%); white solid; \(\mathrm{mp}=154-158\) \({ }^{\circ} \mathrm{C} ; \mathrm{IR} u_{\text {max }}(\mathrm{KBr}): 3079,2915,1611,1567,1534,1463,1299\), \(1178,784,723 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 12.49(\mathrm{~s}, 1 \mathrm{H})\), 9.12 (d, J = \(8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H})\), \(7.43(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.42(\mathrm{~s}, 2 \mathrm{H}), 3.05(\mathrm{t}, \mathrm{J}\) \(\sim 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 6 \mathrm{H})\), \(0.91-0.88(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 204.7,152.7\), 152.2, 149.9, 141.2, 139.9, 135.7, 135.2, 131.2, 130.3, 129.1, 128.4, 127.6, 121.8, 121.6, 120.8, 47.2, 39.9, 31.7, 29.1, 24.7, 22.6, 20.9, 14.1; HRMS (ESI): Calcd. for \(\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}\left[\mathrm{M}^{+}+\mathrm{H}\right]: \mathrm{m} / \mathrm{z}\) 428.2451. Found: 428.2450.

Compound 2c. Yield 0.096 g (\(72 \%\)); white solid; \(\mathrm{mp}=132-136\) \({ }^{\circ} \mathrm{C} ; \operatorname{IR} u_{\max }(\mathrm{KBr}): 3441,3083,2952,1608,1586,1478,1350\), \(1248,1175,1047,979,840,726 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR (400 MHz , \(\mathrm{CDCl}_{3}\)): \(\delta 12.20(\mathrm{~s}, 1 \mathrm{H}), 9.15(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~s}, 1 \mathrm{H}), 7.89\) \((\mathrm{s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{dd}, \mathrm{J}\) ~ \(9.4 \mathrm{~Hz}, \sim 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{t}, J=7.6\) \(\mathrm{Hz}, 2 \mathrm{H}), 1.81-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J} \sim 7.0\) \(\mathrm{Hz}, 3 \mathrm{H}\)); \({ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 204.4,153.6,152.8\), 152.2, 149.9, 141.1, 135.9, 135.8, 129.1, 128.4, 127.7, 123.0, 122.5, 121.5, 120.1, 116.0, 55.9, 47.3, 40.1, 31.7, 29.1, 24.7, 22.6, 14.1; HRMS (ESI): Calcd. for \(\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{2}\left[\mathrm{M}^{+}+\mathrm{H}\right]: \mathrm{m} / \mathrm{z}\) 444.2400. Found: 444.2399.

Compound 2d. Yield 0.098 g (\(66 \%\)); white solid; \(\mathrm{mp}=170-174\) \({ }^{\circ} \mathrm{C} ; \operatorname{IR} u_{\text {max }}(\mathrm{KBr}): 3429,3079,2952,1612,1581,1525,1486\), 1381, 1300, 1184, 1023, 837, \(731 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR (400 MHz , \(\left.\mathrm{CDCl}_{3}\right): \delta 12.53(\mathrm{~s}, 1 \mathrm{H}), 9.25(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{~s}, 1 \mathrm{H}), 8.06\) (br, 1H), 7.93 (s, 1H), 7.67 (dd, \(J \sim 9.0 \mathrm{~Hz}, \sim 2.2 \mathrm{~Hz}, 1 \mathrm{H}\)), \(7.38-\) \(7.28(\mathrm{~m}, 5 \mathrm{H}), 5.43(\mathrm{~s}, 2 \mathrm{H}), 3.03(\mathrm{t}, \mathrm{J} \sim 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.76(\mathrm{~m}\),
\(2 \mathrm{H}), 1.42-1.26(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (100 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 203.7,152.6,151.9,150.3,141.7,141.4,137 .{ }^{\wedge}\) 135.6, 133.5, 129.2, 128.5, 127.7, 123.1, 122.7, 121.9, 113.0 47.4, 40.0, 31.7, 29.0, 24.5, 22.6, 14.1; HRMS (ESI): Calcd. for \(\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{BrN}_{5} \mathrm{O}\left[\mathrm{M}^{+}+\mathrm{H}\right]: m / z 492.1400\). Found: 492.1399.
Compound 2e. Yield \(0.083 \mathrm{~g}(62 \%)\); white solid; \(\mathrm{mp}=184-188\) \({ }^{\circ} \mathrm{C}\); \(\operatorname{IR} u_{\text {max }}(\mathrm{KBr}): 3449,3106,2928,1614,1583,1525,1466\), 1405, 1351, 1327, 1298, 1139, 1018, 837, \(725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMK (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 12.53(\mathrm{~s}, 1 \mathrm{H}), 9.30(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.62\) \((\mathrm{s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=9.2 \mathrm{~Hz}\), \(=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.43(\mathrm{~s}, 2 \mathrm{H}), 3.03(\mathrm{t}, \mathrm{J} \sim 7.4 \mathrm{~Hz}\), \(2 \mathrm{H})\), 1.83-1.75 (m, 2H), 1.42-1.32 (m, 6H), 0.91-0.89 (m, 3H), \({ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 203.7,152.6,151.9,150.2,141.7\). 141.0, 135.6, 134.3, 130.6, 129.1, 128.5, 127.7, 125.7, 122.6, 122.3, 121.8, 47.3, 40.0, 31.7, 29.0, 24.5, 22.6, 14.1; HRMS (ESI): Calcd. for \(\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{ClN}_{5} \mathrm{O}\left[\mathrm{M}^{+}+\mathrm{H}\right]: m / z\) 448.1905. Found: 448.1903.

Compound 2f. Yield \(0.088 \mathrm{~g}(68 \%)\); white solid; \(\mathrm{mp}=132-1^{-}\) \({ }^{\circ} \mathrm{C} ; \operatorname{IR} u_{\max }(\mathrm{KBr}): 3453,3100,2930,1620,1588,1472,1328\), \(1259,1175,1023,833,726 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) .{ }^{-}\) \(12.40(\mathrm{~s}, 1 \mathrm{H}), 9.29(\mathrm{dd}, J=9.2 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 7.92\) (s, 1H), 7.64 (dd, \(J \sim 9.4 \mathrm{~Hz}, ~ \sim 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 6 \mathrm{H})\), \(5.43(\mathrm{~s}, 2 \mathrm{H}), 3.02(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.42\) \(1.26(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})\); \({ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MH:}\) \(\left.\mathrm{CDCl}_{3}\right): \delta 203.7,156.5\left(\mathrm{~d}, \mathrm{~J}_{(\mathrm{C}-\mathrm{F})}=240.5 \mathrm{~Hz}\right), 152.6,152.0,150.1\) 141.5, 138.7, 135.7, 129.2, 128.5, 127.7, 122.8, 122.7, 122.5 121.7, 121.6, 121.5, 116.9, 116.6, 47.3, 40.1, 31.7, 29.1, 24.6 22.6, 14.1; HRMS (ESI): Calcd. for \(\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{FN}_{5} \mathrm{O}\left[\mathrm{M}^{+}+\mathrm{H}\right]: \mathrm{m} / \mathrm{z}\) 432.2200. Found: 432.2200.

Compound \(\mathbf{2 g}\). Yield \(0.088 \mathrm{~g}(61 \%)\); white solid; \(\mathrm{mp}=160-164\) \({ }^{\circ} \mathrm{C}\); \(\operatorname{IR} u_{\text {max }}(\mathrm{KBr}): 3463,2931,2849,1731,1616,1589,1468\). \(1233,1123,1025,729 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 12.81\) \((\mathrm{s}, 1 \mathrm{H}), 9.49(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.96^{\prime}\) \(1 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H})\), \(3.10(\mathrm{t}, \mathrm{J} \sim 7.4 \mathrm{~Hz}, 2 \mathrm{H})\), 1.85-1.78 (m, 2H), 1.44-1.33 (m, 6H), 0.92-0.90 (m, 3H); \({ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 204.0,152.5\) 151.7, 150.5, 145.2, 142.0, 135.5, 130.9, 129.2, 128.6, 128.2, 127.8, 122.1, 121.0, 120.8, 47.4, 40.0, 31.7, 29.0, 24.5, 22.6. 14.1; HRMS (ESI): Calcd. for \(\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O} \quad\left[\mathrm{M}^{+}+\mathrm{H}\right]: \mathrm{m} / \mathrm{z}\) 482.2168. Found: 482.2167.

Compound 2 h . Yield 0.093 g (\(63 \%\)); white solid; \(\mathrm{mp}=152-156\) \({ }^{\circ} \mathrm{C}\); IR \(u_{\text {max }}(\mathrm{KBr}): 2937,2849,1644,1605,1567,1463,1408\) \(1025,882 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 12.72(\mathrm{~s}, 1 \mathrm{H}), 9.63\) \((\mathrm{s}, 1 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-\) \(7.27(\mathrm{~m}, 5 \mathrm{H}), 7.19\) (dd, J = 8.4 Hz, \(2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 2 \mathrm{H}), 3.02\) \((\mathrm{t}, \mathrm{J} \sim 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.31(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}\) \(\mathrm{J} \sim 6.4 \mathrm{~Hz}, 3 \mathrm{H}\)); \({ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 204.2,152 . /\) 151.8, 150.3, 143.4, 141.8, 135.6, 132.2, 129.4, 129.2, 128.5, 127.7, 123.9, 123.5, 121.9, 120.0, 47.3, 40.1, 31.7, 29.1, 24.7 22.6, 14.1; HRMS (ESI): Calcd. for \(\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{BrN}_{5} \mathrm{O}\left[\mathrm{M}^{+}+\mathrm{H}\right]: \mathrm{m} / \mathrm{L}\) 492.1400. Found: 492.1399.

Compound 2i. Yield \(0.077 \mathrm{~g}(70 \%)\); white solid; \(\mathrm{mp}=88-92^{\circ}\), \(I R u_{\max }(\mathrm{KBr}): 3096,2948,1616,1584,1534,1447,1238,9.5\) \(\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 12.62(\mathrm{~s}, 1 \mathrm{H}), 9.26(\mathrm{~d}, \mathrm{~J}=8.8\) \(\mathrm{Hz}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.59(\mathrm{I}\), \(1 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 1 \mathrm{H}), 4.94-4.84(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}\), 2 H), 1.88-1.78 (m, 2H), 1.64 (d, \(J=6.8 \mathrm{~Hz}, 6 \mathrm{H}\)), 1.42-1.31 (1 ,
\(6 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J} \sim 7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): 204.8, 152.2, 152.1, 149.6, 142.5, 139.1, 134.5, 131.2, 122.3, 121.7, 120.9, 120.8, 47.2, 40.1, 31.8, 29.2, 24.8, 22.8, 22.6, 14.1; HRMS (ESI): Calcd. for \(\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}\left[\mathrm{M}^{+}+\mathrm{H}\right]: \mathrm{m} / \mathrm{z} 366.2295\). Found: 366.2293.
Compound 2j. Yield \(0.065 \mathrm{~g}(56 \%)\); gummy liquid; \(I R U_{\max }\) (neat): 2948, 2860, 1753, 1560, 1447, 1353, 1227, \(1096 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 12.69(\mathrm{~s}, 1 \mathrm{H}), 9.26(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}\), 1 H), \(8.62(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, \mathrm{J}\) \(\sim 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J \sim 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})\), \(6.02(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.73-5.71(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.39(\mathrm{~m}, 3 \mathrm{H})\), \(3.09(\mathrm{t}, \mathrm{J} \sim 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.17(\mathrm{~m}, 6 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.86-\) \(1.79(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.29(\mathrm{~m}, 6 \mathrm{H}), 0.93-0.91(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\quad 204.9,170.5,169.7,169.4,152.9,152.3\), 149.6, 142.2, 139.9, 134.6, 131.2, 122.5, 121.8, 121.2, 120.9, 86.3, 80.5, 73.1, 70.9, 63.2, 40.1, 31.7, 29.1, 24.8, 22.6, 20.9, 20.6, 20.5, 14.1; HRMS (ESI): Calcd. for \(\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{8}\left[\mathrm{M}^{+}+\mathrm{H}\right]: \mathrm{m} / \mathrm{z}\) 582.2565. Found: 582.2568.

Compound 2k. Yield 0.061 g (54\%); gummy liquid; \(I R U_{\max }\) (neat): 2953, 2931, 1753, 1605, 1447, 1227, 1096, 1047, 756 \(\mathrm{cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(12.67(\mathrm{~s}, 1 \mathrm{H}), 9.24(\mathrm{~d}, \mathrm{~J}=8.4\) \(\mathrm{Hz}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62\) \((\mathrm{t}, J \sim 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=5.6 \mathrm{~Hz}\), \(1 \mathrm{H}), 6.01(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{t}, J \sim 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.38\) \((\mathrm{m}, 3 \mathrm{H}), 3.07(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.08\) \((\mathrm{s}, 3 \mathrm{H}), 1.83-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.37(\mathrm{~m}, 4 \mathrm{H})\), 0.94-0.90 (m, 3H); \({ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): 204.9, 170.4, 169.6, 169.4, 152.8, 152.3, 149.6, 142.1, 139.9, 134.5, 131.1, 122.4, 121.7, 121.1, 120.8, 86.2, 80.4, 73.1, 70.8, 63.2, 40.0, 31.6, 24.5, 22.6, 20.8, 20.6, 20.4, 14.0; HRMS (ESI): Calcd. for \(\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{8}\left[\mathrm{M}^{+}+\mathrm{H}\right]: \mathrm{m} / \mathrm{z}\) 568.2408. Found: 568.2404.

Compound 2l. Yield \(0.058 \mathrm{~g}(68 \%)\); white solid; \(\mathrm{mp}=80-84{ }^{\circ} \mathrm{C}\); IR \(u_{\text {max }}(\mathrm{KBr}): 3216,2931,2849,1655,1573,1562,1523,1441\), 1304, 1162, \(975,800,745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(11.89(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.52-8.50(\mathrm{~m}\), 1 H), 7.95 (dd, \(J=8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}\)), \(7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.04-\) \(7.00(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.78(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{t}, \mathrm{J} \sim 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-\) \(1.73(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.32(\mathrm{~m}, 6 \mathrm{H})\), 0.93-0.90 (m, 3H); \({ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\quad 204.3,160.2,157.9,142.7,134.3,131.1\), 121.3, 120.1, 119.5, 113.4, 40.0, 31.8, 29.1, 24.8, 22.6, 14.1; HRMS (ESI): Calcd. for \(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}\left[\mathrm{M}^{+}+\mathrm{H}\right]: \mathrm{m} / \mathrm{z}\) 284.1764. Found: 284.1763.
Compound 2m. Yield \(0.085 \mathrm{~g}(71 \%)\); white solid; \(\mathrm{mp}=132-136\) \({ }^{\circ} \mathrm{C}\); IR \(u_{\text {max }}(\mathrm{KBr}): 3447,3083,2952,1603,1583,1531,1448\), 1349, 1303, 1250, 1192, 1022, 972, \(727 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR (400 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \$ 12.68(\mathrm{~s}, 1 \mathrm{H}), 9.29(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~s}\), \(1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{t}, \mathrm{J} \sim 7.8 \mathrm{~Hz}, 1 \mathrm{H})\), \(7.38-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 3.07(\mathrm{t}, \mathrm{J}\) ~ \(7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.38(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J} \sim\) \(7.0 \mathrm{~Hz}, 3 \mathrm{H})\); \({ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): 204.8, 152.6, 152.1, 150.0, 142.4, 141.4, 135.7, 134.5, 131.1, 129.1, 128.4, 127.6, 121.8, 121.6, 120.9, 120.7, 47.2, 39.9, 31.6, 24.5, 22.6, 14.0; HRMS (ESI): Calcd. for \(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}\left[\mathrm{M}^{+}+\mathrm{H}\right]: \mathrm{m} / \mathrm{z} 400.2138\). Found: 400.2130. X-ray structure was determined for this compound.
Compound 2n. Yield 0.079 g (\(68 \%\)); white solid; \(\mathrm{mp}=134-138\) \({ }^{\circ} \mathrm{C}\); \(\operatorname{IR} u_{\text {max }}(\mathrm{KBr}): 3079,2959,1611,1584,1523,1457,1304\),

1200, \(1025 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 12.68(\mathrm{~s}, 1 \mathrm{H})\), 9.30-9.28 (m, 1H), \(8.65(\mathrm{~s}, 1 \mathrm{H}), 8.00-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.95\left(\mathrm{~s}, 1 \mathrm{~F}^{\prime \prime}\right.\) 7.64-7.60 (m, 1H), 7.38-7.30 (m, 5H), 7.11-7.06 (m, 1H), 5.44 (\(2 \mathrm{H}), 2.94\) (d, \(J=6.8 \mathrm{~Hz}, 2 \mathrm{H}\)), 2.46-2.36 (m, 1H), 1.03 (d, \(J=6.4\) \(\mathrm{Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(204.5,152.6,1521\), 150.0, 142.4, 141.4, 135.6, 134.5, 131.3, 129.1, 128.9, 128.4. 127.6, 121.9, 121.8, 120.9, 120.7, 48.8, 47.2, 25.5, 22.9; HRMS (ESI): Calcd. for \(\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}\left[\mathrm{M}^{+}+\mathrm{H}\right]: m / z\) 386.1982. Found. 386.1978.

Compound 20. Yield 0.074 g (60\%); white solid; \(\mathrm{mp}=268-272\) \({ }^{\circ} \mathrm{C} ; \mathrm{IR} \mathrm{u}_{\text {max }}(\mathrm{KBr}): 3085,2932,2860,1605,1584,1452,1310\), \(1162,981,723 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \$ 12.75(\mathrm{~s}, 1 \mathrm{H})\), \(9.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})\). \(7.95(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{t}, \mathrm{J}=\) \(7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 3.44-3.39(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.86(\mathrm{~m}, 4 \mathrm{H})\) 1.69-1.60 (\(\mathrm{m}, 2 \mathrm{H}\)), 1.47-1.25 (\(\mathrm{m}, 4 \mathrm{H}\)); \({ }^{13} \mathrm{C}\) NMR (100 MHz , \(\mathrm{CDCl}_{3}\)): 208.0, 152.6, 152.1, 150.0, 142.8, 141.4, 135.6, 134. 130.9, 129.0, 128.3, 127.6, 121.7, 120.9, 120.5, 47.2, 46 29.8, 25.9; HRMS (ESI): Calcd. for \(\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}\left[\mathrm{M}^{+}+\mathrm{H}\right]: \mathrm{m} / \mathrm{z}\) 412.2138. Found: 412.2141.

Compound 2p. Yield \(0.073 \mathrm{~g}(54 \%)\); white solid; \(\mathrm{mp}=82-86^{\circ} \mathrm{C}\), IR \(u_{\text {max }}(\mathrm{KBr}): 2964,2926,1720,1605,1529,1447,1304,1238\), \(1025 \mathrm{~cm}^{-1}\); \(^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(12.68(\mathrm{~s}, 1 \mathrm{H}), 9.29(\mathrm{~d}\), \(=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95\left(\mathrm{~s}, 1 \mathrm{f}^{\prime \prime}\right.\) 7.65-7.62 (m, 1H), 7.39-7.27 (m,5H), 7.12-7.08 (m, 1H), 5.45 (s \(2 \mathrm{H}), 5.13-5.10(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=15.4 \mathrm{~Hz}\) and \(J=5.2 \mathrm{~Hz}, 1 \mathrm{H}\)) \(2.85(\mathrm{dd}, J=15.4 \mathrm{~Hz}\) and \(J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.27(\mathrm{~m}, 1 \mathrm{H})\) 2.10-2.00 (m, 2H), 1.69 (s, 3H), 1.62 (s, 3H), 1.49-1.42 (m, 1H), 1.38-1.29 (m, 1H), \(1.00(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (100 MHz \(\mathrm{CDCl}_{3}\)): 204.7, 152.7, 152.2, 150.1, 142.4, 141.5, 135.7, 134.6, 131.6, 131.3, 129.2, 128.5, 127.7, 124.5, 122.1, 121.9, 121.0. 120.8, 47.3, 37.4, 30.0, 25.8, 25.6, 20.2, 17.8; HRMS (ESI): Calcd. for \(\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}\left[\mathrm{M}^{+}+\mathrm{H}\right]: \mathrm{m} / \mathrm{z} 454.2608\). Found: 454.2610

General procedure for the ortho-acylation of 6 -anilinopurine derivatives with \(\alpha\)-oxocarboxylic acids: Synthesis of compounds 3a-3h

A mixture of 6 -anilinopurine (0.3 mmol), \(\mathrm{PdCl}_{2}\) (\(10 \mathrm{~mol} \%\)), \(\mathrm{Ag}_{2} \mathrm{O}(0.3 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.3 \mathrm{mmol})\) and \(\alpha\)-oxocarboxylic acid (0.6 mmol) was taken in a Schlenk tube under \(\mathrm{N}_{2}\) atmosphere. To this, dioxane/AcOH/DMSO (\(7 / 2 / 1, \mathrm{v} / \mathrm{v} / \mathrm{v}, 3 \mathrm{~mL}\)) mixture was added and the contents stirred at \(110{ }^{\circ} \mathrm{C}\) (oil batr. temperature) for 24 h . After cooling to rt , the reaction mixture was extracted with EtOAc (\(3 \times 30 \mathrm{~mL}\)) and washed with water \((30 \mathrm{~mL})\). The combined organic phase was washed with brine solution (30 mL), dried over anh. \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) and concentrated in vacuo. The crude product was purified by columr chromatography on silica gel using \(n\)-hexane-EtOAc (3:2) mixture as the eluent.
Compound 3a. Yield: 0.077 g (64\%); white solid; \(\mathrm{mp}=190-194\) \({ }^{\circ} \mathrm{C} ; \operatorname{IR} u_{\text {max }}(\mathrm{KBr}): 3299,3058,1622,1573,1474,1321,1249\), \(1156,1025,756 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 11.76\), \(1 \mathrm{H}), 9.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{br}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{H}\), \(1 \mathrm{H}), 7.93(\mathrm{br}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 769-7.65\left(\mathrm{~m}, 2 \mathrm{H}^{\prime}\right.\) 7.61-7.58 (m, 1H), 7.51-7.48 (m, 2H), 7.40-7.29 (m, 4H), 7.09 \(J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(8199 .{ }^{\wedge}\)
152.7, 152.0, 150.1, 141.8, 141.3, 138.9, 135.6, 134.1, 134.0, 132.2, 130.1, 129.1, 128.4, 128.1, 127.7, 123.1, 121.5, 121.2, 120.9, 47.2; HRMS (ESI): Calcd. for \(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}\left[\mathrm{M}^{+}+\mathrm{H}\right]: \mathrm{m} / \mathrm{z}\) 406.1669. Found: 406.1667.

Compound 3b. Yield: 0.072 g (55\%); white solid; \(\mathrm{mp}=202-206\) \({ }^{\circ} \mathrm{C} ;\) IR \(U_{\max }(\mathrm{KBr}): 3423,2920,1615,1521,1479,1323,1249\), 1026, 823, \(764 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR (400 MHz, DMSO-d \()^{2}\)) \(10.68(\mathrm{~s}\), 1 H), 8.43 (\(\mathrm{s}, 1 \mathrm{H}\)), 8.29 (d, J = \(7.2 \mathrm{~Hz}, 1 \mathrm{H}\)), 8.15 (s, 1H), 7.72 (dd, \(J=7.2 \mathrm{~Hz}\) and \(2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.55\) \((\mathrm{m}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}\), 3H), 5.41 (s, 2H); \({ }^{13} \mathrm{C}\) NMR (100 MHz, DMSO- \(d_{6}\)): 195.7, 151.9, 151.5, 150.3, 143.1, 138.2, 137.5, 137.2, 133.0, 132.8, 130.9, 129.9, 129.2, 128.7, 128.3, 128.1, 128.0, 126.9, 125.5, 122.6, 120.4, 46.8; HRMS (ESI): Calcd. for \(\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{ClN}_{5} \mathrm{O}\left[\mathrm{M}^{+}+\mathrm{H}\right]: \mathrm{m} / \mathrm{z}\) 440.1279. Found: 440.1279.

Compound 3c. Yield \(0.09 \mathrm{~g}(63 \%)\); white solid; \(\mathrm{mp}=232-236\) \({ }^{\circ} \mathrm{C}\); IR \(u_{\max }(\mathrm{KBr}): 3443,2920,1602,1585,1467,1338,1264\), 1240, 1098, 1027, 906, \(722 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(13.13(\mathrm{~s}, 1 \mathrm{H}), 9.08(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H})\), 7.37-7.30 (m, 6H), \(6.90(\mathrm{~s}, 2 \mathrm{H}), 6.46(\mathrm{dd}, J \sim 9.0 \mathrm{~Hz}\) and \(\sim 2.6\) \(\mathrm{Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 202.8,165.1,152.6,152.3,150.2\), 145.5, 141.7, 138.2, 137.6, 136.3, 135.6, 134.1, 129.2, 128.5, 127.7, 122.0, 116.1, 108.1, 104.4, 55.7, 47.3, 21.2, 19.4; HRMS (ESI): Calcd. for \(\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{2}\left[\mathrm{M}^{+}+\mathrm{H}\right]: \mathrm{m} / \mathrm{z} 478.2244\). Found: 478.2240.

Compound 3d. Yield 0.08 g (60\%); white solid; \(\mathrm{mp}=220-224\) \({ }^{\circ} \mathrm{C} ; \mathrm{IR} u_{\max }(\mathrm{KBr}): 2926,1748,1605,1584,1452,1249,1151\), \(1019,915 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 12.82(\mathrm{~s}, 1 \mathrm{H}), 9.37\) \((\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 1 \mathrm{H})\), \(7.44(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 737-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 2 \mathrm{H})\), 5.47 (\(\mathrm{s}, 2 \mathrm{H}\)), \(2.36(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (100 MHz , \(\left.\mathrm{CDCl}_{3}\right):\) 204.8, 152.6, 152.2, 150.2, 143.0, 141.6, 138.5, 137.3, \(135.6,135.4,134.1_{3}, 134.0_{9}, 129.1,128.4,128.3,127.7,122.1\), 121.9, 121.2, 120.4, 47.3, 21.2, 19.5; HRMS (ESI): Calcd. for \(\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}\left[\mathrm{M}^{+}+\mathrm{H}\right]: m / z 448.2138\) Found: 448.2134.
Compound 3e. Yield 0.077 g (61\%); white solid; \(\mathrm{mp}=204-208\) \({ }^{\circ} \mathrm{C}\); IR \(U_{\max }(\mathrm{KBr}): 3298,3052,1632,1583,1501,1462,1358\), 1254, 1029, \(925,772 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 811.62\) \((\mathrm{s}, 1 \mathrm{H}), 9.06(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.71-\) \(7.62(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~s}\), 2H), \(2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): 198.9, 152.8, 152.0, 150.0, 143.1, 141.4, 141.3, 136.1, 135.6, 133.74, 133.69, 130.5, 130.2, 129.2, 129.1, 128.9, 128.5, 127.7, 123.9, 121.4, 121.0, 47.3, 21.7; LC-MS: \(m / z=420[\mathrm{M}+1]^{+}\); anal. calcd. for \(\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 74.44 ; \mathrm{H}, 5.05\); N, 16.70; found: C, \(74.53 ; \mathrm{H}, 5.12\); N, 16.75.
Compound 3f. Yield 0.084 g (66\%); white solid; \(\mathrm{mp}=222-226\) \({ }^{\circ} \mathrm{C}\); IR \(U_{\max }(\mathrm{KBr}): 3128,2975,1616,1578,1528,1495,1353\), 1260, 1150, 1090, 931, \(843 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) : \(11.53(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{dd}, J=8.5 \mathrm{~Hz}\) and \(2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~s}, 1 \mathrm{H})\), \(7.92(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.28(\mathrm{~m}\), \(5 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 197.7,165.3\left(\mathrm{~d}, J_{(\mathrm{C}-\mathrm{F})}=252.6 \mathrm{~Hz}\right)\), \(152.8,152.0,150.1,141.6,141.4,135.6,135.0_{1}, 134.9_{8}, 134.1\), \(133.5,132.8_{3}, 132.7_{6}, 129.2,128.5,127.7,123.4,121.5_{2}\), \(121.4_{5}, 121.1,115.6,115.5,115.3,47.3 ;\) LC-MS: \(m / z=424\)
\([\mathrm{M}+1]^{+}\); anal. calcd. for \(\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{FN}_{5} \mathrm{O}: \mathrm{C}, 70.91 ; \mathrm{H}, 4.28 ; \mathrm{N}, 16.54\); found: C, 70.82; H, 4.23; N, 16.45 .
Compound 3g. Yield \(0.084 \mathrm{~g}(58 \%) ;\) white solid; \(\mathrm{mp}=234-238\) \({ }^{\circ} \mathrm{C}\); IR \(U_{\max }(\mathrm{KBr}): 3156,2991,1676,1616,1588,1495,1446\) 1353, 1265, 1183, 1073, 936, \(750 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR (\(500 \mathrm{Mr} ?\) \(\left.\mathrm{CDCl}_{3}\right): \delta 11.58(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~s}, 1 \mathrm{H})\), 7.96-7.94 (m, 1H), 7.67-7.61 (m, 6H), 7.39-7.30 (m, 5H), 7.12\(7.09(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (125 MHz, \(\left.\mathrm{CDCl}_{3}\right):\) 198.1, 152.8, 152.0, 150.1, 141.7, 141.5, 137.6, 135.5, 134.3, 133.6 131.9, 131.7, 131.5, 129.2, 128.5, 127.8, 127.3, 123.2, 121.6, 121.4, 121.2, 47.4; LC-MS: \(m / z=486[\mathrm{M}+2]^{+}\); anal. calcd. fol \(\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{BrN}_{5} \mathrm{O}: \mathrm{C}, 61.99 ; \mathrm{H}, 3.75\); N, 14.46; found: C, 61.85 ; H, 3.81; N, 14.38.

Compound 3 h. Yield 0.067 g (63\%); white solid; \(m p=140-144\) \({ }^{\circ} \mathrm{C}\); IR \(U_{\max }(\mathrm{KBr}): 3156,2991,1660,1583,1490,1451,1380\) \(1298,1205,1134,1079,953 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(12.68(\mathrm{~s}, 1 \mathrm{H}), 9.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{dd}\), 8.0 Hz and \(1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.3^{-}\) \(7.29(\mathrm{~m}, 5 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 3.14\) (qrt, \(J=7.2\) \(\mathrm{Hz}, \mathrm{s}), 1.29(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}){ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(205^{\mathrm{n}}\) 152.7, 152.2, 150.1, 142.4, 141.5, 135.7, 134.6, 131.0, 129.1, \(128.5,127.7,121.8,121.5,121.0,120.8,47.3,33.2,8.7\); LC-MS \(\mathrm{m} / \mathrm{z}=358[\mathrm{M}+1]^{+}\); anal. calcd. for \(\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 70.57 ; \mathrm{H}, 5.36\); N, 19.59; found: C, 70.45 ; H, 5.41; N, 19.48.

\section*{X-ray Data}

X-ray data for compounds \(\mathbf{2 m}\) was collected using Mo \(K_{\alpha}(\lambda\) \(=0.71073 \AA\)) radiation. The structure was solved and refined by standard methods. \({ }^{17}\)
Compound \(2 \mathrm{~m} . \mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}, M=399.49\), triclinic, Space group \(P_{1}, a=8.249(3), b=9.685(3), c=14.060(5) \AA\) A \(, \alpha=94.073(6), \lambda\) \(=91.653(6), \gamma=107.489(6), V=1067.2(6) \AA^{3}, Z=2, \mu=0.079\) \(\mathrm{mm}^{-1}\), data/restraints/parameters: 3797/0/276, R indices \(2 \sigma(I)):\) R1 \(=0.0443, w R 2\) (all data) \(=0.1258\). CCDC No. 1423000 .

\section*{Acknowledgments}

We thank Department of Science \& Technology (DST, New Delhi) for financial support, single crystal X-ray diffractometeı and HRMS facility, KCK thanks DST for a J. C. Bose fellowship and UGC for a one-time grant. ASR thanks CSIR (New Delhi) for a fellowship.

\section*{References}
(1) (a) Y. Deng, Y.-W. Chin, H. Chai, W. J. Keller and A. D Kinghorn, J. Nat. Prod., 2007, 70, 2049; (b) P. J. Harrington and E. Lodewijk, Org. Process Res. Dev., 1997, 1, 72; (c) K. D Romines, G. A. Freeman, L. T. Schaller, J. R. Cowan, S. S. Gonzales, J. H. Tidwell, C. W. Andrews, D. K. Stammers, R. J. Hazen, R. G. Ferris, S. A. Short, J. H. Chan and L. R. Boone, Med. Chem., 2006, 49, 727; (d) H. Ogita, Y. Isobe, H. Takaku, Sekine, Y. Goto. S. Misawa and H. Hayashi, Bioorg. Mer Chem., 2002, 10, 3473.
(2) G. A. Olah, Friedel-Crafts Chemistry, Wiley, New York, 1973
(3) (a) X. Jia, S. Zhang, W. Wang, F. Luo and J. Cheng, Org. Lett., 2009, 11, 3120; (b) O. Baslé, J. Bidange, Q. Shuai and C.-J. Li, Adv. Synth. Catal., 2010, 352, 1145; (c) C.-W. Chan, Z. Zhou and W.-Y. Yu, Adv. Synth. Catal., 2011, 353, 2999; (d) Y. Wu, B. Li, F. Mao, X. Li and F. Y. Kwong, Org. Lett., 2011, 13, 3258; (e) C. Li, L. Wang, P. Li and W. Zhou, Chem. Eur. J., 2011, 17, 10208; (f) F. Szabó, J. Daru, D. Simkó, T. Z. Nagy, A. Stirling and Z. Novák, Adv. Synth. Catal., 2013, 355, 685; (g) C.-W. Chan, Z. Zhou, A. S. C. Chan and W.-Y. Yu, Org. Lett., 2010, 12, 3926; (h) H. Li, P. Li and L. Wang, Org. Lett., 2013, 15, 620; (i) S. Sharma, J. Park, E. Park, A. Kim, M. Kim, J. H. Kwak, Y. H. Jung and I. S. Kim, Adv. Synth. Catal., 2013, 355, 332; (j) X.-B. Yan, Y.-W. Shen, D.-Q. Chen, P. Gao, Y.-X. Li, X.-R. Song, X.-Y. Liu and Y.-M. Liang, Tetrahedron, 2014, 70, 7490; (k) M. Sun, L.-K. Hou, X.-X. Chen, X.-J. Yang, W. Sun and Y.-S. Zang, Adv. Synth. Catal., 2014, 356, 3789; (I) M. Yi, X. Cui, C. Zhu, C. Pi, W. Zhu and Y. Wu, Asian J. Org. Chem., 2015, 4, 38; (m) Q. Zhang, C. Li, F. Yang, J. Li and Y. Wu, Tetrahedron, 2013, 69, 320; (n) A. Banerjee, S. K. Santra, S. Guin, S. K. Rout and B. K. Patel, Eur. J. Org. Chem., 2013, 1367; (o) S. K. Santra, A. Banerjee and B. K. Patel, Tetrahedron, 2014, 70, 2422; (p) A. Banerjee, A. Bera, S. K. Santra, S. Guin and B. K. Patel, RSC Adv., 2014, 4, 8558; (q) Q. Tian, P. He and C. Kuang, Org. Biomol. Chem., 2014, 12, 7474; (r) G. Kumar and G. Sekar, RSC Adv., 2015, 5, 28292; (r) J. Zhao, H. Fang, C. Xie, J. Han, G. Li and Y. Pan, Asian J. Org. Chem., 2013, 2, 1044; (s) J.-H. Chu, S.-T. Chen, M.-F. Chiang and M.-J. Wu, Organometallics, 2015, 34, 953; (t) Z.-J. Cai, C. Yang, S.-Y. Wang and S.-J. Ji, J. Org. Chem., 2015, 80, 7928; (u) X.-F. Wu, Chem. Eur. J., 2015, 21, 12252.
(4) (a) P. Fang, M. Li and H. Ge, J. Am. Chem. Soc., 2010, 132, 11898; (b) M. Li and H. Ge, Org. Lett., 2010, 12, 3464; (c) H. Li, P. Li, H. Tan and L. Wang, Chem. Eur. J., 2013, 19, 14432; (d) Z.Y. Li, D.-D. Li, and G.-W. Wang, J. Org. Chem., 2013, 78, 10414; (e) J. Yao, R. Feng, Z. Wu, Z. Liu and Y. Zhang, Adv. Synth. Catal., 2013, 355, 1517; (f) C. Pan, H. Jin, X. Liu, Y. Cheng and C. Zhu, Chem. Commun., 2013, 49, 2933; (g) H. Li, P. Li, Q. Zhao and L. Wang, Chem. Commun., 2013, 49, 9170; (h) B. Xu, W. Liu and C. Kuang, Eur. J. Org. Chem., 2014, 2576.
(5) (a) F. Xiao, Q. Shuai, F. Zhao, O. Baslé, G. Deng and C.-J. Li, Org. Lett., 2011, 13, 1614; (b) Y. Yuan, D. Chen and X. Wang, Adv. Synth. Catal., 2011, 353, 3373; (c) H. Tang, C. Qian, D. Lin, H. Jiang and W. Zeng, Adv. Synth. Catal., 2014, 356, 519; (d) J. Park, A. Kim, S. Sharma, M. Kim, E. Park, Y. Jeon, Y. Lee, J. H. Kwak, Y. H. Jung and I. S. Kim, Org. Biomol. Chem., 2013, 11, 2766; (e) M. Kim, S. Sharma, J. Park, M. Kim, Y. Choi, Y. Jeon, J. H. Kwak and I. S. Kim, Tetrahedron, 2013, 69, 6552; (f) L. Hou, X. Chen, S. Li, S. Cai, Y. Zhao, M. Sun and X.-J. Yang, Org. Biomol. Chem., 2015, 13, 4160; (g) Q. Zhang, F. Yang and Y. Wu, Tetrahedron, 2013, 69, 4908.
(6) (a) S. Guin, S. K. Rout, A. Banerjee, S. Nandi and B. K. Patel, Org. Lett., 2012, 14, 5294; (b) Z. Xu, B. Xiang and P. Sun, RSC Adv., 2013, 3, 1679; (c) Z. Yin and P. Sun, J. Org. Chem., 2012, 77, 11339; (d) Y. Wu, P. Y. Choy, F. Mao and F. Y. Kwong, Chem. Commun., 2013, 49, 689; (e) J. Weng, Z. Yu, X. Liu and G. Zhang, Tetrahedron Lett., 2013, 54, 1205; (f) F. Xiong, C. Qian, D. Lin, W. Zeng and X. Lu, Org. Lett., 2013, 15, 5444; (g) H. Song, D. Chen, C. Pi, X. Cui and Y. Wu, J. Org. Chem., 2014, 79,

2955; (h) Y. Zheng, W.-B. Song, S.-W. Zhang, L.-J. Xuan, Tetrahedron, 2015, 71, 1574.
(7) Q. Zhang, F. Yang and Y. Wu, Chem. Commun., 2013, 49 6837.
(8) (a) G. Zhang, S. Sun, F. Yang, Q. Zhang, J. Kang, Y. Wu and"' Wu, Adv. Synth. Catal., 2015, 357, 443; (b) A. Behera, W. Ali, S Guin, N. Khatun, P. R. Mohanta and B. K. Patel, RSC Adv., 2015 5, 33334.
(9) J. Lu, H. Zhang, X. Chen, H. Liu, Y. Jiang and H. Fu, Adv Synth. Catal., 2013, 355, 529.
(10) W. Zhou, H. Li and L. Wang, Org. Lett. 2012, 14, 4594.
(11) S. Han, S. Sharma, J. Park, M. Kim, Y. Shin, N. K. Mishra, J J. Bae, J. H. Kwak, Y. H. Jung and I. S. Kim, J. Org. Chem. 2014 79, 275.
(12) (a) M. K. Lakshman, A. C. Deb, R. R. Chamala, P. Pradhan R. Pratap, Angew. Chem., Int. Ed., 2011, 50, 11400; (b) H.-M. Guo, L.-L. Jiang, H.-Y. Niu, W.-H. Rao, L. Liang, R.-Z. Mao, D. Li and G.-R. Qu, Org. Lett., 2011, 13, 2008; (c) H.-M. Guo, V H. Rao, H.-Y. Niu, L.-L. Jiang, G. Meng, J.-J. Jin, X.-N. Yang and G.-R. Qu, Chem. Commun., 2011, 47, 5608; (d) R. R. Chama'~ D. Parrish, P. Pradhan and M. K. Lakshman, J. Org. Chem. 2013, 78, 7423; (e) H. J. Kim, M. J. Ajitha, Y. Lee, J. Ryu, J. Kim Y. Lee, Y. Jung and S. Chang, J. Am. Chem. Soc., 2014, 136, 1132; (f) A. B. Pawar and S. Chang, Org. Lett., 2015, 17, 660; (: M. A. Ali, X. Yao, H. Sun and H. Lu, Org. Lett., 2015, 17, 1513. (13) (a) R. Rama Suresh and K. C. Kumara Swamy, J. Org Chem., 2012, 77, 6959; (b) S. Allu and K. C. Kumara Swamy, J Org. Chem., 2014, 79, 3963; (c) R. N. P. Tulichala and K. C. Kumara Swamy, Chem. Commun., 2015, 51, 12008; (d) S. Allu and K. C. Kumara Swamy, Adv. Synth. Catal., 2015, 357, 2665. (14) (a) K. C. Kumara Swamy, S. Allu, V. Srinivas, E. Balaramar and K. V. P. Pavan Kumar, Cryst. Growth Des., 2011, 11, 2302; (b) K. C. Kumara Swamy, E. Balaraman and N. Satish Kumi Tetrahedron, 2006, 62, 10152.
(15) (a) V. Gayakhe, Y. S. Sanghvi, I. J. S. Fairlamb and A. R. Kapdi, Chem. Commun., 2015, 51, 11944; (b) A. Nayak, G Chandra, I. Hwang, K. Kim, X. Hou, H. O. Kim, P. K. Sahu, K. K. Roy, J. Yoo, Y. Lee, M. Cui, S. Choi, S. M. Moss, K. Phan, Z.-G Gao, H. Ha, K. A. Jacobson and L. S. Jeong, J. Med. Chem., 2014, 57, 1344; (c) M. Legraverend and D. S. Grierson, Bioorg. Med. Chem., 2006, 14, 3987; (d) V. E. Marquez, M.-I. Lim, Med. Res. Rev., 1986, 6, 1. (16) D. D. Perrin, W. L. F. Armarego and D. R Perrin, Purification of Laboratory Chemicals, Pergamon Oxford, 1986.
(17) (a) G. M. Sheldrick, SADABS, Siemens Area DetectoI Absorption Correction, University of Göttingen, Germany 1996. (b) G. M. Sheldrick, SHELX-97- A program for crystar structure solution and refinement, University of Göttingen, 1997. (c) G. M. Sheldrick, SHELXTL NT Crystal Structure Analysir Package, Bruker AXS, Analytical X-ray System, WI, USA, 199y, version 5.10.
```


[^0]:    a. School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India. E-mail: kckssc@yahoo.com; kckssc@uohyd.ac.in
    +Electronic Supplementary Information (ESI) available: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. CCDC reference number for compound $\mathbf{2 m}$ is 1423000 . For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/x0xx00000x

