

RSC Advances

In-situ Constructing α-Bi2O3/g-C3N4/β-Bi2O3 Composites and Their Highly Efficient Photocatalytic Performances

Journal:	RSC Advances	
Manuscript ID	RA-ART-09-2015-018420.R1	
Article Type:	Paper	
Date Submitted by the Author:	03-Oct-2015	
Complete List of Authors:	Jiang, Haiying; Renmin University, Chemistry Liu, Guigao; National Institute for Materials Science, Research Unit for Enviromental Remediation Materials Science Wang, Tao; National Institute for Materials Science, Research Unit for Enviromental Remediation Materials Science Li, Peng; National Institute for Materials Science, Ye, Jinhua; National Institute for Materials Science, Lin, Jun; Renmin University of China, Chemistry	
Subject area & keyword:	Photocatalysis < Catalysis	

SCHOLARONE[™] Manuscripts

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Hai-Ying Jiang^{a, b}, Guigao liu^b, Tao Wang^b, Peng Li^b, Jun Lin^{*a}, and Jinhua Ye^{*b}

In this study, α -Bi₂O₃/g-C₃N₄/β-Bi₂O₃ composites were constructed by an in-situ method in one step by α -Bi₂O₃ and g-C₃N₄. It indicates that α -Bi₂O₃ transformed to β -Bi₂O₃ when it was calcined with g-C₃N₄ together. The co-existences of α -Bi₂O₃, g-C₃N₄ and β -Bi₂O₃ were proved by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscope and high-resolution transmission electron microscope (HRTEM). The energy band structures and optical properties were studied by ultraviolet-visible diffuse reflectance spectroscope (UV-vis DRS) and Valence band X-ray photoelectron spectroscope (VB-XPS). The in-situ formation mechanism of α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composites in one step was studied by the samples' surface chemical states, which were measured by X-ray photoelectron spectroscope (XPS). The results show that the surface covered or coordinated g-C₃N₄ and CO₃²⁻ have promotional effect on the stability of β -Bi₂O₃ at room temperature. The enhanced photocatalytic activities of α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composites were evaluated by the photocatalytic oxidation of isopropyl alcohol (IPA), and attributed to the heterojunction formation between β -Bi₂O₃ and g-C₃N₄.

Introduction

TiO₂ has been developed to be a famous photocatalyst since the discovery of photocatalytic splitting of water molecular on TiO₂ electrode in 1972¹. However, its practical application is greatly hindered by its only UV light response. From the view of effectively utilizing the solar light, visible-light-responsive photocatalysts are attracting increasing interests in the recent years. Bi₂O₃ semiconductors are a serious of visible-light-responsive photocatalysts with appropriate band gaps². Up to now, six polymorphic forms have been found in this family, monoclinic α -phase, tetragonal β - phase, body- centered cubic γ - phase, face-centered cubic δ - phase, tetragonal ε - phase, and triclinic ω - phase³. Among them, α -Bi₂O₃ and β -Bi₂O₃ were mostly studied in the past because of their respective highest thermal stability and photocatalytic activity^{2, 4-13}.

 α -Bi₂O₃ is an attractive photocatalyst because of its easy preparation¹⁰, environmental friendship and thermal stability¹⁴⁻¹⁸. However, its photocatalytic activity has been proved to be poor due to its some unfavorable properties for photocatalysis, although it has some properties beneficial for photocatalysis, such as narrow band gap (+ 2.8 eV), high valence band potential (+ 3.13 V vs. NHE)¹⁹, etc. Firstly, its conduction band potential (+ 0.33 V vs. NHE) is too low to oxide the surface O₂ to O₂⁻ (- 0.33 V vs. NHE) through a fast single-electron reaction, resulting in a high recombination rate of the photogenerated electrons and holes^{14, 20}. Secondly, the particle size of α -Bi₂O₃ prepared by usual methods is very large (dozens of micrometers), resulting in low surface areas^{9, 10, 21}. Therefore, developing useful strategies to improve the photocatalytic activity of α -Bi₂O₃ is the main research point in this field.

The construction of heterojunctions is a mostly used method to improve the photocatalytic activity in the last decades^{4, 6, 22, 23}. g- C_3N_4 is a typical, polymeric and graphical layered material; its photocatalytic activity is poor due to its high photocarriers' recombination rate²⁴⁻²⁶. Therefore, it is often regarded as a good candidate for the construction of heterojunctions. However, this work is one of the accidents in the heterojunction construction process of α -Bi₂O₃ and g-C₃N₄, while the other accident has been reported by us recently¹⁹. In this work, both morphology and crystal structure of α -Bi₂O₃ have great changes in this process. Here, we will mainly discuss the crystal structure changes of α -Bi₂O₃, sine the morphology changes has been discussed detailedly in another paper¹⁹.

In this study, α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composites were successfully constructed by α-Bi₂O₃ and g-C₃N₄ in one step with an in situ method. Components of the prepared samples were studied by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Morphologies of the composites were recorded by scanning field-emission electron microscope (FE-SEM). transmission electron microscope (TEM), and high-resolution transmission electron microscope (HRTEM). The energy band structures and optical properties were studied by ultraviolet-visible diffuse reflectance spectroscope (UV-vis DRS) and Valence band Xray photoelectron spectroscopy (VB-XPS). The in-situ formation mechanism of α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composites in one step was studied by the samples' surface chemical states, which were measured by X-ray photoelectron spectroscope (XPS). The

^a Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China E-mail: jin@chem.ruc.edu.cn; Fax: +86-10-62516444; Tel: +86-10-62514133

^b Environmental Remediation Materials Unit and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan Email: Jinhua.YE@nims.go.jp; Fax: +81-29-860-4958; Tel: +81-29-859-2646

Journal Name

ARTICLE

photocatalytic activity enhancement of α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composites were also studied by the photocatalytic oxidation of IPA, and discussed in detail in this work.

Experimental

2.1 Sample preparation

The micro-rod like α -Bi₂O₃ was prepared by a precipitation method using Bi(NO₃)₃ as the Bi source^{10, 27}. Typically, 10.78 g of Bi(NO₃)₃·5H₂O was dissolved in a 30 mL aqueous solution of HNO₃ (1.5 M) at first, to avoid the hydrolyzation of Bi³⁺ ions. Secondly, the NaOH solution (50% w/v) was added into the solution dropwise until pH > 13, under vigorous agitation. In that process, yellow precipitate was formed. Thirdly, the suspension was heated to 80 °C and kept for 2 hours, and the precipitate was subsequently collected by centrifugation and being washed with deionized water several times. After that, the resultant solid was dried at 120 °C overnight in air. Lastly, the powder was calcined at 450 °C for 5 hours.

The g-C₃N₄ was synthesized by heating the melamine at 520 $^{\circ}$ C for 4 hours in a half-open system, according to the previous report²⁸.

The α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composites were constructed according to our earlier research as follows^{29, 30}: The g-C₃N₄ and microrod-like α -Bi₂O₃ with different weight fractions were thrown into 100 ml alcohol (95%), following with 3 hours' ultrasonication and 24 hours' stirring at room temperature. Before the last calcinations at 450 °C in a half-open system, the products were dried at 100 °C for 12 hours in advance. The weight ratios of g-C₃N₄ and micro-rod α -Bi₂O₃ were represented by n₁ : n₂. The calcination time was set to be 3 hours, 4 hours and 5 hours.

Moreover, the nano α -Bi₂O₃ and β -Bi₂O₃ were synthesized for comparison, using the Bi₂O₂CO₃ as a precursor ³¹.

2.2 Characterizations

The crystal structures of the precursor and Bi2O3 samples were determined with an X-ray diffractometer (X'pert Powder, PANalytical B. V., Netherlands) with Cu - Ka radiation. The IR absorption spectra were obtained with a Fourier transform-infrared (FT-IR) spectrophotometer (IRPrestige-21, Shimadzu Co., Japan). Field-emission electron microscopy (FESEM) was performed to observe the morphologies on a JEOL 6701F microscope. Highresolution transmission electron microscope images were recorded with a high-resolution transmission electron microscope (HRTEM, Tecnai G2F30). The diffuse reflection spectra were measured with an integrating sphere equipped ultraviolet-visible (UV-vis) recording spectrophotometer (UV-2500PC, Shimadzu Co., Japan) using BaSO₄ as reference and the optical absorption spectra were converted from the diffuse reflection spectra according to the Kubelka-Munk equation. X-ray photoelectron spectroscopy (XPS) was performed on an ESCALAB 250Xi spectrometerequipped with 300W Al Ka radiation, while all binding energies were referenced to the C1s peak (284.6 eV) of the surface adventitious carbon.

2.3 Photocatalytic Activity

The photocatalytic oxidations of gaseous IPA were carried out to evaluate the photocatalytic activities of $\alpha\text{-}Bi_2O_3/g\text{-}C_3N_4/\beta\text{-}Bi_2O_3$ composites. The experiments were carried out under the visible light irradiation (420 nm $\leq\lambda\leq800$ nm). The light source was a 300 W Xe-arc lamp (10 A imported current, focused through a 50 \times 50 mm²

shutter window) equipped with wavelength cut-off filters and a water filter. 50 mg of α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ powder was bespread uniformly on a glass dish with an area of 9 cm². A certain amount of gaseous IPA (~1400 ppm) was injected into the vessel and kept for 2 hour in the dark before irradiation. During the irradiation by visible light, 0.5 ml of the gas was sampled everyone 1 hour intervals. The products were analyzed with a gas chromatograph (GC-2014, Shimadzu, Japan) with a flame ionization detector (FID). Meanwhile, the g-C₃N₄, nano α -Bi₂O₃ and β -Bi₂O₃ were also used to photooxide the IPA for comparison under the same conditions. Furthermore, the adsorptions of IPA in dark over α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composites were also carried out without light irradiation.

Results and discussion

3.1 Components of α-Bi₂O₃/g-C₃N₄/β-Bi₂O₃ composites

The components of the prepared α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composites were identified by XRD and FT-IR spectra.

The crystal structures of the composites were identified by XRD pattern in Fig. 1. All the samples were compared with the ICSD file of No. 41-1449 and No. 27-0053, respectively corresponding to α -Bi₂O₃ and β -Bi₂O₃³². The results indicate that, the crystal structures obviously changed with the increase of the weight ratio of g-C₃N₄ in the mixture of α-Bi₂O₃/g-C₃N₄, as well as the calcination time. Firstly, with the increase of the weight ratio of g-C₃N₄, we found that the characteristic peaks of β -Bi₂O₃ become more and more strong, evidences that a-Bi2O3 gradually changes to β -Bi₂O₃. Then for the sample of 9.5:0.5, when the calcination time prolonged from 3 hours to 4 hours, almost no characteristic peaks of α -Bi₂O₃ is observed in the XRD spectrum; when the calcination time was further prolonged to 5 hours, the characteristic peaks of α -Bi₂O₃ appear again. The XRD results show that both α -Bi₂O₃ and β -Bi₂O₃ exist in the composites. However, we can't see any characteristic peaks derived from g-C₃N₄ in the XRD spectra, so we can't get any information of g-C₃N₄ by XRD. Therefore, the FT - IR was used to prove the existence of g-C₃N₄ in the composite samples. As shown in Fig. 2, we can clearly see the vibration peaks (820 cm⁻¹, 890 cm⁻¹) 1000-1900 cm⁻¹, 1965 cm⁻¹, 2054 cm⁻¹, 2141 cm⁻¹, and 2800-3700 cm^{-1}) derived from g-C₃N₄ in all the composite samples.

Fig. 1 XRD spectra of all the α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composite samples

Journal Name ARTICLE

Fig. 2 FT-IR absorption spectra of all the $\alpha\text{-}Bi_2O_3/g\text{-}C_3N_4/\beta\text{-}Bi_2O_3$ composite samples

Detailedly, we also measure the practical weight ratios of the respective α -Bi₂O₃, β -Bi₂O₃ and g-C₃N₄, in α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composites. The weight ratios of the g-C₃N₄ were measured through the mass discrepancy before and after the calcination process of every α -Bi₂O₃/g-C₃N₄ mixture samples, because the g-C₃N₄ will dissolves in the presence of a second phase during the calcination processes at 450 °C. The contents of α -Bi₂O₃ and β -Bi₂O₃ in the sequence of as-prepared composites, were obtained by simulating the XRD pattern with standard crystal structures of α -Bi₂O₃ and β -Bi₂O₃ and β -Bi₂O₃, through a Maud program³³. The results were displayed in Table 1.

Table 1 Contents of the α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composites

Content Weight Fraction (%) Sample	α -Bi ₂ O ₃	β-Bi ₂ O ₃	g-C ₃ N ₄
α-Bi ₂ O ₃	100	-	-
β-Bi ₂ O ₃	-	100	-
8.0:2.0-3h	91.15	8.85	< 0.100
8.5:1.5-3h	58.20	33.74	8.060
9.0:1.0-3h	37.86	57.24	4.900
9.5:0.5-3h	1.350	18.46	80.19
9.5:0.5-4h	1.150	47.41	51.44
9.5:0.5-5h	14.16	61.84	24.00
g-C ₃ N ₄	-	-	100

3.2 Micro-morphologies and structures

As we reported in the earlier research, the morphologies of α -Bi₂O₃ was significantly changed when it was heat treated with g-C₃N₄ together¹⁹. In this study, the morphologies of the composites were observed by FE-SEM, as shown in Fig. 3. We found that the morphologies of both α -Bi₂O₃ and g-C₃N₄ have huge changes. As we can see that, the particle size of Bi₂O₃ decreased from micrometer to nanometer, which is the same with our previous report¹⁹. The size of g-C₃N₄ also has some decrease. The mechanism of the

Fig. 3 SEM images of all the $\alpha\text{-}Bi_2O_3/g\text{-}C_3N_4/\beta\text{-}Bi_2O_3$ composite samples

Fig. 4 TEM (A) and HRTEM (B) images of the α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composite samples (9.5 : 0.5 - 3h)

morphology changes has been explained in our earlier report¹⁹.

Further, layered structures of g-C₃N₄ were observed in Fig. 4 (A) with TEM, and Bi₂O₃ particles were packaged in the g-C₃N₄ nanosheets. From the HRTEM image in Fig. 4 (B), we can clearly see the coexistence of α -Bi₂O₃, β -Bi₂O₃ and g-C₃N₄. The amorphous fraction is identified to be g-C₃N₄ nanosheets; the lattice space of 0.4072 nm is attributed to the (020) facet of α -Bi₂O₃; the lattice space of 0.3401 nm is accordance with the (201) crystal planes of β -Bi₂O₃. The TEM and HRTEM images indicate the co-existence of α -Bi₂O₃, β -Bi₂O₃ and g-C₃N₄, as well as good contacts between any two phases of them. In addition, the SEM spectra of nano α -Bi₂O₃ and β -Bi₂O₃ are also displayed in Fig. S1.

3. 3 Energy band structures and optical properties

The energy band structures of α -Bi₂O₃, β -Bi₂O₃ and g-C₃N₄ were studied by the combinations of UV-vis DRS and VB-XPS.

Fig. 5 UV-vis absorption spectra of the as-prepared α -Bi₂O₃, g-C₃N₄ and β -Bi₂O₃; the insets are the corresponding Tauc Plots curves

g-C₃N₄

β - Bi2O3

Journal Name

ARTICLE

Fig. 6 VB-XPS spectra of the as-prepared $\alpha\text{-}Bi_2O_3,$ g-C_3N_4 and $\beta\text{-}Bi_2O_3$

The band gaps of α -Bi₂O₃, β -Bi₂O₃ and g-C₃N₄ were obtained from a Tauc plot spectra, which was transferred from the UV-vis DRS spectra (Fig. 5) through Tauc equation as follows¹⁸:

$$(ahv)^n = A (hv - E_g)$$

In this equation, α , v, A and E_g are the absorption coefficient, light frequency, proportionality constant and band gap. The value of the index n depends on the property of the materials: for the direct band-gap semiconductors, n = 2; for the indirect band-gap semiconductors, n = 1/2. According to the earlier literatures, α -Bi₂O₃³⁴and g-C₃N₄²⁸are indirect band-gap semiconductors; β -Bi₂O₃³⁵is direct band-gap semiconductor. Therefore, the value of n is determined to be 1/2 for α -Bi₂O₃ and g-C₃N₄, and 2 for β -Bi₂O₃. Based on the results, the Tauc plot spectra of $(\alpha hv)^n vs$. photo energy is described as the inset of Fig. 5 The band gaps of α -Bi₂O₃, β -Bi₂O₃ and g-C₃N₄ were estimated to be 2.82 eV, 2.55 eV and 2.72 eV, from the tangent lines.

The energy differences between the Fermi levels and valence bands of α -Bi₂O₃, β -Bi₂O₃ and g-C₃N₄ were measured by VB-XPS (Fig. 6). As shown in Fig. 6, the energy differences between the Fermi levels and valence bands of α -Bi₂O₃ and β -Bi₂O₃ are almost the same, and the value is + 1.35 eV, while this value of g-C₃N₄ is + 1.93 eV. According to the literatures, the Fermi levels of α -Bi₂O₃, β -Bi₂O₃ and g-C₃N₄ are respective +1.73 eV³⁶, + 0.54 eV⁶ and - 0.3 eV³⁷.

Combing the values of band gaps, Fermi levels and the energy differences between Fermi level and valence bands, we obtained the energy band structures of α -Bi₂O₃, β -Bi₂O₃ and g-C₃N₄. The specific values are displayed in Table 2.

Table 2 Energy band structures of α-Bi₂O₃, β-Bi₂O₃ and g-C₃N₄

Contents Values Sample	Band gap (eV)	Valence band (eV vs. NHE)	Conduction band (eV vs. NHE)	Fermi Level (eV vs. NHE)
α -Bi ₂ O ₃	2.82	+ 3.08	+ 0.26	+ 1.73
g-C ₃ N ₄	2.72	+ 1.63	- 1.09	+ 0.54
β -Bi ₂ O ₃	2.55	+ 1.89	- 0.66	- 0.30

The optical absorption spectra of α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composites were studied by UV-vis DRS spectra (Fig. 7). We found that with the weight ratio decrease of α -Bi₂O₃ in α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composites, the visible light absorption intensity during 420

Fig. 7 UV-vis absorption spectra of the $\alpha\text{-}Bi_2O_3/g\text{-}C_3N_4/\beta\text{-}Bi_2O_3$ composite samples

nm to 550 nm has gradual increase and a red shift. According to the UV-vis DRS results, the light absorption region is greatly enhanced by the constructions of α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composites.

3.4 Formation Mechanism

As we know, β -Bi₂O₃ is not stable at room temperature, but it is formed in this work. It was reported that, the surface-coordinated organic ligands and CO₃²⁻ can lower the surface energy of NaNbO₃ and make it stable at room temperature³⁸. Therefore, we speculate that the CO₃²⁻ and g-C₃N₄ have the same effect for the stabilization of β -Bi₂O₃ at room temperature.

In order to understand the formation mechanism of α-Bi₂O₃/g- C_3N_4/β -Bi₂O₃ composites and prove our speculation, we studied the surface chemical states of the composite samples, g-C₃N₄ and α -Bi₂O₃ by XPS spectra. In Fig. 8, the high resolution XPS spectra of C1s, N1s, Bi4f and O1s were studied in detail. From Fig. 8 (A), two type of carbon were observed in all the three samples. For α -Bi₂O₃, the two types of carbon were attributed to the surface adventitious carbon (286.4 eV) and carbon in CO_3^{2-} group (288.261 eV), according to the earlier literatures^{39, 40}. For g-C₃N₄ and α-Bi₂O₃/g- C_3N_4/β -Bi₂O₃ composite, the two types of carbon were attributed to the surface adventitious carbon (286.4 eV) and $g-C_3N_4^{25}$ (287.935 eV and 287.985 eV). From Fig. 8 (B), three types of nitrogen were observed in the samples of $g-C_3N_4$ and $\alpha-Bi_2O_3/g-C_3N_4/\beta-Bi_2O_3$ composite, and they are all derived from g-C₃N₄. They are respectively assigned to tertiary nitrogen [N-(C)₃] groups (398.443 eV and 398.489 eV), sp²-hybridized nitrogen (=NH, -NH₂) (399.964 eV and 400.147 eV), and the charging effects (404.228 eV and 404.326 eV)²⁵. In Fig. 8 (C), the characteristic peaks of Bi^{3+} were observed in both the α -Bi₂O₃ and α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composite samples, and ascribed as Bi4f_{5/2} (163.786 eV and 163.889 eV)and $Bi4f_{7/2}$ (158.479 eV and 158.583 eV)²². In Fig. 8 (D), the three peaks of oxygen in the samples of α -Bi₂O₃ and α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composite were attributed to Bi - O - Bi²¹ (529.385 eV and 530.817 eV), CO_3^{2-} group (530.540 eV and 529.817 eV) ⁴¹and H - O - H (532.234 eV)⁴², while only H - O - H coordination peak of oxygen was observed in $g-C_3N_4$ samples. Meanwhile, the CO_3^{2-} on the surface of α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composite sample (52%) is higher than that of α -Bi₂O₃ (36%). In addition, we also found that Journal Name ARTICLE

Fig. 8 XPS spectra of (A) C1s; (B) N1s; (C) Bi4f; (D) O1s for α-Bi₂O₃, α-Bi₂O₃/g-C₃N₄/β-Bi₂O₃, and g-C₃N₄

the binding energies of all the peaks in α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composite sample are slightly higher than those in α -Bi₂O₃ or g-C₃N₄, except the C1s of surface adventitious carbon and O1s of H - O - H. This is probably because of the interaction between α -Bi₂O₃, β -Bi₂O₃ and g-C₃N₄. The XPS results indicate the co-existence of g-C₃N₄ [Fig. 8 (A)] and CO₃²⁻ [Fig. 8 (D)] on the surface of α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composites.

As a result, we proposed the formation mechanism of α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composites as described in Scheme 1. Step 1: α -Bi₂O₃ transfers to β -Bi₂O₃ at the temperature of 450 °C, while g-C₃N₄ slowly dissolves into CO₂ at about 400 °C¹⁹; Step 2: The released CO₂ corrodes the surfaces of the microrod-like α -Bi₂O₃ by reacting with it, and produces Bi₂O₂CO₃, forming g-C₃N₄/Bi₂O₂CO₃ composite; Step 3: The Bi₂O₂CO₃ crystals further decompose into β -Bi₂O₃ and CO₂ at this temperature, forming g-C₃N₄/ β - Bi₂O₃ composites; Step 4: partial β -Bi₂O₃ transfers to α -Bi₂O₃ during the cooling process due to the deprotection of g-C₃N₄ and CO₃²⁻, while the other left β -Bi₂O₃ crystals can keep its crystal structures during this process. After these 4 steps, α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composites were successfully constructed. This process was partially proved by the combination of TG-DTA and XRD in our earlier research¹⁹, and supported by the XPS results in this study.

3.5 Photocatalytic Activity

The photocatalytic activities of α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composites were evaluated by the photocatalytic oxidation of gaseous IPA under visible light irradiations. The production of acetone, the unique product of this reaction, was monitored to judge the photocatalytic activities. From Fig. 9 (A), we can see that the sample of 9.5:0.5-3h shows the highest photocatalytic activity in this reaction. The production of acetone over it is almost 1200 ppm after 8 hours' irradiation, and it is almost twice more than that over β -Bi₂O₃ (550 ppm), 5 times more than that over nano α -Bi₂O₃ (244 ppm), and 14 times more than that over g-C₃N₄ (84 ppm). Meanwhile, other α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composite samples also shows better photocatalytic activity than the three semiconductors

Scheme 1 The formation mechanism of α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composite samples from α -Bi₂O₃ and g-C₃N₄.

separately, except the samples of 8.0:2.0 - 3h and 9.5:0.5 -5h. Furthermore, the oxide reaction of IPA over α -Bi₂O₃/g-C₃N₄/β-Bi₂O₃ composite (9.5:0.5 - 3h) in dark was also carried out for comparison. The result in Fig. 9 (B) shows that little acetone was produced under this condition.

We note that, β -Bi₂O₃ shows the highest photocatalytic activity in the IPA oxidation among the three semiconductors, α -Bi₂O₃, β -Bi₂O₃ and g-C₃N₄. Meanwhile, the composite sample of 9.5:0.5-4h shows the highest visible light absorption (Fig. 7), and the composite sample of 9.5:0.5-5h contains the most β -Bi₂O₃ among all the

Fig. 9 (A) Photocatalytic oxidation of gaseous IPA over α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composite samples; (B) Control experiments of the gaseous IPA oxidation

Journal Name

ARTICLE

Scheme 2 The photocatalytic oxidation mechanism of IPA over α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composite samples.

composite samples. However, both of them are not the sample with the highest photocatalytic activity, but the composite sample of 9.5:0.5-3h shows the highest photocatalytic activity. In order to explain this phenomenon, we need to investigate it in another way. When we analyzed the contents of every composite sample once again (Table 2), we got the results. From Table 1, we found that, for the composite sample of 9.5:0.5-3h, the weight ratio of g-C₃N₄ is the most, and α -Bi₂O₃ is almost negligible in this composite sample. So we think that g-C₃N₄ and β -Bi₂O₃ play the important role in the photocatalytic performance of the composite samples, and the formation of g-C₃N₄/ β -Bi₂O₃ heterojunction is the crucial factor of the high photocatalytic activity.

According to the previous report, the photooxidation of IPA to acetone undergoes two typical reaction processes as follows⁴³⁻⁴⁵:

- (1) h^+ oxidation : CH₃CHOHCH₃ + $h^+ \rightarrow$ CH₃COCH₃ + 2H⁺ + e^-
- (2) O₂ oxidation : CH₃CHOHCH₃ + e^- + O₂ + H⁺ \rightarrow CH₃COCH₃ + HO⁺ + H₂O

Therefore, the photocatalytic reaction mechanism can be described as Scheme 2. Under the visible light irradiation, both g- C_3N_4 and β -Bi₂O₃ are excited and generated the photoexcited electron and hole pairs. Since the conduction band potential of g- C_3N_4 is more negative than that of β -Bi₂O₃, the photogenerated electrons on the surface of g- C_3N_4 particles will transfer to β -Bi₂O₃ will transfer to g- C_3N_4 , because the valence band potential of β -Bi₂O₃ is more positive than that of g- C_3N_4 . These two processes are both based on the well built heterojunction between g- C_3N_4 and β -Bi₂O₃. Therefore, the photogenerated electrons and holes are separated effectively in the space, inducing a smaller possibility to recombine. Combing with the increased visible light absorption and decreased particle size of the sample, the photocatalytic activity is efficiently enhanced.

Conclusion

In conclusion, this work successfully synthesized α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composites in one step with an in situ method from α -Bi₂O₃ and g-C₃N₄. Based on the earlier researches, the formation mechanism of α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃ composites were studied and discussed in detail. The results show that CO₃²⁻ and g-C₃N₄ on the surface of β -Bi₂O₃ greatly improves its thermal stability at room temperature, inducing the formation of α -Bi₂O₃/g-C₃N₄/ β -Bi₂O₃

composites. More interestingly, the photocatalytic activity for the IPA oxidation is significantly enhanced by the recombination of α -Bi₂O₃, g-C₃N₄, and β -Bi₂O₃. According to the analysis on the practical weight ratio of everyone component, the surface heterojunction between g-C₃N₄ and β -Bi₂O₃ was considered to be the main reason of the photocatalytic activity enhancement. The results and discussions in this study reveal the significant effect of g-C₃N₄ on the crystal structures and photocatalytic activity of α -Bi₂O₃.

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (21273281), National Basic Research Program of China (973Program, No. 2013CB632405), the World Premier International Research Center Initiative (WPI Initiative) on Materials Nanoarchitectonics (MANA), MEXT, Japan, and the National Scholarship Fund.

References

- 1. A. Fujishima and K. Honda, Nature, 1972, 238, 37-38.
- S. J. A. Moniz, C. S. Blackman, C. J. Carmalt and G. Hyett, J. Mater. Chem., 2010, 20, 7881-7886.
- M. Drache, P. Roussel and J.-P. Wignacour, *Chem. Rev.*, 2007, 107, 80-96.
- X. Lin, J. Xing, W. Wang, Z. S. F. Xu and F. Huang, J. Phys. Chem. C, 2007, 111, 18288-18293.
- M. Ge, Y. Li, L. Liu, Z. Zhou and W. Chen, J. Phys. Chem. C, 2011, 115, 5220-5225.
- H. Fan, H. Li, B. Liu, Y. Lu, T. Xie and D. Wang, ACS Appl. Mater. Interfaces, 2012, 4, 4853-4857.
- Z. Ai, Y. Huang, S. Lee and L. Zhang, J. Alloys Compd., 2011, 509, 2044-2049.
- X. Liu, J. Liu, H. Zheng, X. Liu, G. Li and W. Zhang, *Appl. Sur. Sci.*, 2012, **258**, 4240-4245.
- S. Anandan, G.-J. Lee, P.-K. Chen, C. Fan and J. J. Wu, *Ind. Eng. Chem. Res.*, 2010, 49, 9729-9737.
- A. Hameed, T. Montini, V. Gombac and P. Fornasiero, J. Am. Chem. Soc., 2008, 130, 9658-9659.
- H. Cheng, B. Huang, J. Lu, Z. Wang, B. Xu, X. Qin, X. Zhang and Y. Dai, *Phys. Chem. Chem. Phys.*, 2010, **12**, 15468-15475.
- M. Schlesinger, S. Schulze, M. Hietschold and M. Mehring, Dalton Trans., 2013, 42, 1047-1056.
- J. Wang, X. Yang, K. Zhao, P. Xu, L. Zong, R. Yu, D. Wang, J. Deng, J. Chen and X. Xing, *J. Mater. Chem. A*, 2013, 1, 9069-9074.
- 14. H. Y. Jiang, K. Cheng and J. Lin, *Phys. Chem. Chem. Phys.*, 2012, 14, 12114-12121.
- 15. J. Eberl and H. Kisch, *Photochem. Photobiol. Sci.*, 2008, 7, 1400-1406.
- T. Saison, N. Chemin, C. Chan'eac, O. Durupthy, V. Ruaux, L. Mariey, F. O. Maug'e, P. Beaunier and J.-P. Jolivet, *J. Phys. Chem. C*, 2011, **115**, 5657-5666.
- L. Zhou, W. Wang, H. Xu, S. Sun and M. Shang, *Chem. Eur. J.*, 2009, **15**, 1776-1782.
- 18. F. Qin, G. Li, R. Wang, J. Wu, H. Sun and R. Chen, *Chem. Eur. J.*, 2012, **18**, 16491-16497.
- 19. H.-Y. Jiang, G. Liu, P. Li, D. Hao, X. Meng, a. Tao Wang, J. Lin and J. Ye, *RSC Adv.*, 2014, **4**, 55062-55066.
- D. T. Sawyer and J. S. Valentine, Acc. Chem. Res., 1981, 14, 393-400.
- 21. H.-Y. Jiang, G. Liu, M. Li, J. Liu, W. Sun, J. Ye and J. Lin, *Appl. Catal. B-Environ.*, 2015, **163**, 267-276.

Journal Name ARTICLE

- 22. Z. Bian, J. Zhu, S. Wang, Y. Cao, X. Qian and H. Li, J. Phys. Chem. C, 2008, **112**, 6258-6262.
- 23. Z. Mei, S. Ouyang, D. M. Tang, T. Kako, D. Golberg and J. Ye, *Dalton Trans.*, 2013, **42**, 2687-2690.
- 24. Y. Wang, X. Wang and M. Antonietti, Angew Chem. Int. Ed., 2012, 51, 68-89.
- 25. H. Li, J. Liu, W. Hou, N. Du, R. Zhang and X. Tao, *Appl. Catal. B-Environ.*, 2014, **160-161**, 89-97.
- X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, *Nat. Mater.*, 2008, 8, 76-80.
- H.-Y. Jiang, J. Liu, K. Cheng, W. Sun and J. Lin, J. Phys. Chem. C, 2013, 117, 20029-20036.
- 28. L. Huang, H. Xu, Y. Li, X. Cheng, J. Xia, Y. Xu and G. Cai, *Dalton Trans.*, 2013, 42, 8606-8616.
- 29. S. Chen, Y. Hu, L. Ji, X. Jiang and X. Fu, *Appl. Sur. Sci.*, 2014, 292, 357-366.
- 30. F. Qin, H. Zhao, G. Li, H. Yang, J. Li, R. Wang, Y. Liu, J. Hu, H. Sun and R. Chen, *Nanoscale*, 2014, 6, 5402-5409.
- D. Barreca, F. Morazzoni, G. Andrea Rizzi, R. Scotti and E. Tondello, *Phys. Chem. Chem. Phys.*, 2001, 3, 1743-1749.
- 32. H. A. Harwig, Z. Anorg. Allg. Chem., 1978, 444, 151-166.
- 33. P. Li, H. Xu, L. Liu, T. Kako, N. Umezawa, H. Abe and J. Ye, J. Mater. Chem. A, 2014, 2, 5606-5609.
- 34. G. Lin, D. Tan, F. Luo, D. Chen, Q. Zhao, J. Qiu and Z. Xu, J. Alloys Compd., 2010, 507, L43-L46.
- K. Brezesinski, R. Ostermann, P. Hartmann, J. Perlich and T. Brezesinski, *Chem. Mater.*, 2010, 22, 3079-3085.
- 36. C. Li, J. Zhang and K. Liu, Int. J. Electrochem. Sci., 2012, 7, 5028-5034.
- 37. F. Yang, V. Kuznietsov, M. Lublow, C. Merschjann, A. Steigert, J. Klaer, A. Thomas and T. Schedel-Niedrig, *J. Mater. Chem. A*, 2013, 1, 6407-6415.
- 38. P. Li, S. Ouyang, Y. Zhang, T. Kako and J. Ye, J. Mater. Chem. A, 2013, 1, 1185-1191.
- P. Madhusudan, J. Yu, W. Wang, B. Cheng and G. Liu, *Dalton Trans.*, 2012, 41, 14345-14353.
- 40. H. Lu, L. Xu, B. Wei, M. Zhang, H. Gao and W. Sun, *Appl. Sur. Sci.*, 2014, **303**, 360-366.
- 41. X. Xiao, R. Hu, C. Liu, C. Xing, C. Qian, X. Zuo, J. Nan and L. Wang, *Appl. Catal. B-Environ.*, 2013, **140**, 433-443.
- 42. A. Makarowicz, C. L. Bailey, N. Weiher, E. Kemnitz, S. L. M. Schroeder, S. Mukhopadhyay, A. Wander, B. G. Searle and N. M. Harrison, *Phys. Chem. Chem. Phys.*, 2009, **11**, 5664-5673.
- 43. F. Arsac, D. Bianchi, J. M. Chovelon, C. Ferronato and J. M. Herrmann, *J. Phys. Chem. A*, 2006, **110**, 4202-4212.
- 44. Y. Ohko, K. Hashimoto and A. Fujishima, J. Phys. Chem. A, 1997, 101, 8057-8062.
- 45. S. Ouyang and J. Ye, J. Am. Chem. Soc., 2011, 133, 7757-7763.

345x173mm (120 x 120 DPI)