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Highlights: 

• Importance of 2D QSAR in drug discovery.  

• Lower number of descriptors containing models shows best statistical parameters. 

• Number of involved scaffolds in models affecting the statistical values. 

 

Abstract: 

Based on the linear heuristic method, Quantitative Structure Activity Relationship was developed for the 

prediction of available in vitro anticancer activity, based on the linear heuristic method. Each type of 

compound was represented by several calculated structural descriptors. Most of the computational studies 

are carried out targeting insufficient number of cell lines. The predictive models were built for 482 

compouds with experimental data against 30 different cancer cell lines. Strong statistical analysis shows a 

high correlation, cross validation coefficirnt values and provides a range of QSAR equation. Quantum 

chemical descriptors were found in 42 out of 46 models, electrostatic in 16, topological in 12, geometrical in 

7, thermodynamical in 5 and constitutional in 7. It is intresing to note that in most cases three descriptor 

based models are relevant. Pancreatic cancer cell lines show best statistical values (average R
2
= 0.87) 

followed by leukaemia cancer (average R
2
= 0.86). 

 

1. Introduction: 

Cancer is a multifactor disease of striking significance in the world today. It has become second leading 

cause of death among human population [1-2] after cardiovascular diseases. It ranks high among human 

diseases and has become the second reason of mortality in the world. Therefore the development of potent 

and precise anticancer agents is urgently in need [3] and still a major challenge to medicinal chemistry 

research. Researchers have given attention towards the discovery of novel anticancer agents due to lack of 

extensive range of anticancer drugs to take advantage on new discoveries concerning tumour genesis, tied 

with the exclusive growth pattern of various repertoires of cancer [4] but due to acquisition by cancer cells 

Page 2 of 30RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



3 

 

of multiple-drug resistance, current anticancer chemotherapy still suffers. A vast increase in the number of 

feasible molecular targets, the focus has shifted from target identification to target validation [5]. 

The main sources of lead compounds for drug development are natural products 

because of their intrinsic biorelevance presence of small hetero-aromatic compounds they have shown 

unexpected biological properties and became basic for the whole number of innovative medicinal agents [6]. 

The collection of these compounds is dramatically higher than those resulting from high throughput screens 

of combinatorial libraries [7-9]. Preparation of libraries based on natural products requires sophisticated and 

laborious synthetic sequences. In addition, therapeutic development of promising leads resulting from these 

libraries is significantly impeded by the problem of large-scale compound supply. Because of the improved 

interest in natural products by the failure of alternative methods to provide many therapeutic lead 

compounds and by the pharmaceutical industry these challenges are becoming increasingly more pertinent. 

[10] 

A pharmaceutical industry has to make sure the safety, quality, and efficacy of a 

marketed drug by subjecting the drug to a range of analysis [11]. To acquire the complete object of drug 

discovery it takes long time approximately 12 years [12] and was projected to high cost for marketed drug 

[13]. Due to this expensive and lengthy process may cause failure of drug development. Thus, it will be 

useful to predict these failures prior to the clinical stage in order to reduce drug development costs [14].  In 

the drug development stage to filter out potential failures various methods such as in vitro, in vivo or in 

silico methods are being used. Quantitative structure–activity relationship (QSAR) model is an example of 

an in silico method, which can be used to understand drug action, designing of new compounds, and screen 

chemical libraries [15-18]. Combinatorial approaches is a influential tool in selection to speed up drug 

discovery and with different mechanism of action this method is being adopted to cure the cancer [19-20]. 

QSAR has become crucial into the molecular interpretation of biological properties [21-26]. This technique 

is the most important tool used in analogue-based drug design and has been broadly used for calculation of 
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assorted properties like carcinogenicity [27], ADME [28], stability [29], toxicity [30-31],  retention time 

[32]  and other physicochemical properties apart from the biological activity [33-36]. QSAR method make 

possible the theoretical prediction of structures with desired property values by combining the QSAR 

method with pattern recognition techniques. In lead optimization, development of QSAR using various 

physicochemical descriptors has been a vital task. [37]. The use of such multiple QSAR to derive 

mechanistic approach can be illustrated by a comparison of the experimental data available on the 

anticancer agents. Computational methods aid also the rapid generation of new hypotheses moreover the 

design and interpretation of hypothesis-driven experiments in the field of cancer research.  

A number of quantum chemical descriptors (such as molecular orbital, charge and 

dipole moment, etc.), electrostatic descriptors (such as charge based descriptors etc.), geometrical 

descriptors (such as moment of inertia etc.) and thermo dynamical descriptors (such as entropy and 

vibrational frequency etc.) have been effectively applied to set up QSAR models for predicting activities of 

compounds [38-40]. There are a large number of cell lines available for a cancer type, on which in vitro 

biological activity can be executed, but the results of this prediction differ based on the cell line used for 

assay.  As a result it becomes complicated for computational chemists to select experimental data from a 

pool of existing biological activity for a single scaffold type. In vitro experimental data for anti-cancer 

activity is available against many different cell lines. In the literature, QSAR studies are carried out mainly 

for any one particular cell line, which may not be a good approach. The study considering all the available 

experimental data for many different cell lines to build predictive models, will suggest medicinal chemists 

to more reliably design new and potent compounds. Analyses of the obtained descriptors for models against 

all the cell lines, may suggest the significance of a particular type of descriptor in modeling anti-cancer 

activity against a cancer type.  
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2. Computational methods: 

2.1. Data Set for Analysis: 

Reported in vitro assay for 16 different scaffolds against 30 various cell lines for total 482 compounds were 

considered for the present investigation (Table S1-S16 in supplementary file). The inhibitor activities (IC50) 

against different cell lines were converted pIC50 according to the formula pIC50 = - log (IC50). The parent 

structure of all the scaffolds with a number of compounds and name of cell lines are reported in figure-1. 

Table-1 represents the name of scaffolds considered, different cell lines and number of molecules 

corresponding to cell lines [20, 41-54]. 

2.2. Optimization: 

A total of 482 compounds are collected along with their anti-cancer activity against 30 cancer cell lines 

which belong to 16 different chemical scaffolds (Figure-1). All the structures were initially optimized and 

their vibrational frequencies calculated using semi-empirical AM1 procedure using AMPAC 5.0 and 

obtained a Gaussian output files for each structure, which act as a input file for CODESSA program for 

calculating descriptors as well regression analysis. 

2.3. Calculating 2D Descriptors and regression analysis: 

CODESSA (COmprehensive DEscriptors for Structural and Statistical Analysis) version 2.0was used for 

calculating 2D descriptors as well as for regression analysis [55]. Figure-2 provides a schematic illustration 

of work flow accepted for current study to developing and validating various QSAR models. Initially 

approximately 540 default descriptors were calculated and these descriptors were further classified into 

following groups viz. constitutional, topological, geometrical, electrostatic, quantum-chemical and thermo 

dynamical descriptors [37]. 

Two different schemes were opted to develop statistically significant QSAR 

models. In the first scheme, 16 QSAR models were developed for the 16 scaffolds used in this investigation 

(i.e. scaffold-based QSAR models), whereas in the second scheme 30 different QSAR models were 
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developed based on the availability of IC50 values against 30 cancer cell lines by combining all the 

scaffolds (i.e. cell lines-based QSAR models). For all models inter-correlation of the descriptors was also 

tested. Then, models containing highly inter-correlated descriptors were replaced and refined so that the 

descriptors, which employed in a given models are practically orthogonal to each other. 

Large number of descriptors will create confusions and reduce the predictive ability 

and statistical robustness of the model. So we scrupulously developed 3, 4 and 5 descriptor-based models 

for all sets of compounds to find out the minimum number of descriptor defining activity with the help of 

heuristic method which belong to multilinear regression method. This method is better than other methods 

due to its high speed. This method usually produce correlation 2-5 times faster than other methods with 

comparable quality and it has no restriction on the size of data set. On the comparison with four and five 

descriptors-based models, three descriptor-based models were found satisfactory for all sets of compounds. 

For assessing of statistical quality of the models various parameters like R2
, Rcv

2
, AE, s2

, F and t-test are 

essential, which are obtained from the correlation of approximately 540 descriptors (constitutional, 

geometrical, topological, electrostatic, thermo dynamical and quantum chemical etc.) in different 

combination [56]. Where R
2
 value is relative measure of quality of fit, F represents F-ratio between the 

variance of calculated and experimental activity and t-test reflects significance of the parameter within the 

model. The effect of the number of descriptors on the correlation coefficient was examined on the set of 

molecules using heuristic method at 1-10 descriptors. 

3. Results & Discussion:  

By using IC50 values as dependent variables and deliberated properties as independent variables, regression 

was executed for QSAR analysis of various developed models. It would be suitable to obtain insight into the 

physical meaning of the correlation obtained as an output of the regression analysis. To improve the 

anticancer activity of molecules, magnitude of a descriptor could be used as guidelines. 
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Among the developed models sixteen and thirty models were selected on the basis 

of several statistical and other parameters such as R
2
, Rcv

2
, S2, AE values, Fischer’s value (F test) and t-test. 

The relation between number of descriptors and correlation values for all models were experienced by 

correlating 1-10 descriptors individually and presented in Figure 4(a) and 4(b) for cell lines based models 

and scaffold based models respectively. Among all models, three descriptors models were acceptable for 

getting a best correlation because higher than six descriptors models may give high correlation values, 

which may be phony and may not be constructive for the further prediction of biological activities. 

All the models were separated into training set and test set. Developed models, 

which were construct using training set compounds, were used to determine the activity of test set 

compounds. Lower average residual values obtained from both the training and test set is indicate that 

which models have high potential to establish the correlation between the structure and activity. 

Most of the scaffold based QSAR models along with regression equation, cancer 

types and the name of the cell lines are given in Table 2(a). We obtained superior statistically quality for 

most of the scaffolds based QSAR models with higher correlation coefficient values than cell lines based 

models. There is an important reason for high correlation coefficient of these models is contribution of 

lower number of compounds. The range of activity of compounds in three (S2, S10 and S12) models is 

poor. On comparison, models containing broad activity range compounds show high correlation coefficient 

while narrow activity range shows lower correlation coefficient values. Besides these models all the scaffold 

based models with high correlation coefficients values seen rational and can be used for further prediction.  

All QSAR models were cross validated by these high Rcv
2 
values, obtained by leave 

one out method for validation of model Rcv
2 
should be greater than 0.5 [57]. Regression summary for cell 

lines based QSAR models (M4, M6, M9, M11, M17, M16, M18, M19, M23 and M24) show high 

statistically quality (avg. R
2
=0.93, Rcv

2
= 0.89) and appear precious for the existing class of compounds. The 

statistical quality of few other cell lines based models (M1, M7, M12, M14, M25, M26, M28, M29, M5, M3 
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and M30) is also showing moderate statistically quality (avg. R
2
= 0.71 and Rcv

2
= 0.69), and these models 

can also used for the prediction. However some models (M27, M22, M21, M20, M15, M13, M10, M8 and 

M2) cannot be used for the further prediction because of the narrow statistical quality of these models (avg. 

R
2
= 0.58, Rcv

2
= 0.45). The reason for irrerelevant results obtained from these models are probably due to the 

contribution of higher number of compounds and 3 to 5 different scaffolds in these models. The increase in 

the number of descriptors in narrow range activity models is not much effective to improve the statistical 

quality of models and shows that the currently used descriptors are not agreeable for developing the 

structure activity relationship for these models, and one needs to try or develop additional descriptors. 

However the involvements of single scaffold in these models provide a good statistical quality. All details 

for cell lines based models are illustrated in Table. 2 (b) 

The calculated and experimental biological activity with residuals and descriptor 

values for all models are given in Additional file A (Table S18 to S63). Figure. 3(a) & 3(b) are showing the 

plots between experimental and calculated activity values for 15 cell lines and 8 scaffold- based QSAR 

models.  Enduring plots are given in Additional file A (Figure.S1(a) & S1(b)).  According to plots, the 

average residual for test and training set compounds clearly represent that compounds of test set are closer 

to the line compared with the compounds of training set.  

Total 109 descriptors were used in different combinations for development of all 

QSAR models. Figure.5 illustrates the percentage of all types of descriptors involved in models. and this 

figure shows the importance of quantum chemical descriptors (Approx. 63%) followed by electrostatic 

(13.6%), topological (9.6%), geometrical (5.5%), thermo dynamical and constitutional (both in 4.5%). The 

inter-correlation of the descriptors for all the developed models has been done and inter-correlation of all 

descriptors explains that descriptors are rationally orthogonal. In quantum chemical descriptors, charged 

based descriptors such as Max n-n repulsion for a C-N bond, Max e-n attraction for a C-C bond and ESP-

RPCG Relative positive charge etc. present in approximately 40 (approx.37%) models. This was followed 
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by valency-based descriptors and bond order based descriptors presents in approx.23 % and 3% 

respectively. This represents the importance of charged-based, valency-based and bond-order based 

descriptors.  

Cell lines of different cancer types, considered in the current study presented in 

Additional file A (Table. S66). Among them 7 cancer types have experimental data for more than one cell 

line. Thus, comparative statistical significance of various types of cancer has been done and presented in 

Additional file A (Table S66). Pancreatic (R
2
= 0.87, Rcv

2
= 0.73), leukemia (R

2
= 0.86, Rcv

2
= 0.80), renal 

(R
2
= 0.85, Rcv

2
= 0.76), cervical (R

2
= 0.77, Rcv

2
= 0.71), brain (R

2
= 0.77, Rcv

2
= 0.60), lung (R

2
= 0.76, Rcv

2
= 

0.67) and CNS (R
2
= 0.75, Rcv

2
= 0.63) types of cancer have better statistical values compared with other 

types of cancer  such as colon, breast, ovarian, skin, prostate, neuronal, melanoma and heptocellular etc 

(Avg. R
2
=0.60 , Avg. Rcv

2
=0.51). 

4. Conclusion: 

Our motto in this investigation was to biologically evaluate a series for anticancer agents by 

modifying methodically the molecule, in order to explore the SAR of these scaffolds. A total of 46 QSAR 

models, 16 and 30 for different scaffolds and different cell lines respectively, were built to assess the 

predictive power of QSAR models where the number of descriptors is improved from 1 to 10.This study 

reveals that three descriptors - based models are found satisfactory for further prediction and also show that 

quantum chemical descriptors are the most important type of descriptors followed by electrostatic, 

topological, geometrical, thermo dynamical and constitutional descriptors. An analogue-based designing 

approach is important for modeling anti-cancer compounds. Developed models for all experimentally tested 

compounds contain higher correlation coefficient (R
2
), higher cross-validation coefficient (Rcv

2
) values and 

lower average residuals (AE) values. Cell lines in pancreatic cancer average R
2
= 0.87 followed by cell lines 

in leukaemia cancer with average R
2
= 0.86 provided the best statistical values. Although the derived 

Page 9 of 30 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



10 

 

equation is of restricted validity due to the limited size of the training set, this result may prove fruitful in 

predicting new anticancer agents with desired activity. 
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Tables & Figures 

Table.1: Details of scaffolds considered in the study and the cell lines against which their anticancer 

activity was reported along with the number of molecules in each cell lines. 

S.No. Scaffold Name Cell Lines Cancer Type 
No. of 

Compound 
Ref. 

      

S1 Acridine P388 Leukemia 41 [41] 

  LLc Lung 41  

  JLc Leukemia 41  

      

S2 Cantharidine HT-29 Colon 35 [42] 

  SW480 Colon 35  

  MCF-7 Breast 35  

  A2780 Ovarian 35  

  H460 Lung 35  

  A431 Skin 35  

  DU145 Prostate 35  

  BE2-C Neuronal 35  

  SJ-G2 Brain 35  

      

S3 Chalcone ACHN Renal 19 [43] 

  Pancc1 Pancreatic 19  

  Calu1 Lung 19  

  H460 Lung 19  

  HCT116 Colon 19  

      

S4 Tetrahropyrimidine MCF-7 Breast 23 [44] 

      

S5 Isatin HCT116 Colon 32 [45] 

  MCF-7 Breast 32  

      

S6 Isoflavne HCT116 Colon 23 [46] 

      

S7 Nitroalkene HeLa Cervical 22 [47] 

      

S8 Phenazine H69 Lung 18 [48] 

      

S9 Podophyllotoxin HeLa Cervical 30 [49] 

  MCF7 Breast 30  

      

S10 Pyrazole HeLa Cervical 17 [49] 
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  MCF-7 Breast 17  

      

S11 Pyrazoline MCF-7 Breast 20 [50] 

  B16-F10 Melanoma 20  

      

S12 Pyrimidine BEL-7402 Heptocellular 37 [20] 

      

S13 Quinazoline MCF-7 Breast 36 [51] 

  U251 CNS 36  

  SW480 Colon 36  

  H522 Lung 36  

  M14 Melanoma 36  

  SKOV3 Ovarian 36  

  DU145 Prostate 36  

  A498 Renal 36  

      

S14 Quinoxaline MCF-7 Breast 22 [52] 

  H460 Lung 22  

  SF-268 CNS 22  

      

S15 Semicarbazide L120 Leukemia 30 [53] 

      

S16 Stillbene A549 Lung 69 [54] 

  MCF-7 Breast 69  

  HT-29 Colon 69  

  SKMEL-5 Melanoma 69  

  MLM Melanoma 69  
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Table 2(a): Cell line with type of cancer in parenthesis, scaffolds involved, regression summary (regression equation, 

correlation coefficient R
2
, cross validation coefficient Rcv

2
 and average residual) and number of compounds (training 

set TR, and test set TS ) in various scaffolds based QSAR models. 

No. 

Cell lines 

(Type) 

Regression equation R
2 

RCV
2
 AE F S

2
 

# Comp 

TR TE 

S1 

P388 

(Leukemia) 

=-6.2155*VE/T  +  2.3164* WPSA3Q 

+  3.3250*LNMVF + 1.5252 

0.75 0.67 0.35 26.74 0.145 31 9 

S2 
HT29 

(Colon) 

=1.8444* RNB – 3.3083* MaenAC + 

.13180* PMIA + 6.1097 

0.69 0.55 0.12 15.36 0.033 27 8 

S3 
ACHN 

(Renal) 

=7.4622 * FPSA3z – 7.8674*WNSA2z 

– 1.0224* BI + 1.8722 

0.98 0.95 0.05 105.92 0.001 15 4 

S4 
MCF7 

(Breast) 

= -2.0431 * PPSA3z + 2.7466 * 

ZXS/ZXR- 2.0527 * RNCGQ + 3.5395 

0.89 0.73 0.09 29.10 0.009 17 5 

S5 
HCT116 

(Colon) 

=4.1330* RNCl – 2.1896 *RNCSz – 

1.2796 * FNSA2Q -2.7626 

0.77 0.66 0.21 21.31 0.028 23 8 

S6 
HCT116 

(Colon) 

=4.0785* EMiNACC -4.1004 * 

PNSA2Q-  1.4298 EHBCAQ + 2.0450 
0.88 0.82 0.14 31.98 0.018 18 5 

S7 
HeLa 

(Cervical) 

=-9.3376*PMIB – 2.0744* EHDSAQ + 

1.7527 * EMaNACC + 3.8717 

0.85 0.75 0.14 19.85 0.036 15 4 

S8 
H69 

(Lung) 

= 4.7221* MaPCHz – 2.5135 * TE/#A-

T + 2.6179 * MiERIC 

0.96 0.93 0.12 76.93 0.019 14 4 

S9 
HeLa 

(cervical) 

=2.1519 *MiERIN + 3.4050* 

MaREHN - 1.0293 * ABOC – 3.4442 
0.93 0.90 0.12 84.32 0.074 22 6 
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S10 
HeLa 

(Cervical) 

=9.0910* MaenACH -6.2862 * 

HNMVF + 1.2038 * MaPPBO -1.5070 

0.96 0.90 0.15 50.38 0.051 14 3 

S11 
B16-F10 

(Melanoma) 

=-2.7430 *1XGP + 5.4109 * DPSA2z- 

6.9408* EHDSAQ + 3.9304 

0.93 0.88 0.11 41.90 0.012 15 5 

S12 
BEL-7402 

(Melanoma) 

= 2.98993 * HLEG + 1.0598* MaeeRN 

+ 2.9834 * KSI3- 4.0099 

0.70 0.60 0.35 20.86 0.106 32 11 

S13 
M14 

(Melanoma) 

=4.4562* MiERIN – 3.6455 * 

MiAOEP + 1.0863 * MiBON (0.1) + 

1.3577 

0.65 0.56 0.31 15.05 0.215 28 8 

S14 
SF-268 

(CNS) 

=-1.3737 * MaTICC + 1.2771* 

EPNSA3Q-1.2524*MiTICN + 4.8510 

0.74 0.59 0.46 11.22 0.240 17 5 

S15 
L120 

(Leukemia) 

= 1.712 *RNN – 4.0400* MiERIC + 

9.1240* MIA – 4.5014 

0.92 0.89 0.24 71.94 0.055 22 8 

S16 
A549 

(Lung) 

=-1.2148* MaenACC + 5.4537 * 

FNSA1Q – 6.7738* AIC1 

0.48 0.38 0.24 12.46 0.087 49 17 

*R2 is the square of the correlation coefficient and represents the statistical significance of the model. Rcv2 is the cross-validated R2, a measure of the quality of the 

QSAR model. AE is the average of absolute difference between experimental and calculated IC50 values. F is the Fischer statistics, the ratio between explained and 

unexplained variance for a given number of degrees of freedom, thereby indicating a factual correlation or the significance level for QSAR models. S2 is the standard 

deviation. TR is number of molecules in training set and TE is test set molecules. 
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Table 2(b): Cell line with type of cancer in parenthesis, scaffolds involved, regression summary (regression equation, 

correlation coefficient R
2
, cross validation coefficient Rcv

2
, average residual AE) and number of compounds (training 

set TR, test set TS ) in various cell lines based QSAR models. 

No 

Cell line 

(Type) 

Scf. Regression equation R
2 

Rcv
2
 AE F S

2
 

# of comp. 

TR TS 

M1 
A498 

(renal) 

S13 

=-3.3738* MannRCN+-1.2453* 

ASIC1 -1.0807* RNCSz+4.6355 

0.71 0.56 0.62 14.87 0.239 31 5 

M2 
A549 

(Lung) 

S16 

=-1.3066* MaenACC +1.1275* 

PNSA1Q -7.9011* PNSA2z +3.3541 

0.56 0.49 0.27 18.41 0.094 56 10 

M3 
A2780 

(Ovarian) 

S2 

=5.3016* MiNRIO +6.1285* 

HACA1Q-1.222* RPCSz -3.6341 

0.68 0.54 0.22 13.89 0.043 30 5 

M4 
ACHN 

(Renal) 

S3 

=7.4622*FPSA3z -7.8674* 

WNSA2z-1.0224* BI+1.8722 

0.96 0.95 0.05 105.93 0.001 16 3 

M5 
A431 

(Skin) 

S2 

=-7.2276* YZS +1.0111*RI0* 

+7.4112.* MiERIC +2.5462 

0.69 0.59 0.14 13.43 0.036 30 5 

M6 
B16-F10 

(Melanoma) 

S11 

=-1.0251* WPSA1Q -1.7686* 

MiTICS +1.6039* MiNACN +2.7567 

0.94 0.89 0.11 62.56 0.015 17 3 

M7 
BE2-C 

(Neuronal) 

S2 

=-5.0255* XYS/XYR +1.4971* 

MiERIC -6.7892* RNO +5.2368 

0.72 0.63 0.16 16.67 0.030 29 7 

M8 
BEL-7402 

(Heptocellular)

S12 

=2.6386* HLEG -6.0993* WNSA2Q-

4.8693* MiERIN-2.2423 

0.58 0.44 0.31 12.34 0.177 35 10 

M9 
Calu1 

(Lung) 

S3 

=2.2933* A1ERIC -2.3063*SIC1 -

3.0798*YZS +5.2315 

0.93 0.80 0.12 41.25 0.023 16 3 

M10 DU145 S3, =7.0109* MiTICN-7.8249* PNSA1z 0.43 0.32 0.45 11.60 0.307 57 15 
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(Prostate) S13 -2.7692* CHaSz -6.9257 

M11 
H69 

(Lung) 

S8 

=-1.1403* FNSA2z -5.8440* 

ERPCGQ -5.2628* MienACH 

+3.4678 

0.93 0.81 0.13 44.62 0.033 15 3 

M12 
H522 

(Lung) 

S13 

=1.4711*MiPCCz* +2.3775* 

MiBOC(0.1) +8.7939* THCMD-

2.1601 

0.73 0.63 0.24 18.26 0.201 28 8 

M13 
HCT116 

(Colon) 

S3,  

S5, 

S6 

=2.7531* RE/T+3.3081* 

LNMVF+64.6887* ACIC1 -1.0055 

0.59 0.49 0.29 24.10 0.119 60 14 

M14 
Hela 

(Cervical) 

S7, 

S9, 

S10 

=-6.4020*MaBON -

9.5518*MienACN +7.3732NN 

+3.7878 

0.76 0.71 0.40 43.55 0.377 56 11 

M15 
HT29 

(Colon) 

S2, 

S16 

=-6.4490*FNSA2Q+ 1.3955*PP/SD 

+9.1032*MaenAC-1. 6224 

0.30 0.22 0.27 9.54 0.098 81 20 

M16 
JLc 

(Leukemia) 

S1 

=-7.0103*EMaNACH + 

1.5761*HDSA2Q -1.0051* MaeeRC 

+ 1.0507 

0.86 0.82 0.33 44.61 0.069 30 11 

M17 
L120 

(Leukemia) 

S15 

=-4.8986*HDCA2Q + 1.7065 

*WNSA2z – 1.4993 *MienANN + 

6.9159 

0.90 0.84 0.17 43.50 0.066 25 6 

M18 
LLc 

(Lung) 

S1 

=- 1.5310 * ZXS/ZXR + 2.7870 

*ERNCSQ- 6.4016* MiBOC(0.1)+ 

7.9845 

0.83 0.78 0.38 36.82 0.155 32 9 

M19 

M14 

(Melanoma) 
S13 

=-8.1796*NN -5.0035*RNBr 

+1.1723* MiERIC+4.9692 

0.81 0.70 0.25 28.09 0.156 30 6 
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M20 
MCF7 

(Breast) 

S2, S4, 

S5, S9, 

S10,  

S11, 

S13, 

S14,  

S16 

=6.4410*MaeeRC-3.4532* ERPCSQ 

-1.7867*ASIC1 -2.7106 

0.46 0.44 0.55 52.87 0.663 231 45 

M21 
MLM 

(glioblastoma)

S16 

=-8.2245*EFPSA1Q + 1.1671* 

ANRIO -4.4003*EHDSAQ 

0.48 0.40 0.28 14.37 0.124 53 13 

M22 
H460 

(Lung) 

S2, 

S3, 

S14 

=-1.3004* MiPC +6.3227* 

Ma1ERIC+ 2.4755*MaenACO 

0.59 0.49 0.41 19.82 0.152 60 16 

M23 
P388 

(Leukemia) 

S1 

=-3.4460*WPSA1z + 

6.8634*MiTICN + 8.1021*HDCA1Q 

– 9.9755 

0.81 0.73 0.31 31.74 0.0751 32 9 

M24 
Panc1 

(Pancreatic) 

S3 

=1.8296*SIC2+ 3.3629*LNMVF -

1.7681* FPSA3Q-3.0118 

0.87 0.73 0.11 21.63 0.016 16 3 

M25 
SF-468 

(CNS) 

S14 

=2.4189*ABOC-3.9606* ERNCSQ 

+2.4054*EMaNAC -2.3761 

0.74 0.56 0.27 9.38 0.171 18 4 

M26 
SJ-G2 

(Brain) 

S2 

=5.1327*CIC2 +1.5429*AVN 

+2.0716* MiRECN -7.3156 

0.77 0.60 0.13 18.67 0.034 26 9 

M27 
SKMEL-5 

(Melanoma) 

S16 

=-1.2423*HOMO1+4.6277*MaTICH 

– 2.3144*EFHDSA -6.8356 

0.51 0.45 0.22 15.52 0.111 51 15 

M28 

SKOV3 

(Ovarian) 
S13 

=2.7606* MiPCNz -

3.5240*EE+eeRCC 

+1.3856*EFHDCAQ +5.0366 

0.76 0.66 0.28 20.69 0.141 29 7 
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M29 

SW480 

(Colon) 
S2 

=7.0573*MaASEN -  605367* RNCl 

-  1.1217*HDSAQ+1.3202 

0.69 0. 0.27 32.20 0.130 50 15 

M30 

U251 

(CNS) 
S13 

=-1.1620*IOKSE + 

5.3498*EFHBSAQ – 

1.5086*RNN+7.2762 

0.76 0.69 0.31 24.27 0.154 29 7 

* Same as footnote given in Table 2(a) for definition of the statistical parameters as well as other abbreviations. 
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Figure.1: 482 compounds which have IC50 values represented into different scaffolds (S1-S16), the 

number of compounds in each scaffold in parenthesis and different cell lines against which the cytotoxicity 

values were reported (please see Tables S1-S16 in Additional file A for structure of all the compounds with 

their in vitro IC50 values against various cell lines). 
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Figure.2:  Flowchart for methodology accepted for developing and validating QSAR models. 
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Figure.3(a): Plot between experimental and predicted IC50 values for cell lines based QSAR models with 

correlation coefficient and cross validation coefficient for high quality statistical 15 models. 
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Figure.3(b): Plot between experimental and predicted IC50 values for scaffold based QSAR models with 

correlation coefficient and cross validation coefficient for high quality statistical 8 models. 
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4(a).1 4(a).2 

4(a).3 
4(a).4 

4(a).5 4(a).6 

Figure.4(a): Effect of descriptor’s number on the correlation coefficient on the basis of cell line-based 

QSAR models. 
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4(b).2 4(b).1 

Figure .4(b): Effect of descriptor’s number on the correlation coefficient on the basis of scaffold-based 

QSAR models. 
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Figure.5: Percentage of various descriptors involved in QSAR models (See in Additional file A Table S17 for the 

details of all descriptors). 
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