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Abstract 19 

Human liver acts as a homeostatic controller for maintaining the normal levels of plasma 20 

metabolite concentrations by uptake, utilization, storage and synthesis of essential metabolites. 21 

These hepatic functions are orchestrated through a multilevel regulation composed of metabolic, 22 

signaling and transcriptional networks. Plasma macronutrients namely, glucose, amino acids and 23 

fatty acids are known to influence these regulatory mechanisms to facilitate homeostasis. We 24 

composed a regulatory circuit that elicits the design principle behind the metabolic regulation in 25 

liver.We have developed a detailed dynamic model for hepatic metabolism incorporating the 26 

regulatory mechanisms at signaling and transcriptional level. The model was analyzed to capture 27 

the behavior of hepatic metabolic fluxes under various combinations of plasma macronutrient 28 

levels. The model was used to rationalize and explain the experimental observations of metabolic 29 

dysfunctions through regulatory mechanisms. We addressed the key questions such as, how high 30 

carbohydrate diet increases cholesterol and why a high protein diet would reduce it; how high fat 31 

and high protein diet increases gluconeogenesis leading to hyperglycemia; how 32 

TCA(tricarboxylic acid)cycle is impaired through diet induced insulin resistance; how high fat 33 

can impair plasma ammonia balance; how high plasma glucose can lead to dyslipidemia and 34 

fatty liver disease etc. The analysis indicates that higher levels (above 2.5-3 fold) of 35 

macronutrient in plasma results in impairment of metabolic functions due to perturbations in the 36 

regulatory circuit. While higher glucose levels saturate the rate of plasma glucose uptake, higher 37 

amino acids activate glucagon and inhibit IRS(Insulin receptor substrate)through S6K (S6 38 

kinase), whereas higher fatty acid levels inhibit IRS through DAG-PKC (diacylglycerol and 39 

protein kinase C)and TRB3 activation. Moreover the ATP-ADP ratio is reduced under such 40 

conditions and β-oxidation is up-regulated through activation of PPARα (peroxisome 41 

proliferator-activated receptor alpha)leading to reduced anabolic capacity and increased 42 
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cataplerosis in TCA cycle. The above factors together decrease insulin sensitivity and enhances 43 

glucagon effect through underlying signaling and transcriptional network leading to insulin 44 

resistance in liver. Such a metabolic state is known to result in diabetes and non-alcoholic fatty 45 

liver disease. 46 

Introduction 47 

The plasma homeostasis  of most of the vital metabolites is maintained by the interventions of 48 

hepatic metabolism (1,2).The versatility of the central metabolic pathway in liver, enables it to 49 

interconvert the metabolites and maintain hepatic energy supply when required(3,4).Due to the 50 

non-linear nature of the effect of glucose, amino acids and fatty acids on insulin and glucagon 51 

secretions and subsequent signaling pathway, it is difficult to predict the metabolic changes that 52 

can be induced through different macronutrient compositions in diet.It is long known that dietary 53 

and behavioral patterns of individuals are responsible for lifestyle diseases and the underlying 54 

changes in the metabolic status(5). Several experimental investigations over the last two decades 55 

have reported the effect of variation in dietary composition on hepatic metabolism in mice, rats, 56 

hamsters and humans (6–14).  However, such studies do not provide a mechanistic explanation 57 

for the phenotypic observations such as,  how a high fat and high protein diet increases 58 

gluconeogenesis and hyperglycemia; How a high carbohydrate diet increases cholesterol levels; 59 

How a high protein-low fat diet can reduce cholesterol synthesis;  How high fat diet induce 60 

defects in TCA flux leading to an insulin resistance state; How a high fat diet increases plasma 61 

ammonia levels; How high plasma fat and protein levels can affect hepatic glucose release 62 

leading to hyperglycemia; How high glucose levels can affect hepatic fatty acid uptake and lead 63 

to dyslipidemia and NAFLD (non-alcoholic fatty lever disease) etc. 64 
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Our aim of this study was to develop a mechanistic model to answer these questions in a 65 

regulatory perspective.To analyze these effects we developed a mathematical model 66 

incorporating the regulatory circuit in the hepatic metabolism. Unlike the other models in 67 

literature, this is a first effort in literature to integrate the regulatory circuit comprising of 68 

signaling and transcriptional network with metabolic network. This would enable to rationalize 69 

the phenotypic responses and associated disease states through a regulatory perspective.  70 

The developed model was used to obtain steady state fluxes for various metabolic reactions in 71 

response to variation in plasma metabolite levels. The analysis reveals that extremely high levels 72 

of fatty acids and amino acids can reduce insulin sensitivity compromising the anabolic capacity 73 

of insulin and consequently leading to a metabolic state that represents insulin resistance. Certain 74 

combinations in the levels of macronutrients would result in metabolic fluxes that represent a 75 

diabetic state wherein the hepatic glucose release, gluconeogenesis and lipolysis are active even 76 

under high insulin levels (15). Conversely, under low glucose conditions (higher physical 77 

activity and exercise) where a catabolic state is anticipated, with increasing circulating levels of 78 

fatty acids and triglycerides reduces the catabolic capacity. Whereas, higher amino acids would 79 

help in increasing the overall catabolic rate and facilitate higher rate of glucose release. Thus, the 80 

study highlights the metabolic states attained due to various levels of macronutrients in plasma 81 

and subsequent complexity in the regulation that leads to disease states. 82 

Regulatory Circuit 83 

Apart from being used as metabolic substrates,plasma macronutrients (glucose, amino acids and 84 

lipids)act as global regulators of metabolic pathways(16,17). The regulatory actions are mediated 85 

by hormones that are triggered by sensing these metabolites through pancreas. The plasma levels 86 

of these macronutrients are known to influence the secretion of hormones namely, insulin and 87 
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glucagon (18–20). The hormones (insulin and glucagon) further activate specific signaling 88 

pathways that eventually influence the activity of the downstream enzymes that catalyze 89 

metabolism. These macronutrients also regulate the signaling components and transcriptional 90 

factors that regulate gene expression mediated by insulin and glucagon in a highly nonlinear 91 

manner (21–23). These effects of macronutrients on hormonal secretion, signaling pathways and 92 

transcriptional factors result in a metabolic regulatory pattern that varies with different levels of 93 

macronutrients present in the plasma. The interactions and crosstalk between the signaling, 94 

transcription and metabolic pathways (as reported in several bits and parts in literature) were 95 

used to develop a comprehensive regulatory circuit. While glucose enhances insulin secretion 96 

and reduces glucagon secretion, amino acids have a tendency to enhance the secretion of both 97 

insulin and glucagon at different thresholds  (24–26). Fatty acids and triglycerides also influence 98 

insulin secretion (27). Although fatty acids increase insulin secretion, it inhibits insulin signaling 99 

beyond a certain threshold (28,29). The regulatory mechanisms of these macronutrients at 100 

multiple levels results in a highly non-linear metabolic flux landscape based upon the different 101 

quantities of these macronutrients in the diet. This leads to a complex interplay of metabolites, 102 

signaling proteins and gene expression that decides the cellular metabolic state.The schematic of 103 

the interactions between macronutrients, hormones and signaling is shown in Figure (1). The 104 

detailed molecular network of the regulatory pathways is depicted in S1 Fig.1*.  105 
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 106 

Figure 1   The Schematic of the interactions between plasma macronutrients (glucose, amino 107 

acids and fatty acids) on pancreatic hormones (insulin and glucagon) and metabolic regulatory 108 

signaling pathways. 109 

Results 110 

Model Development 111 

In order to provide an explanation to the experimental observations, a detailed model was 112 

developed incorporating hepatic metabolism (see Fig.2) and its regulation through hormonal 113 

signaling and transcriptional network as shown in figure 1.In our study, we mainly concentrate 114 

on the effects of plasma glucose, amino acids and fatty acid concentration on the hepatic 115 

metabolism and explain several observed phenotypic responses to different dietary conditions 116 

from a regulatory perspective. Moreover, this is the first time in literature, that we have 117 
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integrated the signaling and transcriptional effects with metabolism and have analyzed the effect 118 

of plasma macronutrient concentration on the tissue metabolism. However, it should be noted 119 

that there are several models that specifically model signaling or the metabolic pathways 120 

independently (30–41).We have integrated these several published models as components of our 121 

comprehensive modelalong with a module for whole body plasma metabolite homeostasis.We 122 

applied a system level approach that is composed of four modules such as blood, metabolism, 123 

signaling and transcription. The modeling framework involved representation of biological 124 

pathways by mathematical functions given by mass action, Michalis-Menten and Hills kinetic 125 

functions. A mass balance was performed on the network to obtain the ordinary differential 126 

equations to capture the dynamics of each state variable in the system. The overall model is 127 

composed of 272 rate equations, 170 state variables and 801 parameters. For details on 128 

development of each module and integration see methodology section. The model was developed 129 

and simulated using Matlab 2014b (mathworks.com). 130 
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 131 

Figure 2 The Schematic of the metabolic network of the Hepatic Metabolism used in the model. 132 

Model Calibration 133 

The model was calibrated from the source/component models referred from the literature. The 134 

parameters for hepatic metabolism were extracted from Konig et al. 2012 and Xu et al. 2011 (38, 135 

42), for insulin signaling from Sedaghat et al 2002(43), for glucagon signaling from Xu et al. 136 

2011 and Mutalik et al 2005(42, 44), for mTOR signaling from Vinod and Venkatesh 2009(45) 137 

,and Insulin secretion kinetics from Dalla Mann et al 2007(46). We tried to retain the reported 138 

parameter values from the source models allowing minimal deviation in them. The parameters 139 
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for the model integration and optimization were estimated by the authors using optimization 140 

algorithms in Matlab. We used modular partial calibration methodology wherein each subsystem 141 

was optimized separately to a desired response and further integrated and re-calibrated to yield 142 

the similar optimal solutions. 143 

Model Validation 144 

The model was validated by obtaining the dynamic concentration profiles of various metabolites 145 

and signaling molecules for resting state during 24hr fasting condition and comparing it with the 146 

literature data and the simulation results of the source models(SeeS1 file FiguresM1, M2 (I),M2 147 

(II) and M2 (III)). The model was validated to capture the reported qualitative behavior of the 148 

concentration profiles while the quantitative information was retained by matching the fold 149 

changes or the observed rates over the time frames.For most of the concentration profiles we 150 

used human data reported in literature;however we resorted to thescaled data from other animal 151 

models such as mouse and rats in the instances of lacking human data. 152 

The dynamic profiles indicate that the storage compounds such as glycogen and triglycerides are 153 

degraded to maintain the other metabolites at a homeostatic level. The values matched the known 154 

homeostatic levels reported in literature (See S1 file FiguresM2 (I) and M2 (II)). It can be noted 155 

that the regulators of the storage compounds, for example, mTOR (mammalian target of 156 

rapamycin) for Amino acids, GSK3 (glycogen synthase kinase 3) for glycogen and SREBP 157 

(sterol response element binding protein) and PPARα and PPARβ (peroxisome proliferator-158 

activated receptoralpha and beta)for triglycerides, also show unsteady behavior causing the 159 

storage compounds to be degraded. The key signaling molecules in the insulin signaling pathway  160 

attain a basal steady state since the pathway is not operational under fasting conditions(See S1 161 

file Fig M2 (III) A,B&C). However, during fasting, the glycogen signaling pathway is 162 
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operational indicated by the activation of signaling molecules cAMP (cyclic adenosine 163 

monophosphate) and PKA (protein kinase A)(See S1 file Fig.M2(III) D, &E). The model for 164 

transcriptional network yielded the reported qualitative trends under resting and postprandial 165 

conditions (See S1 file Fig.M2(III) G, H and I).The model was thus able to compare the 166 

physiological resting state thereby obtaining the steady state fluxes of various metabolic 167 

reactions. 168 

Steady State Metabolic Flux Distribution 169 

The model was further used to determine/predict the effect of plasma macronutrient 170 

concentration on the steady state fluxes in the various metabolic pathways.  Steady sate fluxes 171 

were obtained for different levels of plasma macronutrient (glucose, fatty acids and amino acid 172 

levels) for up to 4 fold changes of each of the macronutrient in plasma. These metabolite 173 

combinations were used as a proxy for the dietary macronutrient input to system (i.e. 174 

combinations of low, medium, high and very high levels of carbohydrates (~glucose), proteins 175 

(~amino acids) and fats (~fatty acids) in diet). The effects of these macronutrients were recorded 176 

through the MFD (metabolic flux distribution) in the hepatic metabolic pathways. The 177 

representative MFD for the constant plasma macronutrient levels with high carbohydrate and 178 

protein with normal fat levels is shown in Fig. 3. The figure shows that under such a scenario, 179 

the fatty acid and cholesterol synthesis increase despite the normal dietary fat consumption. The 180 

lipogenesis flux is strongly activated under such a condition. These results are also in line with 181 

the experimental observationsfor the high carbohydrate diet in hamsters(47). However, for a 182 

scenario wherein the plasma fatty acids levels are higher with normal carbohydrates and amino 183 

acids, the MFD show a increase in the gluconeogenesis flux with decreased fatty acid synthesis 184 

(See Fig.4). The increase in gluconeogenesis under high fat diet has been experimentally 185 
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confirmed in rats (9). This analysishighlights the non-linear dependence of metabolic fluxes with 186 

respect to the plasma macronutrient levels. Such a metabolic flux distribution was used to obtain 187 

the fold change in the individual flux value relative to that observed under physiological resting 188 

state. We discuss the effect of macronutrient level on the fluxes through the fold change values 189 

in various metabolic reactions.  190 

 191 

Figure 3 The metabolic flux distribution for the scenario where the plasma glucose is set to 10 192 

mmol/l, plasma amino acid are set to 0.5mmol/l and fatty acids set to 0.68 mmol/l. This 193 

represents the diet with high carbohydrates and protein with normal fat content. The yellow 194 

arrow shows the diversion of the metabolic flux towards the lipogenesis.The color code represent 195 
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the fold change -green to colorless for negative fold change to zero(<=0), colorless to blue for 196 

zero to one (0-1) and blue to red for one to greater than one (1 to >1). 197 

 198 

 199 

Figure 4 The metabolic flux distribution for the scenario where the plasma glucose is set to 5 200 

mmol/l, plasma amino acid is set to 0.25 mmol/l and fatty acids set to 2.4 mmol/l. This 201 

represents the diet with normal carbohydrates and protein with high fat content. The yellow 202 

arrow represents the diversion of the metabolic flux towards gluconeogenesis.The color code 203 
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represent the fold change -green to colorless for negative fold change to zero(<=0), colorless to 204 

blue for zero to one (0-1) and blue to red for one to greater than one (1 to >1). 205 

We furtherused the model to study the intracellular metabolic flux variations with respect to the 206 

different combination of plasma macronutrient levels. The diet combinations involved variations 207 

in plasma amino acids and plasma fatty acid concentrations for different plasma glucose levels, 208 

namely, low (3mM), normal (5mM), high (10 mM) and very high (15mM Henceforth we denote 209 

the plasma concentrations of macronutrients on the scale of low to very high levels. Table I 210 

represents the concentrations and fold change values for each of the macronutrient 211 

correspondingly to the scale of low to very high level. 212 

Table I: The different levels of macronutrient and the corresponding physiological 213 

concentrations used during simulation. 214 

Macronutrient/ 

Level 

Normal/ Ref 

mmol 

Low 

mmol 

Medium 

mmol 

High 

mmol 

Very high 

mmol 

Glucose 5 <5 

< 1 fold 

5-8 

1-1.6 fold 

8-12.5 

1.6-2.5 fold 

>12 

>2.5 fold 

Fatty acids 

 

0.68 <0.68 

< 1 fold 

0.68-1.36 

1-2 fold 

1.36-2.04 

2-3 fold 

>2.04 

>3 fold 

Amino acids 

 

0.25 <0.25 

< 1 fold 

0.25-0.5 

1-2 fold 

0.5-0.75 

2-3 fold 

>0.75 

>3 fold 

 215 

Gluconeogenesis and Glycolysis 216 

First, we present the effect of diet on glucose synthesis/ assimilation by characterizing the 217 

gluconeogenesis/ glycolysis fluxes. To address the glucose metabolism, the net steady state flux 218 

response around the substrate cycles in the pathway were recorded (48). The flux differences at 219 

the irreversible steps in the glycolytic pathway were recorded to characterize the net flux towards 220 

gluconeogenesis and glycolysis.  In this case, the flux value around the reversible reaction F6p to 221 
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F16bp was recorded by normalizing the difference in flux through fructose 1,6, biphosphatase 222 

(gluconeogenesis) and phosphofructo kinase (glycolysis) (See Fig.5). In the figure, the value of 1 223 

on the color bar represents the normalized value of the difference in the gluconeogenesis and 224 

glycolysis flux (normalized by the basal difference in the flux).  As expected, gluconeogenesis is 225 

preferred for both low and normal glucose condition irrespective of the amino acid and fatty acid 226 

levels. High gluconeogenesis flux can be observed even under normal glucose condition but with 227 

a very high fatty acid levels. Glycolysis is dominant on increasing the plasma glucose levels at 228 

high amino acids-low fatty acids and low amino acids-high fatty acidlevels.  229 

A similar trend is reflected in the Glucose to G6p (glucose 6 phosphate) and G6p to Glucose flux 230 

as observed in Fig 6. It shows the normalized difference of the flux through glucose 6 231 

phospahatase (gluconeogenesis) and glucokinase (glycolysis).The GK (glucokinase) flux 232 

increases with increasing glucose levels, whereas, G6pase flux increases with decreasing plasma 233 

glucose concentrations. However at higher glucose levels, GK flux is overcome by G6pase at 234 

higher amino andfatty acidlevels. 235 

Under very high fatty acid and amino acid levels, gluconeogenesis is dominant over glycolysis 236 

indicating higher glucose release into the plasma. This is also reflected by plotting the glucose 237 

transport flux into the plasma, wherein high glucose release is observed under low plasma 238 

glucose condition and under high amino acid and high fatty acid levels (See Fig. 7). This is 239 

mainly due to the inhibition of AKT (protein kinase B), a glycolytic regulator, and activation of 240 

PKA that triggers gluconeogenesis under such conditions(See S1 file Fig.N1 and N2). The 241 

inhibition of AKT at higher fatty acid levels even under high glucose levels is due to the over 242 

activation of PKC (protein kinase C) which has a negative feedback on AKT phosphorylation(S1 243 

file Fig. N3). It can be noted that under moderately high glucose levels, low amino acid and high 244 
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fatty acid levels results in an efficient glucose uptake (i.e. no release). This may be significant 245 

under transient condition during food intake, where the plasma glucose levels rise to moderately 246 

high levels. 247 

 248 

 249 

Figure 5 Thegraph represents the normalized difference in the gluconeogenesis (F16bpase flux) 250 

and glycolysis (PFK flux) for the F61bp to F6p and F6p to F16bp flux, respectively, for varying 251 

foldsof plasma amino and fatty acids for four different glucose levels. A positive value on the 252 

color bar represents the prevalence of gluconeogenesis and a negative value represents the net 253 

flux to be as glycolysis. The subplots A, B, C & D represents the flux variations for plasma 254 

glucose concentration of 3mM, 5 mM, 10 mM and 15 mM,respectively.Gluconeogenesis 255 

(F16bpase flux) increases with decreasing glucose levels and increasing amino-fat levels. 256 
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However, with increasing glucose levels, gluconeogenesis further decreases with increasing fat 257 

levels under moderate amino acid levels.  Glycolysis (PFK flux) increases with increasing 258 

glucose levels and decreasing fat levels. However at higher glucose levels the trend becomes 259 

nonlinear with fat and amino acids. At very high glucose levels, glycolysis is higher at either 260 

very low to moderate amino-fatty acid levels.  It is mostly inhibited at very high amino-fat levels.  261 

 262 

Figure 6 The normalized difference in the gluconeogenesis (Glucose 6 phosphatase flux-263 

G6pase) and glycolysis (Glucokinase flux-GK) for the G6p to Glucose and Glucose to G6p flux, 264 

respectively, for varying levels of plasma amino and fatty acids for four different glucose levels.  265 

A positive value on the color bar represents the prevalence of gluconeogenesis and a negative 266 

value represents the net flux to be as glycolysis.  The subplots A, B, C & D represents the flux 267 

variations for plasma glucose concentration of  3mM, 5 mM, 10 mM and 15 mM, 268 
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respectively.The GK flux increases with increasing glucose levels, whereas, G6pase flux 269 

increases with decreasing glucose concentrations. However at higher glucose levels, GK flux is 270 

overcome by G6pase at higher amino-fat levels. The GK flux is highest at high glucose-amino 271 

and low fat levels.  272 

 273 

Figure 7 The glucose transport flux for varying levels of plasma amino and fatty acids for four 274 

different glucose levels. A positive value on the color bar represents the glucose release into the 275 

plasma from the liver, whereas a negative value represents the uptake of the glucose by hepatic 276 

tissues.The subplots A, B, C & D represents the flux variations for plasma glucose concentration 277 

of  3mM, 5 mM, 10 mM and 15 mM, respectively. Glucose release increases with decreasing 278 

glucose concentration in blood and vice-versa. However, under higher glucose levels, glucose 279 
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uptake increases at high fat and moderate amino acid levels. Under higher glucose levels, 280 

glucose release increases with higher amino and fatty acid levels. 281 

The glycolytic flux through PFK (phosphofructokinase) in the pathway (downward flux towards 282 

pyruvate) is plotted in Figure 8. In this case, under normal glucose, amino acids and fatty acid 283 

levels, the glycolysis is partially active with gluconeogenesis also operational indicating that 284 

gluconeogenesis is being accounted for by glycogen breakdown, while some of the flux 285 

contributes to the energy requirements of the liver. It can be distinctively noted that the PFK flux 286 

increases with increasing amino acid levels under low to moderately high glucose levels and 287 

moderate fatty acid levels. This increase in glycolytic flux indicates the saturation of glycogen 288 

levels and the flux is directed towards pyruvate. However, under very high glucose levels, the 289 

glycolytic flux is highest either at low fatty and amino acid or moderate amino acid and high 290 

fatty acid levels (See Fig. 8D). 291 

 292 
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Figure 8  Thephosphofructokinase flux (PFK), for varying levels of plasma amino and fatty 293 

acids for four different glucose levels. The subplots A, B, C & D represents the flux variations 294 

for plasma glucose concentration of 3mM, 5 mM, 10 mM and 15 mM,respectively.PFK flux   295 

increases with increasing glucose levels and decreasing fat levels. However, at higher glucose 296 

levels the trend becomes nonlinear with fat and amino acids. At very high glucose levels, it is 297 

higher at either very low or very high amino acid levels.  It is mostly inhibited at very high 298 

amino and fatty acid levels. 299 

Glycogen Metabolism 300 

The metabolic process that affects glucose synthesis and storage is glycogen metabolism. The 301 

glycogen metabolism is characterized by plotting the normalized difference between the flux 302 

through Glycogen phosphorylase (glycogen breakdown) and Glycogen synthase (glycogen 303 

synthase), which catalyzes G6p to glycogen and glycogen to G6p reactions, respectively (See 304 

Fig.9). The glycogen catabolic flux (i.e. glycogen breakdown) shows a similar trend as 305 

gluconeogenesis. Under low glucose levels, the glycogen breakdown is reduced under high fat 306 

levels which may result in lower glucose supply to the plasma.  307 
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 308 

Figure 9 Thedifference in the glycogenolysis (Glycogen phosphorylase) and glycogen synthesis 309 

(Glycogen synthesis) for the G6p to Glycogen and Glycogen to G6p flux, respectively varying 310 

levels of plasma amino and fatty acids for four different glucose levels.  A positive value on the 311 

color bar represents the prevalence of glycogen breakdown and a negative value represents the 312 

net flux towards glycogen synthesis.   The subplots A, B, C & D represents the flux variations 313 

for plasma glucose concentration of  3mM, 5 mM, 10 mM and 15 mM, respectively.Glycogen 314 

synthesis increases with increasing glucose concentration and decreases with increasing fat and 315 

amino acids for normal glucose levels. However at very high glucose levels, it increases with 316 

increasing amino acid levels provided that fat levels are moderate.  It is reduced at high amino 317 

and fatty acidlevels and at low amino acid and high glucose levels.  Glycogen breakdown 318 

increases with decreasing glucose levels and increasing amino and fatty acid levels.   319 
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The glycogen synthesis is highest under moderately high glucose with either low fatty acid - high 320 

amino acid or high fatty acid-low amino acid levels. This can be due to higher activation of 321 

AMPK which inhibits glycogen synthesis under such condition (See supplementary file II-322 

Fig.S4). Under very high glucose levels glycogen synthesis is not as efficient as that under 323 

moderate glucose levels. The signaling molecule regulating the glycogen metabolism (i.e. 324 

phosphorylated GSK3 (inactive) helps in glycogen synthesis) is also shown inFigure 10. It can 325 

be seen that irrespective of the glucose levels, GSK3p is inhibited strongly at very high amino 326 

and fatty acid levels in the plasma, whereas it is highest under low amino and fatty acid condition 327 

for moderately high glucose levels. Under very high glucose levels, GSK3p is highest (almost 10 328 

folds) for all the levels of fatty acid and amino acids, except high fatty and high amino acid 329 

levels due to inhibition of insulin signaling at very high amino and fatty acids. 330 

 331 

Figure 10 Thelevels of phosphorylated Glycogen synthase kinase (GSK3), varying levels of 332 

plasma amino and fatty acids for four different glucose levels. The subplots A, B, C & D 333 

represents the flux variations for plasma glucose concentration of 3mM, 5 mM, 10 mM and 15 334 
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mM,respectively. The phosphorylation of Glycogen synthase kinase increases with increasing 335 

glucose levels and decreases with increasing amino and fatty acid levels. It is mostly inhibited at 336 

high amino-fatty acid levels. 337 

Pyruvate and Lactate Metabolism 338 

The trends observed in the glycolysis flux are also directly reflected in the pyruvate uptake from 339 

plasma, wherein the uptake of pyruvate is low under higher glycolytic conditions (S1 file 340 

Fig.M3). Moreover, pyruvate is released under higher glycolysis conditions, wherein the PFK to 341 

F16bpase flux difference is highest as noted in Fig.5 (darker regions in the plots). While 342 

pyruvate uptake is high under low glucose levels, the pyruvate release increases at very high 343 

amino acid glucose levels under low fat levels due to its higher synthesis rate. This indicates that 344 

the accumulation of carbon from high glucose is mainly channeled towards fatty acid synthesis. 345 

In liver, pyruvate is also synthesized from alanine and lactate under normal physiological 346 

conditions,whereas, under excessive pyruvate production, the fate of pyruvate can be towards 347 

lactate through lactate dehydrogenase. The figure shows the normalized difference of the 348 

pyruvate to lactate reversible flux, wherein the positive flux represents the net flux towards 349 

pyruvate formation and the negative value represents the net flux towards lactate formation (See 350 

Fig.11).  The lactate to pyruvate flux is reduced for low glucose levels only under moderate to 351 

high amino acid and low fatty acid levels, thereby reducing the efficiency of gluconeogenesis as 352 

reflected in Fig.5. This is also reflected in the trendsof NADH/NAD ratio (nicotinamide adenine 353 

dinucleotide) under these conditions. Whereas pyruvate synthesis increases with increasing fatty 354 

acid levels under lower and normal glucose levels.  355 

However, under higher glucose levels lactate synthesis is favored with increasing fatty acid 356 

concentrations under moderate amino acid levels. This increase in lactate flux is due to higher 357 
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pyruvate synthesis from its glycolytic precursors and the favorable NADH/NAD ratio under the 358 

conditions of high glucose and fatty acid levels(See Fig. 12). Similar trend is further reflected in 359 

the lactate transport flux, wherein higher lactate uptake is associated with increased flux towards 360 

pyruvate synthesis and vice versa (See S1 file Fig.M4). Moreover, the flux through pyruvate 361 

carboxylase which catalyzes pyruvate to oxaloacetate (See Fig.13) follows the similar trend as of 362 

depicted by the gluconeogenesis flux and lactate dehydrogenase flux (Fig.5 & Fig.11). This flux 363 

utilizes partial TCA cycle, wherein the pyruvate is reutilized for the gluconeogenesis. This flux 364 

also facilitates the utilization of alanine and lactate as the substrates for gluconeogenesis through 365 

pyruvate. Under high glucose, amino and fatty acid levels, both lactate dehydrogenase and 366 

pyruvate carboxylase fluxes are higher. This indicates that the competition between these two 367 

fluxes decides the major fate of pyruvate (i.e. glucose or lactate) under these conditions (See 368 

Fig.11D &S1 file Fig.M5 (D)). 369 
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370 
Figure 11  Thereversible lactate dehydrogenase flux for varying levels of plasma amino and 371 

fatty acids for four different glucose levels. A positive value on the color bar represents the 372 

lactate to pyruvate flux, whereas a negative value represents the pyruvate to lactate flux.The 373 

subplots A, B, C & D represents the flux variations for plasma glucose concentration of  3mM, 5 374 

mM, 10 mM and 15 mM, respectively.Pyruvate synthesis increases with increasing fatty acid 375 

levels for lower and normal glucose levels. However under higher glucose levels, lactate 376 

synthesis is favored with increasing fatty acid levelsfor medium amino acid levels. 377 

 378 
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 379 

Figure 12  TheNADH/NAD ratio for varying levels of plasma amino and fatty acids for four 380 

different glucose levels. The subplots A, B, C & D represents the flux variations for plasma 381 

glucose concentration of 3mM, 5 mM, 10 mM and 15 mM,respectively.The NADH/NAD ratio 382 

increases with increasing amino acid levels and decreases with increasing fatty acid levels for 383 

normal glucose levels. With increasing glucose levels the ratio decreases slightly and is nonlinear 384 

with amino acid and fatty acid levels. However, under high glucose levels, higher levels of 385 

amino and fatty acids can restore normal ratio. 386 

TCA Cycle and ATP-ADP ratio 387 

Flux towards TCA cycle is an indicator of the ATP (adenosine triphosphate)and fatty acid 388 

synthesis. Here, the TCA flux is indicated by pyruvate dehydrogenase flux that catalyzes 389 

pyruvate to acetyl-coA. The TCA flux is low forlow glucose level when gluconeogenesis is 390 

prevalent (See Fig.13). However, under normal glucose levels, only under high fatty acid levels 391 

the TCA flux is reduced (See Fig.13B).On further increasing glucose, TCA cycle is most 392 

Page 25 of 72 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



26 
 

preferred at low fat high amino acid levels, and strongly inhibited under high amino acid high 393 

fatty acid levels. The flux from pyruvate to AcoA (acetyl coenzyme A) is an amphibolic flux, 394 

being activated by insulin and glucagon signaling, thereby influences both anabolic and catabolic 395 

process. The flux is high through glucagon signaling activation under high amino and fatty acid 396 

levels (indicating catabolism), while it is high through insulin signaling activation under high 397 

glucose high fatty acid levels (indicating anabolism). Further, to characterize the energy status of 398 

the liver with respect to dietary macronutrient composition, we plotted the ratio of the ATP 399 

breakdown to ATP production rates, which is denoted by adenylate kinase and oxidative 400 

phosphorylation flux, respectively (SeeS1 file Fig. M6). Subsequently, we also plotted the 401 

resulting ATP/ADP ratio (See Fig.14). 402 

 403 

Figure 13  Thepyruvate dehydrogenase flux for varying levels of plasma amino and fatty acids 404 

for four different glucose levels. The subplots A, B, C & D represents the flux variations for 405 
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plasma glucose concentration of 3mM, 5 mM, 10 mM and 15 mM, respectively.The pyruvate 406 

dehydrogenase flux increases with increasing amino acid level and decreases with higher fatty 407 

acid levels for all glucose levels. However the flux increases monotonously with increasing 408 

glucose concentration and is inhibited at very high fatty and amino acid levels. 409 

The energy utilization is higher under low glucose levels, indicating that in liver the energy is 410 

being utilized for the gluconeogenesis. This is evident from the supplementary file S1 Figure 411 

M6(A) and Figure 14(A), that under low glucose levels, while ATP breakdown is higher, the 412 

ATP/ADP ratio is lower indicating increase in ADP (adenosine diphosphate) levels.  However, 413 

on increasing glucose levels, under moderate amino acid levels,  ATP synthesis dominates under 414 

most levels of fatty acids (the ratio is less than one in supplementary file II-Fig.M6 (C&D)). It is 415 

interestingto observe that under high fat high amino acid levels, the ATP synthesis is low 416 

indicating a reduced drive towardsanabolic reactions. This is also reflected in ATP/ADP ratio, 417 

under low glucose concentrations where gluconeogenesis dominates (SeeS1 file Fig.M6A). 418 

Under normal glucose concentrations and high amino acid levels the ATP/ADP ratio is lower 419 

indicating catabolic effect (Fig. 14B). However under low amino acid levels, the ATP/ADP ratio 420 

is near normal under all conditions. On increasing glucose(moderately high), the ATP/ADP ratio 421 

drops in most cases, except under moderate amino acid and high fatty acid levels. On further 422 

increasing the glucose (very high), it can be seen that ADP dominates with deficient ATP 423 

indicating abnormal anabolic conditions (See Fig.14D). This is due to lower oxidative 424 

phosphorylation caused by higher insulin which inhibits PKA and calcium i.e. regulators of 425 

oxidative phosphorylation. The lower oxidative phosphorylation under high glucose levelsis also 426 

accompanied by the higher ATP consumption due to anabolic condition resulting into the steep 427 

fall in the ATP/ADP ratio. 428 
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Pentose Phosphate Pathway 429 

Next we consider the flux towards pentose phosphate pathway indicating the degree of anabolic 430 

reactions (biosynthesis) and the measure for the supply of redox equivalent (NADPH). This flux 431 

is represented by the rate of the flux through G6p dehydrogenase (abstracted for conversion of 432 

G6p to R5p) (See S1 file Fig. M7). As expected, the pentose phosphate pathway is off at low 433 

glucose levels irrespective of the amino and fatty acid levels. However it is reduced at higher fat 434 

levels fornormal glucose levels. Under normal glucose levels, the pentose phosphate pathway is 435 

operational under basal levels. The maximum pentose phosphate pathway flux is observed under 436 

moderately high glucose and amino acid levels. Further at very high glucose, pentose pathway is 437 

operational at basal levels for moderate amino acid and high fatty acid levels. The pentose flux is 438 

inhibited at high amino and fattyacid levels. At very higher glucose levels, pentose flux is 439 

functional either at moderate amino acid levels or low to moderate amino acids and high fat 440 

levels (See S1 file Fig.M7 (D)). Moreover, in S1 file Fig. M7 (D), the operational region of 441 

pentose phosphateflux) maps the conditions where the F16bpase and PFK fluxes are highly 442 

reduced, which implies the diversion of the flux towards pentose phosphate pathway under such 443 

dietary conditions. Such response enhances lipogenesis by providing more reducing equivalents 444 

under high fatty acids and higher glucose levels. 445 
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 446 

Figure 14  TheATP/ADP ratio for varying levels of plasma amino and fatty acids for four 447 

different glucose levels.  The ratio above one represents the net surplus of ATP over ADP.The 448 

subplots A, B, C & D represents the flux variations for plasma glucose concentration of  3mM, 5 449 

mM, 10 mM and 15 mM, respectively.The ATP/ADP ratio is maintained at normal under normal 450 

glucose and moderate amino-fatty acid levels. The ratio decreases with decreasing glucose levels 451 

below normal. However,for higher glucose levels, high level of fatty acids is required to 452 

maintain the normal ratio. The ratio decreases with higher amino acid levels forhigh glucose 453 

levels.  The ratio is drastically reduced at very high glucose and fatty acid levels. 454 

 455 
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Fat Metabolism 456 

We next consider the flux towards lipogenesis (i.e. fatty acid and triglyceride synthesis). We 457 

firstly quantify the fatty acid synthesis by characterizing the flux through Acetyl-coA to 458 

Malonyl-CoA catalyzed by Acetyl-coA carboxylase (ACC)(See S1 file Fig.M7). Under low 459 

glucose levels, due to higher gluconeogenesis, lipogenesis is minimal forall levels of amino acid 460 

and fatty acids. Under normal glucose level, there is an enhanced lipogenesis, albeit at normal 461 

level under normal fatty and amino acid levels. On increasing glucose concentration further, the 462 

maximum lipogenesis is observed and is seen for moderate amino acid low fatty acid and 463 

moderate fatty acid low amino acid levels. It can be noted that, forvery high plasma glucose 464 

levels, the lipogenic flux is operational in the region where the pentose phosphate pathway is 465 

also active (See S1 file Fig.M7(D) and Fig. 15(D)). However, at higher glucose levels, both 466 

under low amino acid/low fatty acid and high amino acid / high fatty acid, the lipogenesis is 467 

completely inhibited which is due to lower levels of ATP levels countering the lipogenesis (an 468 

anabolic process). This is also associated with the state of the lipogenic regulators(49), wherein  469 

CHREBp(carbohydrate  response element binding protein)an activator of lipogenesis increases 470 

with glucose and inhibited by higher fatty acids and amino acids due to activation of AMPK 471 

(AMP activated protein kinase) (an inhibitor of CHREBP) under such conditions (See S1 file 472 

Fig.N5). TRB3 (Tribbles homolog 3) is an inhibitor of lipogenesis (See Fig.N6) is activated at 473 

high fatty acid under normal glucose level, which inhibits AKT activity that is required for 474 

lipogenesis.  475 

The triglyceride metabolic flux is characterized by the flux ratio for triglyceride synthesis to 476 

triglyceride breakdown (See Fig. 16). The triglyceride synthesis is low, as expected, under low 477 

glucose levels irrespective of the dietary amino and fatty acid levels. Under normal glucose 478 

levels, its synthesis is high under moderate fatty/amino acid levels. The triglyceride synthesis 479 
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space increases on further increasing glucose, with high synthesis rates noted for low to 480 

moderate amino acid and high fatty acid levels. The triglyceride synthesis is activated by 481 

PPARγ(Peroxisome proliferator-activated receptor gamma), which in turn is activated by insulin 482 

and fatty acids (See S1 file Fig. N7). This helps in the anabolic accumulation of triglycerides in 483 

the liver under these conditions. However, for very high glucose level, the system limits ATP for 484 

anabolic reactions to happen thereby reducing triglyceride synthesis. Although PPARγ is 485 

activated at higher fatty acid levels, AKT is inhibited due to activation of FOXO (forkhead box 486 

protein) which is operational under high fatty acid levels (See S1 file Fig. N8). Moreover, the 487 

activation of PPARα under very high fatty acid levels induces triglyceride and fatty acid 488 

breakdown thereby reducing lipogenesis (See S1 file Fig.S9). The triglyceride release into the 489 

blood also mimics a similar behavior as that of its synthesis (See S1 file Fig.M8). 490 

 491 
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Figure 15  Theflux through lipogenesis [fatty acid synthesis] represented by  Acetyl CoA 492 

carboxylase (ACC)flux that catalyzes Acoa to MalonylCoaA for varying levels of plasma 493 

amino and fatty acids for four different glucose levels. The subplots A, B, C & D represents the 494 

flux variations for plasma glucose concentration of  3mM, 5 mM, 10 mM and 15 mM, 495 

respectively.At normal glucose levels, fatty acid synthesis is higher at low fatty acid and 496 

moderately higher amino acid levels. It increases with increasing glucose and moderately high 497 

levels of amino acids. It is inhibited at high fatty acid and high amino acid zone. 498 

 499 

Figure 16  Theflux ratio of triglyceride synthesis to triglyceride breakdown for varying levels of 500 

plasma amino and fatty acids for four different glucose levels. The value below one represents 501 

the net flux is towards triglyceride breakdown and vice versa.The subplots A, B, C & D 502 

represents the flux variations for plasma glucose concentration of  3mM, 5 mM, 10 mM and 15 503 

mM, respectively.Triglyceride synthesis decreases with lower and very high glucose levels and 504 
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increasing fatty acid levels under normal glucose levels. It is higher at moderate glucose, amino 505 

acid and high fatty acid levels. However at very high glucose levels, higher amino acid level and 506 

moderate fatty acid level increases TG synthesis.  507 

Cholesterol Metabolism 508 

The cholesterol biosynthesis flux is characterized by the flux through the HMGCoA(3-hydroxy-509 

3-methyl-glutaryl-CoA)reductase that catalyzed the conversion of HMGCoA to Mevalonate (a 510 

rate limiting step in cholesterol biosynthesis pathway) (See Fig.17). Under low glucose levels the 511 

cholesterol biosynthesis is the lowest and a marginal increase under normal glucose, fatty acid 512 

and amino acid levels. The activation of glucagon under these conditions results in activation of 513 

PKA which inhibits cholesterol synthesis. On further increasing glucose levels the cholesterol 514 

biosynthesis increases further under marginally higher levels of amino acids and fatty acids. 515 

Under very high plasma glucose levels, moderately high amino acids and the high fatty acid level 516 

results in maximum flux towards cholesterol biosynthesis. This is due to the higher SREBP 517 

levels activated by insulin and fatty acids under this condition. However, higher amino acid 518 

levels reduce the flux towards the biosynthesis of cholesterol. SREBP a regulator of HMGR is 519 

reduced due to inhibition of AKT at higher amino and fat acid levels, whereas fat activates 520 

SREBP along with insulin, hence higher cholesterol synthesis (See S1 file Fig.S10). 521 

Amino Acid and Protein Metabolism 522 

The analysis shows that the amino acid uptake increases with increasing amino acid and fatty 523 

acid levels, while it decreases with increasing glucose levels (See S1 file Fig.M9). This suggests 524 

that the gluconeogenesis from amino acids is mainly operational under low glucose level. 525 

Further, it can be noted that amino acid uptake is lowest under high glucose, low amino acids 526 

and high fatty acid levels (See Fig. M9(C&D)). Higher glucose levels essentially reduce 527 
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gluconeogenesis which makes the amino acid uptake flux redundant.  Since, amino 528 

acidsaremainly a source of carbon for glucose and protein synthesis in liver, such a flux is 529 

observed. It is also interesting to note that the conditions that show higher amino acid uptake 530 

overlap with that of higher gluconeogenesis, indicating that amino acids are one of the major 531 

substrates for gluconeogenesis. The protein metabolism was characterized by plotting the 532 

normalized flux difference between protein breakdown and synthesis flux (See Fig.18). The 533 

protein synthesis in liver is mainly under high amino acid and low fat levels.  534 

 535 

Figure 17  The cholesterol biosynthesis flux, that is represented by the flux trough HMGCoA 536 

reductase flux which catalyzed HMGCoA to Mevelonate for varying levels of plasma amino and 537 

fatty acids for four different glucose levels. The subplots A, B, C & D represents the flux 538 

variations for plasma glucose concentration of 3mM, 5 mM, 10 mM and 15 mM, respectively. 539 
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Cholesterol synthesis increases with increasing amino acids to moderate levels while glucose is 540 

maintained at normal levels. It increases with increasing glucose and fatty acid levels at higher 541 

glucose concentration; however it decreases at higher amino acid levels. It is reduced at lower 542 

glucose levels and inhibited at high amino and fatty acid levels.   543 

Further, protein synthesis increases with higher glucose levels. However it is reduced with 544 

increasing fatty acid levels, thereby increasing its breakdown under low glucose, low amino acid 545 

and high fatty acid levels. Protein synthesis decreases with increasing fatty acids due to 546 

inhibition of AKT and subsequent activation of PKA that activates protein breakdown. Wherein 547 

the protein synthesis is regulated by insulin and amino acid mediated activation of mTOR and 548 

S6Kp which also increases with increasing amino acid and glucose levels (See S1 file Figs.N11 549 

and N12). It should be noted that, under low and normal plasma glucose levels, the protein 550 

synthesis is in parallel to amino acids being channeled towards gluconeogenesis, whereas, under 551 

high glucose levels, protein synthesis is in contrast to region of gluconeogenesis. 552 

The balance of the nitrogen in the system is regulated through urea cycle(50),(51). The flux 553 

through urea cycle is characterized by carbamoyl phosphate synthase flux that catalyzed 554 

ammonia to carbamoyl phosphate (See Fig.19). The flux through urea cycle increases with 555 

increase in amino acid levels and decrease in glucose and fatty acids levels in plasma. It can be 556 

noted that under high protein and high glucose levels, moderately higher levels of fatty acid are 557 

required to maintain the flux through urea cycle. Subsequently, it can be seen that ammonia 558 

release is maximum under high fatty acid/ high amino levels wherein the urea cycle flux is 559 

inhibited(See S1 file Fig. M10). This is due to the inhibition of the urea cycle flux due to the 560 

activation of PPARα by fatty acids and deactivation of PKA due to increased glucose levels. 561 
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Thus, the ammonia in the system is also dependent on the dietary composition of fatty acids and 562 

amino acids.  563 

 564 

 565 

Figure 18  Thenormalized flux difference between protein breakdown and protein synthesis for 566 

varying levels of plasma amino and fatty acids for four different glucose levels. The negative 567 

value on the color bar represents the net protein synthesis flux.The subplots A, B, C & D 568 

represents the flux variations for plasma glucose concentration of  3mM, 5 mM, 10 mM and 15 569 

mM, respectively.Protein synthesis increases with increasing amino acids and increasing glucose 570 

levels and low fatty acid levels. However it is reduced by increasing fatty acid levels. 571 
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 572 

Figure 19  The Urea cycle  flux represented by the normalized rate of carbamoyl phosphate 573 

synthase that catalyzed ammonia to carbamoyl phosphate for varying levels of plasma amino and 574 

fatty acids for four different glucose levels. The subplots A, B, C & D represents the flux 575 

variations for plasma glucose concentration of 3mM, 5 mM, 10 mM and 15 mM, 576 

respectively.Urea cycle flux increases with increasing amino acids and decreases with increasing 577 

glucose and fatty acid levels. However, under high amino acid and high glucose levels, 578 

moderately higher levels of fatty acids restore the normal urea cycle flux.  It is highest at low 579 

glucose, low fat and high amino acid levels.  580 

 581 
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Discussion 582 

In order to quantify the effect of plasma macronutrients on metabolic fluxes in liver, a detailed 583 

model including signaling and transcriptional regulations was developed. The model predictions 584 

revealed several signatures of metabolic performance under different levels of fat, amino acids 585 

and glucose in the plasma.  Using the regulatory signatures we could qualitatively rationalize 586 

several experimental observations in the metabolic phenotypes associated disease states reported 587 

in literature.The model reveals that glucose, fatty acids and amino acids have differential effects 588 

on the secretion and activity of the metabolic hormones (insulin and glucagon) thereby 589 

resultingin a highly nonlinear metabolic control. The analysis indicated that a steady state 590 

metabolic flux is collectively determined by the regulatory effects of signaling components, 591 

transcriptional factors and the metabolic controllers (ATP/ADP and NADH/NAD ratios).  592 

Alternative to the results reported above, we summarize the overall effect of diet (plasma 593 

macronutrient levels) on the key metabolic pathways in a tabular form (See supplementary file, 594 

Excel file, S2_Table). The table reports a relative flux ratio to the flux under physiological 595 

resting. The trends in the results of our model were motivated to explain the qualitative 596 

metabolic responses observed in experiments reported in literature. However, the quantitative 597 

validation of the model predictions with each of the experimental observations is out of the scope 598 

of present manuscript.  599 

How high levels of fatty acids and proteins can increase gluconeogenesis and decrease 600 

glycogen synthesis leading to hyperglycemia? 601 

The gluconeogenesis is known to be fairly constant in healthy individuals under varying dietary 602 

perturbations (52). However, for steady state perturbations, the analysisdemonstrated that 603 

gluconeogenesis was activated at lower plasma glucose levels andwas also induced even at 604 
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constant glucose levels with increasing fatty acid composition. These results were in agreement 605 

with the observations reported on humans(1,3). This was due to the inhibition of insulin 606 

signaling pathway that reduced the glycolytic flux and glycogen synthesis, resulting in a higher 607 

net gluconeogenic flux. Moreover, under high plasma glucose levels with increasing amino acid 608 

levels above 2.5 to 3 fold have shown to inhibit insulin action leading to de novo glucose 609 

synthesis from amino acids. Similar  effects were observed in the investigation on rats fed on 610 

high protein diet(53). Chevalier et al. have observed such effects in obese individuals, wherein 611 

increased rate of protein catabolism contributed to greater rate of gluconeogenesis and  612 

subsequent increase in glucose release(16). The sensitivity of gluconeogenesis increased with 613 

amino acids under higher glucose levels and similar results were also reported for a protein rich-614 

low carbohydrate diet in humans (54). The inhibition of insulin signaling pathway was associated 615 

with enhanced effect of glucagon signaling pathway being responsible for glycogen breakdown 616 

and gluconeogenesis, which represented an insulin resistant state. 617 

Glycogen synthesis is a key mechanism in storing the excess glucose from the blood into liver. 618 

Defects in glycogen metabolism have been shown to be one of the main reasons for 619 

hyperglycemia(55,56). The glycogen synthesis flux was quite sensitive to plasma levels of amino 620 

acids and fatty acids. Glycogen synthesis followed the plasma glucose and insulin levels, 621 

whereas its potential was reduced at very high amino acid levels thereby disabling sufficient 622 

glucose uptake. Such an effect of high protein diets on hepatic glycogen metabolism in mice and 623 

rat  have been documented in literature(10,57). Taylor et al have demonstrated that postprandial 624 

glycogen storage flux follows the insulin to glucagon ratio in blood (58) which is in agreement 625 

with our analysis. Under low glucose level (i.e. under starvation or higher physical activity), 626 

where glycogen breakdown is anticipated, increasing amino acids can further increase glycogen 627 

breakdown, whereas higher levels of fatty acids reduced glycogen breakdown. This reduction in 628 
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glycogen breakdown flux under high fat diet was also confirmed in rats (12,59). This suggested 629 

that for an obese individual, whose circulating fatty acid levels are high, it would be difficult to 630 

obtain a faster rate of glycogen breakdown and subsequent glucose release as compared to a 631 

normal individual under lower plasma glucose condition. 632 

How high fat diets induce defects in TCA flux leading to an insulin resistance state? 633 

The TCA cycle in liver acts as an amphibolic pathway, which serves both anabolic and catabolic 634 

purpose in hepatocyte through its ability of anaplerosis and cataplerosis, respectively (60). Under 635 

surplus energy (ATP) condition the flux was diverted towards lipogenesis or amino acid 636 

synthesis (anabolic) and under lower ATP states, the pyruvate, fatty acids and the amino acids 637 

are collectively utilized for the synthesis of ATP (catabolic) and gluconeogenic precursors, via 638 

TCA cycle. Therefore, the net abundance of these metabolites and the energy status of the cell 639 

decidedwhether the TCA cycle operate under catabolic or anabolic mode. The analysis indicated 640 

that the pyruvate dehydrogenase flux increased linearly with increasing glucose and decreased 641 

with increasing fatty acid levels. However, under low glucose levels this flux increases with 642 

increasing amino acid levels to cope up with the ATP requirement of the cell in a catabolic 643 

manner. With increasing plasma glucose levels, excess glucose was diverted to lipogenesis via 644 

pyruvate dehydrogenase that deployed partial TCA cycle in an anabolic manner. However, under 645 

very high fatty acid levels, β-oxidation was activated due to another homeostatic constraint,i.e. to 646 

maintain fatty acid levels. The pyruvate carboxylase flux increased under very high glucose and 647 

high fatty acid levels, thereby diverting the TCA flux towards gluconeogenesis. Under higher 648 

fatty acid levels PPARα was activated by PGC1 (PPAR gamma coactivator 1) mediated 649 

mechanism which further enhanced fatty acid breakdown. Therefore, higher levels of Acetyl 650 

CoA generated through β-oxidation inhibited pyruvate dehydrogenase thereby reducing the 651 
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glycolytic flux towards TCA cycle. TCA cycle was thus activated catabolically to utilize excess 652 

Acetyl CoA in the form of energy or de-novo glucose synthesis. At cellular level, this 653 

mechanism acts to economize the energy production through either of the substrates (glucose or 654 

fat) under surplus conditions. The two observations of increased lipolysis and gluconeogenesis 655 

were also confirmed by a study on humans reported by (11) and(14). Therefore, glucose 656 

homeostasis is destabilized by excess fatty acids due to the inherent metabolic control in TCA 657 

cycle which would eventually lead to a diabetic state, under high fat dietary intake. 658 

How lipogenesis and triglyceride synthesis are affecteddue to high carbohydrate and fat diet 659 

leading to a diabetic state? 660 

In lipogenesis, fatty acid synthesis was favored with increasing glucose (up to 2 folds) levels and 661 

moderate amino acid levels, however, it decreased with increasing fatty acid levels and very high 662 

amino acid levels due to the inhibition of insulin signaling and activation of PKA (i.e. catabolic 663 

activity). This suggested that lipogenesis was favored under low fatty acid and high glucose 664 

levels which also assured the maintenance of fatty acid homeostasis in the cell. The variation in 665 

lipogenic flux was in line with recent experimental studies performed on rats that were fed on 666 

high carbohydrate and high fat diet (8,61).  At very high glucose and fatty acid levels, the 667 

lipogenic flux reduced due to the fall in ATP levels and inducedβ oxidation through the 668 

activation of PPARα. One of the major fates of high levels of circulating plasma glucose was to 669 

be stored as triglycerides via lipogenesis which also required higher consumption of ATP in the 670 

cell. However, at higher glucose levels, oxidative phosphorylation was compromised due to high 671 

insulin levels which inhibited the activators (PKA and calcium) of oxidative phosphorylation. 672 

This puts forth a constraint on the disposal of glucose through lipogenesis at very high glucose 673 

levels. Moreover, it was also limited by the correspondingly lower flux through the pentose 674 
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phosphate pathway which supplied NADPH (nicotinamide adenine dinucleotide phosphate) for 675 

reducing power required for lipid synthesis. This phenomenon provided an insight into the patho-676 

physiology of diabetic conditions wherein higher plasma glucose might put a positive feedback 677 

on its circulating levels due to reduction in the lipogenesis.  678 

Similarly in triglyceride metabolism, triglyceride synthesis increased with increasing glucose and 679 

fatty acid levels, however at very high glucose and amino acid levels the TG synthesis reduced. 680 

The reduction in TG synthesis with increasing amino acid levels wasin line with the study that 681 

demonstrated the reversal hepatic steatosis with high protein diet in mice (4,62,63). On the other 682 

hand, triglyceride breakdown increased with decrease in glucose and fatty acid levels below the 683 

normal level. This is also confirmed by (61) and (65) in their study on rats. Triglyceride 684 

breakdown was further induced at very high glucose levels due to lack of ATP in the system. In 685 

terms of diabetic pathogenesis, this suggested that, at very high glucose levels (>14mmol/l), fatty 686 

acid levels might increase due to TG breakdown, which would further increase the negative 687 

feedback of the fatty acid on the insulin action that aggravates the diabetic state by decreasing 688 

the rate of glucose uptake. 689 

How a high carbohydrate diet increases cholesterol levels?  How a high protein-low fat diet 690 

can reduce cholesterol synthesis and help in reducinghypercholesterolemia? 691 

Liver is the major site for biosynthesis of Cholesterol.Cholesterol synthesis increased with 692 

increasing glucose and fatty acid levels and reduced at very high amino acid levels. However it 693 

increased with low fat and moderate amino acid levels under high glucose levels. These  results 694 

are in agreement with the dietary studieson humans and rats(66).This suggested that certain 695 

amount of amino acid(1.25 to 2.5 fold of normal) was essential for cholesterol synthesis along 696 

with fatty acid and glucose. Therefore, the analysis demonstratedthat maintainingthe plasma 697 
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amino acids either below 1.25 folds or above 3 fold (unusually high) levels can help in reducing 698 

cholesterol even under higher glucose and fatty acid levels. These effect of low carbohydrate, 699 

high fat and high protein diet on cholesterol homeostasis in mice was also documented (67). The 700 

observation suggested that, higher levels of plasma amino acids under a diabetic state can help in 701 

reducing the HMGCoA reductase fluxthere by reducing hypercholesterolemia. 702 

How high glucose and fat reduces protein synthesis? How a high fat diet increases plasma 703 

ammonia levels? 704 

In case of protein metabolism, protein synthesis increased with increasing amino acids and 705 

glucose levels and decreasing fatty acid levels. Protein breakdown increased with increasing 706 

fatty acid levels and decreasing glucose and amino acid levels. These effects were also 707 

demonstrated in rats fed on high fat diet (68,63). This is due to the inhibition of insulin signaling 708 

and subsequent activation of glucagon signaling by higher fatty acid levels. The metabolic flux 709 

observed under high fat levels explained the limitation of protein synthesis or decrease in muscle 710 

density under diabetic state. Although higher glucose levels help in protein synthesis, when 711 

followed by higher fatty acid levels the protein synthesis was hampered. The urea cycle 712 

facilitated the homeostasis of the ammonia that is generated during amino acid breakdown. The 713 

urea cycle flux increased with higher amino acid and lower glucose levels under moderate fatty 714 

acid levels(69). The higher amount of amino acid influx to the liver induced a gluconeogenic 715 

state in liver; wherein most of the amino acids were used for de novo synthesis of glucose. 716 

Therefore, the nitrogen part of the carbon backbone of the amino acids was liberated as ammonia 717 

which was disposed through urea cycle(70). With increasing glucose levels the potential of urea 718 

cycle decreased due to reduction in gluconeogenic flux by insulin and utilization of amino acids 719 

for protein synthesis. Moreover, with increasing fatty acid levels, the levels of ammonia rose 720 
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with increasing amino acids due to reduction in the urea cycle flux. A recent study  demonstrate 721 

the suppression of urea cycle enzymes by a high fat diet in hamsters (7).Due to its neurotoxicity 722 

the ammonia levels were strictly under homeostatic control, therefore even 2 to 3 fold increments 723 

in plasma ammonia levels are detrimental. Hence, the analysis indicated the importance of not 724 

allowing the circulating levels of plasma fatty acid and amino acid levels to go very high 725 

simultaneously for ammonia homeostasis. 726 

How high protein and fat levels can affect hepatic glucose release leading to hypoglycemic or 727 

hyperglycemic states? 728 

One of the important transport flux is the hepatic glucose release which is reported to be 729 

distorted in case of diabetic condition(71). Insulin is known to regulate hepatic glucose 730 

production in direct and indirect mechanisms (72). The analysis demonstrated that at lower 731 

plasma glucose and with increasing plasma amino acid levels the hepatic glucose release rate 732 

increased as reported by (73),  whereas at high amino acid and fatty acid levels the release rate 733 

was restricted to a normal level (instead of increasing).Under conditions of starvation or higher 734 

physical activity, the lower plasma glucose levels led to an increase in the plasma glucagon 735 

levels. Glucagon triggers gluconeogenesis and glycogenolysis with the activation of cAMP, PKA 736 

and calcium signaling in liver. However at very high levels of amino acids and fatty acid levels 737 

insulin secretion was triggered which further inhibited the action of PKA through AKT. Under 738 

such a condition, although the plasma glucagon level was high there was no subsequent rise in 739 

the hepatic glucose release. This shows that higher circulating levels of plasma amino and fatty 740 

acids can reduce hepatic glucose release irrespective of the plasma glucagon levels.  741 

Under resting state and normal glucose levels, increasing fatty acids to 3-4 folds increased 742 

glucose release by 20-25% due to the inhibition of AKT by fatty acids. These effects of high fat 743 
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diet on fasting glucose were demonstrated in healthy men (74). Under the postprandial state, with 744 

increasing plasma glucose levels, the glucose uptake increased;however, the uptake rate 745 

decreased with increasing amino acid and fatty acid levels, even leading to glucose release. This 746 

reduction in insulin's action under high fat and relatively low carbohydrate diet is demonstrated 747 

in a study conducted on humans (75).  Under such condition, the higher levels of amino acids 748 

triggered glucagon secretion and subsequent activation of PKA and S6K which inhibited insulin 749 

signaling along with further inhibition by fatty acid.Henkel et al. have reported a similar 750 

increment in plasma glucagon levels under postprandial state in the subjects with glucose 751 

intolerance and Type 2 diabetes(76). Moreover, it led to a lower ATP/ADP ratio which limited 752 

the conversion of glucose to G6p leading to higher cellular glucose and the reversal of glucose 753 

uptake flux. Therefore, even under high levels of circulating plasma insulin, the cellular state 754 

was shifted to a catabolic mode with activation of gluconeogenesis instead of glycolysis and 755 

resulted in glucose release instead of its uptake. Such a condition depicted a diabetic state or 756 

insulin resistance irrespective of the insulin levels just due to the metabolic shift that the 757 

macronutrients induced in the cells(15).In a diabetic state, wherein plasma glucose levels are 758 

already higher, higher intake of amino acids and fatty acids can further aggravate glucose levels. 759 

How high glucose levels can affect hepatic fatty acid uptake leading to dyslipidemia and non-760 

alcoholic fatty liver disease (NAFLD)? 761 

Similarly, higher levels of plasma fatty acids and triglycerides are also indicators of a disease 762 

state in obesity and dyslipidemia(77,78,79). The hepatic fatty acid uptake increased with 2-2.5 763 

fold of plasma fatty acid levels and was further reduced at higher fatty acid levels under resting 764 

glucose condition; however, it increased with 2-2.5 fold increase in plasma glucose levels. The 765 

fatty acid uptake was mainly dependent on the cellular ATP/ADP ratio and insulin levels. The 766 
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fatty acid uptake was drastically reduced at very high glucose levels except for very high levels 767 

of plasma amino acids and fatty acids. This was due to the lower levels of ATP under very high 768 

glucose levels which limited the conversion of fatty acids to triglycerides. In such a condition, 769 

even though the plasma insulin levels were higher the hepatic fatty acid uptake was reduced 770 

which can lead to higher levels of plasma fatty acids due to distortion in the capacity of this flux 771 

to maintain homeostasis(3,80).  772 

The triglyceride release followed the fatty acid uptake flux in the range of lower to moderate 773 

levels of plasma glucose levels; however, it was inhibited at higher levels of amino acids due to 774 

inhibition of insulin signaling. The release was completely suppressed at very high glucose levels 775 

due to lack of cellular ATP levels and insulin resistance induced by very high amino acid and 776 

fatty acid levels(81).  Although fatty acid uptake increased under very high levels of all the three 777 

macronutrients, thetriglyceride synthesis was suppressed. This condition can result in higher 778 

levels of cellular fatty acid and further inhibition of insulin signaling by a DAG-PKC mediated 779 

mechanism thereby leading to Insulin resistance(82), and non-alcoholic fatty liver disorder(80,82, 780 

83). The above observation provided insights into how a diabetic state (hyperglycemia) can lead 781 

to higher plasma fatty acid levels and the resulting metabolic states can put a positive feedback 782 

on insulin resistance, and thus stabilizing the diabetic state. 783 

Conclusion 784 

In summary, the metabolic status of a tissue depends upon the ratios of the metabolic controllers 785 

such as ATP/ADP and NADP/NADPH, and the phosphorylation states of the regulatory 786 

signaling proteins. The metabolic state of a tissue then influences the transport fluxes from the 787 

tissue which in turn govern the plasma metabolite levels. The transport fluxes are the resultant 788 

effects of plasma macronutrient levels and the subsequent hepatic metabolic state. The 789 
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phosphorylation states of the signaling molecules also strongly influence the levels of ATP/ADP 790 

ratio. This is further translated to overall metabolic pathways that use ATP-ADP as co-substrates 791 

and affects the synthesis and transport process of key metabolites. In this study, we demonstrated 792 

the perturbations in these regulatory mechanisms due to plasma macronutrients and several 793 

resulting metabolic states representing healthy and disease states. 794 

Thus, thedeveloped model provided insights on the functioning of cellular metabolism that arise 795 

due to several combinations of the plasma levels of the major macronutrients that are part of our 796 

daily diet. These plasma profiles are highly dynamic in nature due to time varying dietary 797 

interventions and cells have to constantly regulate its metabolism to achieve homeostasis. Any 798 

perturbations due to either external factors such as diet and exercise or internal factors such as 799 

hormonal ratios and signaling or transcriptional events can influence the metabolic phenotype. 800 

Therefore, our analysis reveals the signatures of plasma metabolite profiles that can defile the 801 

homeostasis due to de regulatory effects caused by specific levels of macronutrient and their 802 

combinations. The analysis can be further extrapolated to understand the dietary requirements so 803 

as to assist the homeostasis by appropriate dietary composition. Nevertheless, this study helps in 804 

visualizing the metabolic profiles under abnormal plasma levels of key metabolites which might 805 

occur due to various disease states. 806 

 807 

 808 

 809 

 810 
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Methodology -Mathematical Model for Liver Metabolism 811 

The model consists of central metabolic pathway including glycolysis, gluconeogenesis, 812 

glycogen metabolism, TCA cycle, fatty acid synthesis and oxidation, protein synthesis and 813 

breakdown, urea cycle, pentose phosphate pathway, cholesterol biosynthesis and hexoseamine 814 

pathway(See Fig 2)(34,35,38,42,55,84). The model was further integrated with sub-models for 815 

several signaling and transcription networks. Moreover, we have extended the model to 816 

incorporate the whole body plasma metabolite homeostasis to analyze its effect on liver.  The 817 

developed model integrates several reported sub-models in conjunction with models developed 818 

for signaling and transcriptional regulation adopting a systems level approach (83). The overall 819 

model for the liver metabolic module consisted of 272 rate equations, 170 ODEs and 801 820 

parameters.The integrated model is composed of four modules viz., (1) Blood (metabolites and 821 

hormones), (2) Metabolism, (3) Signaling and (4) Transcription. The detailed model and 822 

parameters are explained in supplementary file S3. 823 

The blood module represents the dynamics of plasma metabolite concentrations at whole body 824 

level. It includes the kinetics of hormonal secretions (i.e. insulin and glucagon) in the blood from 825 

pancreas in response to plasma macronutrient levels(86–88). The blood module accounts for the 826 

facilitated transport from blood to tissue of seven metabolites viz., glucose, lactate, pyruvate, 827 

amino acids, fatty acids, glycerol, triglycerides, and the passive transport of oxygen and carbon 828 

dioxide(84).  829 

In the metabolism module, the metabolic pathways (as mentioned above) required for the 830 

processing carbohydrates, lipids and proteins in liver were modeled along with their regulations 831 

at metabolic, signaling and transcriptional levels.The hormonal (insulin and glucagon) and 832 

nutrient (glucose, amino acids and fatty acid) signaling pathways were adopted from literature 833 
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(43,44,89) and integrated together for  metabolic regulation. The signaling network composed of 834 

the feedbacks and crosstalk between insulin signaling mediated through AKT and mTOR 835 

signaling and glucagon signaling mediated through calcium and cAMP signaling. Furthermore, 836 

the transcriptional network was modeled to incorporate the long-term/ genetic effects of  plasma 837 

macronutrients on the synthesis and activation of metabolic enzymes and the signaling proteins. 838 

The transcriptional network consisted of the ten transcriptional factors such as 839 

SREBP,ChREBP,CREB (cAMP response element-bindingprotein), CEBPα (CCAAT enhancer 840 

binding protein alpha),PGC1, TRB3, FOXO,PPAR (γ,α,β) andAMPK along with the inputs from 841 

the signaling and metabolic networks. 842 

The regulation of a metabolic enzyme by a signaling/ transcriptional component was modeled by 843 

assuming the parallel activation of other enzymes in a linear pathway(90). This assumption 844 

ensures that the activation or inhibitions of all the enzymes in a linear pathway are similar to 845 

yield a balanced flux through the pathway. The regulatory effects of the signaling endpoints were 846 

incorporated in the metabolic reactions, wherein, these regulations were assumed to influence the 847 

maximal rate of an enzymatic reaction. The anabolic regulatory effects on the metabolic 848 

pathways were mediated by the insulin signaling components and the catabolic effects were 849 

mediated by the glucagon signaling components.The modules are interconnected through several 850 

common components such as metabolites and active hormonal concentrations that synchronize 851 

together to establish a metabolic state as a result of an input function. The parameters of the 852 

models were obtained by flux balance analysis, regression and by the least square fit technique 853 

used for in-silico fitting of an expected output response for a sub network. The optimal estimates 854 

of the parameters were those that gave best least square fit by minimization of the sum of errors 855 

for an objective function to the data obtained from literature either through experimental data or 856 

through validated model simulations. We tried to retain the reported parameter values from the 857 
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source models allowing minimal deviation in them. We only tended to estimate the parameters 858 

for integrating the sub modules. Each sub module was independently calibrated to a 859 

known/reported experimental profiles and then integrated together to minimize the sum of the 860 

errors after integration. This allows us to constrain our calibration space and minimize the risk of 861 

overfitting. In this sense we reduce the degree of freedom by relying more on the reported 862 

parameters and models and the experimental data to fit the modular parameters (interactions and 863 

crosstalk between modules). 864 

Blood Module 865 

The blood module depicts the surrounding medium of the liver tissue. It consists of the 866 

metabolites that have been considered as transport metabolites to the tissues and the hormones 867 

that are responsible for the metabolic regulations in the tissue. Two pools of the blood streams 868 

were considered viz., arterial blood and capillary blood (i.e. equivalent to venous blood) supplies 869 

to the tissue. It was assumed that the arterio-venous difference in the metabolite concentration is 870 

equal to the tissue metabolite uptake. Therefore the events of plasma metabolite  flow was 871 

considered such as, the arterial blood is supplied to the capillary bed around the tissue and the 872 

plasma metabolites diffuse either passively or by facilitated manner to the interstitial fluid 873 

surrounding the tissue membrane from where the metabolites are taken up by the tissue. The 874 

interstitial fluid and capillary plasma metabolite concentrations are assumed to be in equilibrium. 875 

The resultant blood after the exchange and transport of the metabolites is termed as the venous 876 

blood. The physiological blood flow rate and the volume of the blood were considered to be 877 

constant. As per the experimental evidence, the blood flow rate regulation by the plasma 878 

hormonal concentrations (insulin) was also accounted.  879 
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We have also considered the plasma concentrations of two major metabolic regulatory hormones 880 

namely, insulin and glucagon. The secretion of hormones is known to be regulated by nutrients 881 

in the plasma(19,91).The plasma concentrations of insulin were modeled as a function of plasma 882 

glucose, amino acids and fatty acids by fitting an appropriate Hill function to the experimental 883 

data from literature(24–27,92).The Hill fit for the plasma insulin levels with respect to plasma 884 

glucose was obtained from experimental data reported by Konig et al. 2012.  885 

The experimental data for the effect of amino acids on plasma insulin was extracted from the 886 

dynamical data reported by Calbet and Maclean, 2002 and Loon et al. 2000, for different amino 887 

acid inputs(86,88)The data for the effect of fatty acids/lipids on plasma insulin was extracted 888 

from the dynamical data reported by Gravena et al. 2002 and Manco et al. 2004(93,94) Since 889 

there was scarcity of the dose response curves for amino acid and fatty acid effects on plasma 890 

insulin levels, the dynamical data was used to obtain steady state points and  was used to obtain 891 

the Hill fits based on the fold changes in plasma insulin levels for different amino acids (See S1 892 

file Figure M1 (A,B,C). 893 

The plasma glucagon concentration was modeled as function of plasma glucose and amino acid 894 

concentrations (95,96). In our study, we varied the arterial plasma concentrations of glucose, 895 

amino acids and fatty acids and measured the steady state response of the metabolic fluxes and 896 

the metabolite concentrations(86–88,97). 897 

The rate of insulin secretion was modeled as  898 

������ = �	
�� ∗ �������
��������������� + �	�� ∗ ������

������������� + �	��� ∗ �������
�������������� (1) 899 

Where	"#$, 	%%and	&&%are the maximal insulin concentrations with respect to glucose, amino 900 

acids and fatty acids, respectively. '(
�� , '(��and'(���are the concentrations of glucose, amino 901 
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acids and fatty acids in the arterial blood. �), �), �*and+"#$, +%%, +&&%are the hill coefficients and 902 

the half saturation constants for glucose, amino acids and fatty acids, respectively. This rate was 903 

further incorporated into the kinetic model for the liver and plasma insulin levels developed by 904 

Dalla Mann et.al. (2007) The plasma glucagon concentration was modeled as function of glucose 905 

and amino acid levels(86,97,98). 906 

"#,���� =  - ._
����0�1��21∗�34541∗6�����7�����89:�; + 	_%%
��< ∗ � �����
����� ����� (2) 907 

Where	_"#$"#,�is the maximum glucagon infusion rate, =1 and p1 are the weight factor and the 908 

rate, respectively. 	_%%"#,�is the maximum infusion rateof glucagon due to amino acids and n and 909 

+%% are the corresponding Hill coefficient and half saturation constant. To obtain the plasma 910 

concentrations of glucagon, these secretion rates were incorporated into the kinetic model 911 

developed by Liu et.al. (2009). 912 

The effect of plasma insulin concentration on the blood flow was derived by fitting a Hill 913 

equation to the profiles from the literature. The effect of plasma insulin on hepatic blood flow 914 

was modeled from the dynamical data reported by Fryan 2003(99), wherein the 2.5 fold change 915 

in blood flow was reported for a 5 fold change in the plasma insulin levels (SeeS1 file Fig.M1 916 

(D).  917 

���?�@A�� = 1 + -	B(C ∗ � DE��6DE��9�6�F�G9��;(3) 918 

Where, 	B(C is the maximum rate, INS  is the plasma insulin concentration, n is the Hill 919 

coefficient and KIns is the MichaelisMenten constant.The passive and facilitated metabolite 920 

transport across the tissue and blood compartment was modeled as per Eqn.5 and Eqn.6 921 

respectively. 922 
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                      HI�JK4�LLMN� = OK ∗ 6'?K − '�QJK9(4) 923 

HI�JK���M�J�J�@ = HK ∗ � �8R�8R��8R − �0STR�0STR��0STR (5) 924 

Where, '?K and '�QJK are the jth metabolite concentrations in the blood and the cytosol, 925 

respectively.OKandHK are the effective permeability issue surface are product and the maximal 926 

transport rate of the metabolite across the tissue for passive and facilitated transport, 927 

respectively.+?Kand+�QJK are respective saturation constants for blood and cytosolic metabolites 928 

for blood tissue transport.The metabolite concentrations in the blood were modeled using the 929 

framework as given below. 930 

@�8R@J = UV#WX�Y ∗ ���Z#W[** ∗ 5'�K − '?K: − HI�JK\/6	?�@9(6) 931 

Where, Cbjis the jth metabolite concentration in the capillary blood, Bldflw is the blood flow rate 932 

to the liver, InsbldEffis the effect of the insulin on blood flow, Caj is the jth metabolite 933 

concentration in the arterial blood, Tistj is the rate of metabolite transport across the tissue and 934 

blood, Vbld is the volume of the capillary blood. 935 

Metabolism Module 936 

This module consists of a detailed model of hepatic metabolism that comprises of  the central 937 

metabolic pathway including glycolysis and gluconeogenesis, glycogen synthesis and 938 

breakdown, TCA cycle, oxidative phosphorylation, fatty acid synthesis and oxidation, protein 939 

synthesis and breakdown, urea cycle, pentose phosphate pathway, cholesterol biosynthesis and 940 

hexose amine pathway. The model for glycolysis, glycogen metabolism and gluconeogenesis 941 

was adopted from Konig et al. 2012. The detailed model was developed for lipid and amino acid 942 
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and lipid metabolism which was further integrated with the existing model for carbohydrate 943 

metabolism.The general form of metabolic reactions was written in Michaels Menten formalism. 944 

@^_@J ∗ 	� = ∑ 	_abcWK<KKd1 − ∑ 	_,c��e<eed1 + HI�J(7) 945 

Where fM is the concentration of the ith metabolite, 	� is the volume of the compartment (cytosol 946 

or mitochondria), 	_abcWK and 	_,c��eis the rate of production and consumption of the ith 947 

metabolite, respectively.HI�Jis the transport rate of the metabolite across blood cytosol or cytosol 948 

mitochondrial compartment. The production and consumption rates were modeled using the 949 

MichaelisMenten functions as given below 950 

	_abcWK = 	g�3K ∗ hi)_	abcWK ∗ ∏ � ^G,R^G,R��gG,R <LKLd1                                                (8) 951 

hi)_	abcWK = ∏ �hi)��J l,K ∗ hi)m���J l,K ∗  hi)4M ∗ hi)_nI)_ob(��l,K�<lKld1 (9) 952 

hi)��J l,K = � ����R hi)m���J l,K = � �_D��_�  hi)4M = - ����M∗�1� Fpq�;(10) 953 

hi)_nI)_ob(��l,K = rX ∗ s1 + t nI)_(,o�
�<
� + t Hb(��_(,o?

?<
? u ∗ v6nI)@���J ∗ Hb(��@���J9@<

@  

Where  	B(Cw is the maximum rate of the jth reaction, hi)_	abcWwis the product of the regulation 954 

by the metabolite, signaling and the transcription.f�,wis the sth metabolite in the jth reaction and  955 

+B�,w is the corresponding saturation constant. A andI are the activators and the Inhibitors 956 

pertaining to the activatory (hi)%,o b,w) or inhibitory 6hi)xi(,o b,w9  regulation of the flux, 957 

respectively. hi)_nI)_ob(��l,Kis the regulation exerted by the signaling and transcriptional 958 

networks, wherein nI)_(,o� is the positive regulation by the ath signaling molecule and 959 
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Hb(��_(,o? id the positive regulation by the bth transcription factor. nI)@���JandHb(��@���J are 960 

the negative regulations exerted by the signaling and transcription events on the jth flux, 961 

respectively.  962 

Modeling Metabolic Regulation 963 

The regulation of the signaling component on the metabolic enzymes were modeled by assuming 964 

parallel activation mechanism wherein, if a signaling/transcription component is known to 965 

regulate a enzyme in a certain manner (activation or inhibition), then the subsequent linear 966 

pathway was assumed to be correspondingly activated by that signaling/transcription component 967 

to ensure the flux balance. Apart from this, the regulations by several signaling/transcription 968 

components on a single enzyme was assumed to be by the OR gate for activation effects and by 969 

AND gate for inhibitory effects as given in Eq.17.The formalism used for modeling these 970 

regulations are as given below.An example of glycolysis regulatory function is illustrated below. 971 

%+oyJN��SG_G = 	�eJ ∗ � ��z�
��z���g�{T��(12) 972 

nh[V|yJN��SG_G = 	Ll�?4 ∗ � �}~�y�
�}~�y���gG��8q� (13) 973 

'�h[VayJN��SG_G = 	��l�?4 ∗ � ��}~�4�
��}~�4���g0���8q� (14) 974 

%f|+��QLML = 	�g4e ∗ - %f|+<%f|+� + +B�g4e<; 6159 

&���EJN = - +BX�3�<
+BX�3�< + &���<; 6169 

hi)_6"#$_6"6a 9 9
= 60.259.∗ 61 + %+o_6|o�_)#��I� 9 + nh[V|_6|o�_)#��I� 9 + %f|+_6[**_)#��I� 9
+ '�h[Va_6|o�_)#��I� 9 9 ∗ &���_�o�;                                                                                   6179 
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The regulations of the metabolic reactions were modeled to modulate the metabolic enzymes. 976 

Several signaling and transcription factors are known to regulate metabolism (See Table II). The 977 

influence of various signaling and transcriptions such as activation and deactivation of these 978 

enzymes were derived from the dose response data from the literature. The unknown rates were 979 

deduced by the fitting the output curve to the desired response and followed by appropriate 980 

parameterization. The unknown rates for the metabolic regulation by the signaling pathways 981 

were obtained by fitting the pathway rate parameters to the time-course data of plasma 982 

metabolite levels (i.e. glucose, amino acid and fatty acids). The rational was to obtain the fold 983 

change in the metabolic rates required to obtain the reported experimental profiles for plasma 984 

metabolite. These fold changes were translated to the appropriate Hill fits for the effect of 985 

signaling endpoints on the metabolic enzymes. From these Hill fits  the three parameters Vmax, 986 

Km and n were deduced, wherein the 'Vmax' is the maximum fold change required, 'Km' the half 987 

saturation constant and 'n' as the Hill coefficients assumed to be sensitive(n=2-4).  988 

We have included the pentose phosphate pathway,  urea cycle, cholesterol biosynthesis(100) and 989 

hexoseamine pathways (101)(102) along with the central metabolic pathway. While pentose 990 

phosphate pathway is the major source of NADPH, urea cycle takes care of the deamination or 991 

removal of the ammonia (NH4) generated while gluconeogenesis and amino acid catabolism, 992 

through urea(51,69). Hexoseamine pathway is the indicator of the metabolic status of the cell 993 

under nutrient stress. This pathway is composed of the inputs from the derivatives of glucose, 994 

amino acids and the fatty acid metabolism. At higher levels of these metabolites, the 995 

glucosamine formation are triggered which further is responsible for the glycosylation of the 996 

metabolic enzymes. N-acetyl glucosamine an end product of the hexoseamine pathway is the 997 

indicator of the metabolic stress in the cell. 998 
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Table II Regulation of hepatic metabolism by metabolites 999 

Reaction Enzyme Positive 

regulation 

Negative 

 regulation 

Glucokinase  F6p 

Phosphofructokinase AMP Citrate 

Glycogen phosphorylase AMP Glucose 

Ga3p dehydrogenase  Glucose 

Pyruvate kinase F16p Amino Acids 

Pyruvate dehydrogenase  NADH, Acoa (Pi) 

Citrate synthase AMP  

Isocitrate dehydrogenase  Scoa (Pi) 

AKG dehydrogenase AMP Scoa (Pi) 

Citarte shuttle   (103)  Palcoa(Pi) 

Cit_Acoa_OAA (ATP citrate lyase)  Palcoa(Pi) 

Acoa_MalcoA (Acetyl CoA Carboxylase)  Palcoa(Pi) 

FFA_Palcoa (Acyl CoA synthase) (Saggerson, 2008)  Malcoa (Pi)  

Palcoa_Acoa (β oxidation)  Acoa (Pi) 

Carnitine shuttle (Carnitine acyltransferase )  Malcoa 

Gmt_AKG (Glutamate dehydrogenase)  FFA  

Acoa_Gmt_NAG (N acetyl glutamate synthatase) Arginine  

NH4_Crbphos (Carbomyl phosphate synthase) NAG  

Citrulin_Arg (Argininosuccinate lyse) AMP  

 (Glucosamine 6 phosphate N acetyl transferase) FFA Glnac (Pi) 
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 (N acetyl glucosamine pyrophosphorylase) Glucose  

HMGcoa_Mevl (HMGCoA reductase)  Mevl(Pi) 

 1000 

Signaling Module 1001 

This is for the first time in literature, that we have integrated the hormonal signaling (Insulin and 1002 

Glucagon) pathway along with the calcium, cAMP and mTOR signaling pathways. These 1003 

models were adopted different literature sources and integrated together with the appropriate 1004 

modeling formalisms. The model for Insulin signaling was adopted from the Sedghat et al. 1005 

(2002) and the Glucagon signaling was adopted from Mutalik et al.(44) and Xu et al(42). Insulin 1006 

and glucagon hormones and the signaling pathways are mutually antagonistic pathways wherein 1007 

the downstream of insulin signaling inhibits the activation of cAMP i.e. the glucagon signaling 1008 

component. Similarly the calcium activated DAG increases the phosphorylation of inactivated 1009 

PKC which further inhibits the insulin signaling through IRS. While AKT and GSK3 acts as 1010 

major anabolic regulatory signaling component of insulin signaling pathways, cAMP and PKA 1011 

are the major metabolic regulatory components of the glucagon signaling pathway. Further, AKT 1012 

and amino acids signal to activate mTOR(104,105) and its downstream S6K that has an 1013 

inhibition of IRS(21–23,89,106). Table III lists the feedback regulations in the signaling 1014 

integrated pathways.The general formalism of modeling the signaling pathways is as given 1015 

below 1016 

WnMWo = +LQ<J� + �t +4�LK
<K

Kd1 ∗ nM� ∗ h4l��K − st +@4�Le ∗<e
ed1 nMu ∗ h@4l��K − +@�� ∗ nM      6189 
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Where, +LQ<J� and +@�� are the basal synthesis and degradation rate of ith signaling protein 1017 

S,+_aℎ�K and +_Waℎ�e are the phosphorylation and the dephosphorylation rates of the signaling 1018 

molecule, respectively. h_abi)Kandh_Wabi)K are the  regulatory interactions of the 1019 

phosphorylation and dephosphorylation of S, respectively.  1020 

The regulatory effects of the signaling endpoints were incorporated in the metabolic reactions, 1021 

wherein, these regulations were assumed to influence the maximal rate of an enzymatic reaction. 1022 

The anabolic regulatory effects on the metabolic pathways were mediated by the insulin 1023 

signaling components and the catabolic effects were mediated by the glucagon signaling 1024 

components. The appropriate regulatory functions were modeled to integrate the signaling 1025 

pathways to the metabolic pathways as described in the previous section. 1026 

Table IIIRegulation of hepatic metabolism by Signaling components. 1027 

Signaling Components Positive Regulation Negative Regulation References 

IRS  PTP, PKC, S6K (21) 

AKT mTORC2 Glnac, TRB3 (107) 

PKC DAG, Glnac, FFA  (28,29) 

GSK3 PP1, Phk,  Cal, PKA, FFA (108) 

mTOR Amino acids  (109) 

S6K Amino acids AMPK  (110) 

TSC AMPK AKT (111,112) 

cAMP Gprt,  PDE3 (113,114) 

PKA cAMP  (115) 

PDE3 AKT PKA (116) 

 1028 
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Transcriptional module 1029 

The metabolism in liver is known to be regulated by several transcription factors(117) such as 1030 

SREBP(118),(119),(120)],ChREBP(121), PPAR (γ,α,β) (122),(123), CREB, CEBP (124), PGC1, 1031 

TRB3, FOXO (125)and AMPK (126). Table IV lists the components that inter-regulate 1032 

transcriptional factors. Although it is known that the glucose uptake by liver is mediated by 1033 

GLUT2 which is known to be insulin independent, the expression of GLUT2 is regulated by the 1034 

insulin dependent transcriptional factor SREBP 1c and Glucose. SREBP1c is activated in PI3K 1035 

dependent manner and is responsible for the expression of Glucokinase enzyme, a rate limiting 1036 

step in the glycolysis. Moreover, the expression of glycolytic and lipogenic genes are regulated 1037 

by the action of SREBP1c, in the liver. Higher glucose levels also triggers the activation of a 1038 

ChREBP transcription factor i.e. responsible for glucose mediated up regulation of lipogenesis 1039 

through LPK, ACC and FAS gene transcription. Insulin signaling along with fatty acids activates 1040 

a transcription factor PPARγ that is responsible for fatty acid transport and triglyceride synthesis 1041 

in the liver. The catabolic transcriptions are mediated by the glucagon signaling, wherein cAMP 1042 

activated PKA phosphorylates the transcription factor CREB which induces the transcription of 1043 

the genes responsible for the enzymes of the gluconeogenesis pathway such as PEPCK, G6Pase 1044 

and pyruvate carboxylase. CREB further activates the gluconeogenic cofactor PGC1 which 1045 

increases the expression of the gluconeogenic genes. Another transcription factor activated under 1046 

low glucose level and triggered by cAMP is CEBPa that regulates the transcription of the genes 1047 

responsible for the ammonia metabolism i.e. urea cycle under higher protein diets or excessive 1048 

amino acid breakdown during exercise.  PPARα is the transcriptional activator of the fatty acid 1049 

oxidation which triggers the expression β oxidation enzymes in the liver. FOXO is a metabolic 1050 

regulatory transcription factor that down regulates glycolysis and influences on the 1051 

gluconeogenic gene expression under fasting condition. TRB3 is another transcription factor 1052 
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i.e.activated by PPARα in response to the fatty acids and glucagon signaling which further 1053 

inhibits AKT activation thereby down regulating the effect of insulin signaling. Furthermore, a 1054 

major regulator of energy homeostasis is AMP activated protein kinase which is activated under 1055 

energy stress or starvation, due to the changes in the AMP/ATP ratios in the cell. It is a potent 1056 

transcriptional regulator that down regulates the anabolic pathways such as glycogen synthesis, 1057 

fatty acid synthesis and protein synthesis. 1058 

@z_@J = HLQ<J� + 5∑ H_(,oK<KKd1 ∗ HM: ∗ H_%bi)4 ∗ H_xbi)K − H@�� ∗ 5∑ H_W(,o�e<eed1 : ∗ HM(19) 1059 

H_%bi)4 = ∏ � �q�
�q���q� 4<4 (20) 1060 

H_xbi)K = ∏ � ���
Dq���q� 2<2 (21) 1061 

Where, HLQ<J� and H@�� are the basal synthesis and degradation rate of ith transcription factor 1062 

T,H_(,oK and H_W(,oe are the activation rates of the expression and degradation of the 1063 

transcriptional factor, respectively. H_%bi)4andH_Wabi)4 are the product of  regulatory 1064 

interactions of that actvate and deactivate the transcriptional factor T, respectively. %4and�4 are 1065 

the activator and inhibitor concentrations, respectively. 1066 

Table IVRegulation of Transcriptional factors by signaling components and macronutrients. 1067 

 
Transcription 

Factors 

Positive Regulation Negative Regulation References 

SREBP S6K, AKT, PKC cAMP, FOXO, AMPK, (119,127) 

ChREBP Glucose,  PKA, AMPK (121,128) 
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PPARγ AKT, FFA,  AMPK (122,129) 

PPARα PKA, FFA, PGC  (130) 

CREB PKA,  AKT (131,132) 

CEBPa cAMP PKC, (124,133) 

TRB3 PI3K, PKC, PPAR, PGC1  (134,135) 

PGC1 FOXO, CREB AKT, (136) 

FOXO Glnac, AMPK,  AKT, PPARγ (137,125) 

AMPK AMP AKT,PKA, ATP (126) 

 1068 
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Graphical Abstract 

The hepatic metabolic functions are mediated by several pathways which are regulated at 

metabolic, signaling and transcriptional levels. These multilevel regulations with crosstalk 

between pathways constitutes a complex network which orchestrate together to provide a robust 

metabolic regulation in liver. The model analysis highlights the effect of plasma macronutrients 

namely, glucose, amino acids and fatty acids on these regulatory mechanisms to facilitate 

homeostasis. The insights were further used to explain experimental observations of several 

investigations reported in literature, through the regulatory mechanisms. Our analysis indicates 

that higher levels (above 2.5-3 fold) of macronutrients in plasma result in insulin resistance 

through disturbances at multiple levels i.e. metabolic, signaling and transcription.  

 

Page 72 of 72RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t


