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The classification and prediction of green teas by electrochemical response 1 
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e-tongue 3 
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 6 

Abstract: Aroma and taste are the most important attributes that influence the pleasantness of tea infusion. In 7 

the paper, e-nose and e-tongue were combined to identify the tea samples of various grades, and two fusion 8 

feature datasets from the electrochemical response were established for the analysis on the basis of the 9 

partial-area fusion dataset (PAFD, not including the ‘aftertaste values’) and total-area fusion dataset (TAFD, 10 

including the ‘aftertaste values’). Principal component analysis (PCA), discriminant factor analysis (DFA) and 11 

partial least-squares regression (PLSR) were applied to classify the samples and make predictions. DFA with 12 

TAFD yielded the best classification results, and the distribution of compounds within the tea samples was 13 

identified. The taste and small compounds of teas were detected by using high-performance liquid 14 

chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). TAFD was more effective than 15 

PAFD in predicting the quality grade, water extract, polyphenol, and geraniol; the correlation coefficients of 16 

PLSR with TAFD were 0.9518, 0.9298, 0.9202 and 0.9258, respectively. The addition of ‘aftertaste values’ 17 

improved the analysis results, the quality grades of green teas can be detected by using the e-nose and e-tongue 18 

in combination and the main volatile and flavor compounds of green teas of different quality grades can be also 19 

well determined. 20 

Keywords: Electronic nose; electronic tongue; green tea; pattern recognition; aftertaste; electrochemical 21 

response. 22 

23 
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Nomenclature 24 

Chinese holiday  

Tomb-Sweeping Day                   TSD  

Detection instruments  

electronic nose                        e-nose 

electronic tongue                      e-tongue 
gas chromatography-mass spectrometry    GC-MS 

high-performance liquid Chromatography  HPLC 

visible near infrared  spectroscopy       Vis-NIRs 

Different types of sensors 

electronic tongue: ZZ, BA, BB, CA, GA, HA, and JB 

electronic nose: W1C, W5S, W3C, W6S, W5C, W1S, 
W1W, W2S, W2W and W3S 

Pattern recognition technique 

partial least squares regression            PLSR 

principal component analysis             PCA 

Statistical terms 

cross-validation residual sum of squares     CVRss   
linear-retention-index                    LRI 

Tea samples 

The tea samples produced in Jiyun with different prices: 

jy120, jy170, jy190, jy280, jy360, jy450 and jy510 (the 

number is the price (￥￥￥￥)) 

Two types of datasets 

partial-area fusion dataset                  PAFD 

total-area fusion dataset                    TAFD 

 25 
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1. Introduction 26 

Green tea has been known to confer health benefits (such as anti-oxidant and anti-microbial properties) along 27 

with its attractive and pleasant flavor.
1-3

 In the marketplace, there is a wide range of prices for green teas of 28 

different qualities, which are difficult to distinguish by their appearance because the similar processing 29 

procedures.
4
 A common fraudulent practice in the commercialization of green tea is to sell inferior goods as 30 

superior ones; that is difficult for normal consumers to detect. This fraudulent behavior not only harms the 31 

interests of consumers but also damages the interests of producers. 32 

The quality grades of green tea, which are influenced by variety, plucking season, soil, fertilization, climate, 33 

and post-harvest treatment,
5
 are always ranked by leaf appearance, color, aroma, and taste of tea infusion.

6,7
 34 

Among these factors, aroma and taste are considered the most important attributes that influence the 35 

pleasantness of tea infusion and have contributed to the increase in tea consumption.
8
 Traditionally, the 36 

evaluation of quality grades of green tea is determined by human sensory panels.
9
 However, sensory evaluation 37 

is a time-consuming method, and difficult-to-reproduce method with low objectivity. In addition, even trained 38 

panelists can be influenced by several physiological, economic, and personal issues; and human perception is 39 

not constant across time or among people. Analytical methods and some modern analysis techniques could fit 40 

these requirements: gas chromatography/mass spectroscopy (GC-MS),
9,10

 high performance liquid 41 

chromatography (HPLC),
11-13

 and visible near infrared (Vis-NIR) spectroscopy.
14,15

 However, the application of 42 

these instruments has significant limitations: (1) the taste and smell substances of teas cannot be completely 43 

detected by these instruments, therefore, they cannot accurately reproduce the gustatory and olfactory sensations 44 

of teas to human. (2) The interactions between different taste and smell substances, such as the synergistic effect 45 

or the suppression effect, cannot be detected by these instruments. 46 

Electronic nose (e-nose) and tongue (e-tongue) are the systems that closely mimic the performance of human 47 

olfactory bulbs and taste buds (with the following application of pattern recognition tools).
16-18

 Both the 48 

instruments can obtain global information about samples through “soft” measurement techniques, where a 49 

quality (e.g. taste or smell) can be measured, instead of traditional measurement techniques, where a single 50 

parameter (e.g. temperature or conductivity) is measured.
19

 Global information, which is considered to be 51 

fingerprints of taste and smell substances, could be used to classify and forecast the quality of detected samples 52 

with appropriate pattern-recognition methods. Because of their fast operation and low cost, e-noses and 53 
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e-tongues are now widely applied to various food products analyses.
20-25

  54 

Although the quality of the tea has a high correlation with aroma and taste, aftertaste is also often used as a 55 

positive term to describe a good tea infusion.
26

 Aftertaste is the stimulus intensity perceived in the moments 56 

immediately following removal of the stimulus (to differentiate with adaptation, in which the stimulus is 57 

constantly present), it can vary strongly over time after taste effect and the length of aftertaste is much different 58 

in various tea samples.
27

 In this study, a combination of an e-nose and e-tongue is applied to detect different 59 

grades of green tea. Meanwhile, the aftertaste of the tea infusion is also detected during the experiment for 60 

improving the identification precision. The sensory features were extracted by the area method (the sum of the 61 

areas between the corresponding curves and x-axis) from the original response values. Three types of pattern 62 

recognition methods: principal component analysis (PCA), discriminant factor analysis (DFA), and partial 63 

least-squares regression (PLSR) based on those feature data were applied for classification and prediction of the 64 

green tea samples. In addition, the volatile and flavor compounds of teas were also detected by gas 65 

chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) as 66 

references. PLSR was used to predict the chemicals on the basis of usage of an e-nose or e-tongue alone, as well 67 

as the combined usage of an e-nose and e-tongue. 68 

The objectives of this study were: (1) to demonstrate whether the combined usage of e-nose and e-tongue 69 

systems to discriminate tea samples with different grades and to the predict the volatility and flavor compounds 70 

is more efficient than the solo usage of an e-nose or e-tongue; (2) to determine the effectiveness of the area 71 

method as the extraction method for response features; and (3) whether obtaining additional aftertaste signals 72 

could improve the classification and prediction results.  73 

2. Materials and methods 74 

2.1. Chemicals 75 

The reference aromatic compounds for the qualitative analysis, and ethyl caprate (99.99% purity), used as an 76 

internal standard for the quantitative analysis, were obtained from Sigma-Aldrich, Milwaukee, WI, USA. 77 

N-Alkanes (C5–C20) were used for the linear-retention-index (LRI) calculations and were purchased from J&K 78 

Chemical Ltd., Beijing, China. An internal standard solution was prepared at a concentration of 0.4 µL in 1 mL 79 

of methanol (HPLC grade, Fishier, Scientific Pittsburg, PA, USA) prior to use. 80 
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2.2. Tea samples 81 

Longjing tea, which is a type of flat-shaped Chinese green tea, is used as the experimental sample in the study. 82 

Seven tea groups of different qualities were picked from Jiyun city (28º25′ 119º52′, Zhejiang province). All tea 83 

leaves, which were pan-fried by skilled workers, were processed by the same method. The grades of Longjing 84 

are variable depending on the plucking time: the teas plucked before Tomb-Sweeping Day (TSD, April, 5
th
) are 85 

of higher quality and price than the teas plucked after the TSD. Seven tea groups with different price were 86 

plucked at different times (Table 1): the samples of jy280, jy360, jy450, and jy510 were plucked before TSD; 87 

and the samples of jy120, jy170, and jy190 were plucked after TSD. Fourteen samples of each quality group 88 

were identified, and all samples were packed in aluminum foil, sealed by a vacuum packing machine, and stored 89 

at 4 ºC before testing. 90 

2.3. Electronic nose setup and measurement 91 

A PEN2 portable electronic nose (AIRSENSE Company, German) was applied in the experiment. The device 92 

was equipped with 10 metal oxide semiconductor (MOS) type chemical sensors (W1C, W5S, W3C, W6S, W5C, 93 

W1S, W1W, W2S, W2W and W3S) whose responses were expressed as the ratio of conductance. 94 

In this experiment, each 10-g tea sample was placed in a beaker (500 ml), which was sealed with plastic wrap. 95 

Afterwards, the headspace collected the volatiles from the samples during 60 min (headspace-generation time). 96 

During the measurement process, the headspace gas was pumped into the sensor chamber at a constant rate of 97 

400 ml/min. The measurement includes three parts: the sampling phase (85 s), the slightly purging phase (10 s), 98 

and the purging phase (40 s). At beginning of the sampling phase, the ratio of conductance of each sensor was 99 

low; then, it increased continuously and finally stabilized after approximately 50 s. The following slightly 100 

purging phase consisted of a short time clean-testing (with air) for the detection of the adsorb ability of the MOS 101 

sensors to the volatiles (it could be taken as one type of aftertaste detection). At the end of the experiment, the 102 

sensors were purged to their baseline by air in the purging phase. A computer recorded the response signals at 103 

every second. When the measurement was completed, the acquired data were properly stored for later analysis. 104 

Fourteen samples of each tea group were identified, and temperature of the laboratory was kept at 25±1
 
ºC 105 

during experiment. It can be seen from Fig. 1 that the response signals obtained from jy190 and jy510 samples 106 

were different, and that the volatiles of different tea samples presented different cohesion to gas sensors. Jy190 107 

samples belong to low-level Longjing teas, and their sensor signal values ranged from 0-8. The sensors have the 108 
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highest sensitivity to jy510, and the responses were in range of 0-9. Aside from these differences, the response 109 

values obtained by w1w sensor changed significantly. Those differences among the response signals could be 110 

applied to discriminate different quality grades of Longjing tea samples, and the differences among “aftertaste 111 

signals” might improve the discrimination.  112 

2.4. Electronic tongue setup and measurement  113 

The α-Astree e-tongue (Alpha MOS company, France), which comprises seven potentiometric chemical sensors 114 

(ZZ, BA, BB, CA, GA, HA, and JB), was performed in the measurements. Those cross-sensitivity working 115 

sensors are composed of polymer membranes which could adsorb different taste substances, and they could 116 

provide global gustatory information to the five basic tastes (sourness, saltiness, sweetness, bitterness, and 117 

umami). During the measurements, the voltage intensity (mv) variation between chemical sensor and Ag/AgCl 118 

reference electrode would be recorded by basic data analysis software for the further chemometrics analysis.  119 

According to the “Methodology of Sensory Evaluation of Tea”,
28

 the suitable proportion of tea to water 120 

applied in the measurements is 1:50 (g/v). A total of 10.0 g of dry tea sample was brewed in 500 mL of freshly 121 

boiled distilled water for 5 min, and then the tea leaves were then filtered with a sieve. After cooling down to 122 

room temperature (25 ºC), 80 ml of tea infusion was poured into an airtight glass jar with a volume of 150 ml 123 

(concentration chamber) for the potentiometric measurements. This experiment also consisted of three 124 

measurement phases: the sample detection phase (120 s), the “aftertaste” detection phase (40 s), and the 125 

cleaning phase (10 s). During the sample detection phase, the measurement time was set to 120 s for sampling, 126 

and the response signals stabilized after approximately 75 s. After the detection phase, the sensor array was 127 

immersed in an artificial human saliva solution for approximately 40 s to detect the changes of membrane 128 

potential caused by adsorption (this could be also called the “aftertaste”). During the cleaning phase, the sensors 129 

were rinsed for 10 s using de-ionized water before detecting the next sample. Five samples could be detected at 130 

one time, and fourteen samples of each tea grade were tested. All samples were detected at room temperature 131 

(25±1 °C). 132 

As shown in Fig. 2, the sampling and aftertaste signals obtained from jy190 and jy510 are quite different. The 133 

signal ranges of jy190 samples were from 0 to 3100 mv, and the signal ranges of jy510 samples were from 0 to 134 

3000 mv. The sampling signals obtained by CA, GA, and HA sensors from the tea samples of the two quality 135 

grades exhibited the greatest differences. The aftertaste values obtained by BB and JB sensors exhibited 136 
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significant changes among the four plots. The classification results from the e-nose and e-tongue were compared 137 

in the following sections. 138 

2.5. Characterization of tea extract 139 

The contents of polyphenol, amino acid, protein, and total sugar were determined by a spectrophotometer using 140 

the following methods: polyphenol by ferrum tartrate method, amino acid by ninhydrin method, protein by 141 

coomassie brilliant blue method, and total sugar by anthrone reagent method. The water extracts contents were 142 

determined by the methods described by Seo et al (three samples was tested, the average values for the water 143 

extracts contents were described and the standard deviation was applied for demonstrating stability of the 144 

test ).
29
 145 

2.6. HPLC & GC-MS 146 

2.6.1 HPLC for detection of catechins and caffeine. After filtering through a 0.22 µ membrane filter, the 147 

tea infusion was analyzed by a Shimadzu (Kyoto, Japan) HPLC system equipped with an SPD-10Avp UV 148 

detector, and the UV absorbance was monitored at 280nm. The chromatographic separation was carried out on a 149 

Wondasil C18-WR column (250 mm ×4.6 mm, 5µm). Acetic acid-acetonitrile-water (0.5:3:96.5, v/v/v) and 150 

acetic acid-acetonitrile-water (0.5:30:69.5, v/v/v) mixtures were employed as mobile phases A and B, 151 

respectively, in HPLC, and the gradient program as follows: 0-40 min, linear gradient 30%-85% B. 152 

2.6.2. HS-SPME/GC-MS for the detection of volatile components. The extraction of the volatile 153 

compounds was carried out using an a HS-SPME method with a PDMS/DVB fibre (65m film thickness, 154 

Supelco, Bellafonte, PA, USA), prior to the analysis the fiber was preconditioned for 60 min in the injection port 155 

of the GC, as suggested by the manufacture. The tea infusion (6 ml) was spiked with 0.4 l of an internal 156 

standard (ethyl caprate), placed in a 20 ml glass vial sealed with a PTFE-coated septum (Beijing Bomex Co., 157 

China), and subsequently equilibrated for 5 min in a water bath at 60 °C. For the extraction, the fiber was 158 

immersed in the sample (the stainless steel needle was kept 2.5cm below the septum) for 80 min. Afterwards, 159 

the SPME fiber was introduced into the hot injection port of the GC/MS for 5 min for the complete desorption 160 

of the analyte. Temperature program was as follows: hold at 40 C for 2min, increase 3 C/min up to 110 C, 161 

increase 5 C/min up to 200 C, hold at 200 C for 10min. Helium was the carrier gas (purity > 99.999%) and the 162 

flow velocity was constant at 1 ml/min. The mass spectrometer conditions was as follows: ionization mode, EI; 163 
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electron energy, 70eV; interface temperature, 280 C; ion source temperature, 230 C; mass scan range, 47-401u. 164 

The identification of volatile compounds was achieved by comparing their LRIs, MS fragmented patterns, and 165 

aroma quality with those of reference compounds and published data. The concentration of the volatile 166 

compounds was calculated in ng/g based on the internal standard. 167 

2.7. Data processing  168 

Principal component analysis (PCA) is a variable-oriented data analysis technique that used to detect patterns 169 

and to visualize the information present in the data of the e-nose and e-tongue measurements. PCA allowed the 170 

extraction of useful information (discrimination of sample types) from the data and to explore their structure, 171 

including correlation between variables and the relationship between subjects.
29

  172 

Discriminant factor analysis (DFA) is probably the most frequently used supervised pattern recognition. 173 

The optimal transformation in classical DFA is obtained by minimizing the within-class distance and 174 

maximizing the between-class distance simultaneously, thus achieving maximum class discrimination.
30

 175 

Partial least squares regression (PLSR) is used to model the relationships between the observable variables 176 

(Y-variables) to the variation of predictors (X-variables), it finds a linear regression model by projecting the 177 

predicted variables and the observable variables to a new space. Because both the X and Y data are projected to 178 

new spaces, the PLSR family of methods is known as bilinear factor models.
31

 179 

PCA and DFA were performed by using SAS v8 (SAS Institute, Cary, NC, USA), PLSR was performed by 180 

using MATLAB (version 7.0, The MathWorks, Inc., USA)  181 

3. Results and discussion  182 

3.1. Feature data extraction 183 

The typical e-nose response curves are shown in Fig. 3a. During the measurement, the signals of each sensor 184 

were low during the initial period; then, it continuously changed, started to stabilize approximately after 20 s, 185 

and stabilized approximately at the 80
th

 s. These signals were changed again after 85 s until 95 s in order to 186 

obtain the aftertaste values for 10 s. According to the characteristics of the e-nose response curves, three 187 

methods were employed to extract the feature data from the electrochemical response values of the e-nose: (1) 188 

the 80
th

 s datum method, where the signals became stable approximately at the 80
th

 s, and the response values of 189 

each sensor at the 80
th

 s were taken as the feature data; (2) the partial-area method, where the sum of the areas 190 
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under the response curves obtained between the 0
th

 s and 85
th

 s was taken as the feature data, not including the 191 

areas under the aftertaste values; and (3) the total-area method, where the sum of the areas under the response 192 

curves obtained between the 0
th

 s and 95
th

 s was taken as the feature data. As shown in Fig. 3b, the response 193 

curves of the e-tongue exhibited similar changes in the trends as those of the e-nose during measurement. The 194 

three methods were also employed to extract the e-tongue’s feature data, which were obtained for the different 195 

times and intervals: (1) the 110
th

 s datum method, where the time for extracting features was at 110 s; (2) the 196 

partial-area method, where the time interval was from the 0
th

 s to the 120
th

 s; and (3) the total-area method, 197 

where the time interval was from the 0
th

 s to the 160
th

 s. 198 

3.2. The classification results of PCA using e-nose and e-tongue 199 

3.2.1 The PCA result of e-nose and GC-MS. Seven quality grades of Longjing tea were classified using the 200 

e-nose with a PCA (Fig. 4), and the results on the basis of the three feature-extracting methods were compared 201 

with each other. Fig. 4a shows a score plot of the first two PCs (86.31% of total variance explained) of the 202 

e-nose data after pretreatment by the 80
th

 s datum method. Because the response data have a high correlation 203 

with each other, only one datum was always extracted from the responses as the feature data in past studies. 204 

However, the sample information contained in one datum was incomplete, and the classification result indicated 205 

that the 80
th

 s datum method was weak for the classification. To improve the classification results, the area 206 

methods were employed. In comparison, a PCA analysis on the basis of an area method (the partial-area method) 207 

was performed (Fig. 4b). The PCA plot shows a classification of Longjing tea samples with 86.34% of total 208 

variance explained, and the classification result was the similar chaotic type as that presented in Fig. 4(a). The 209 

area under the initial phase (0 s - 20 s) of the response curves was included in the feature data by the partial-area 210 

method. The response values changed constantly during the stage, and the areas under those transient values 211 

were unstable (RSD > 8%), which might led to poor classification results. In the end, the efficiency of the 212 

total-area method for classifying tea samples on the basis of the PCA was tested, where PC1 versus. PC2 213 

together explains 77.82% of variance (Fig. 4c). Although jy170, jy190, jy360, and jy510 overlapped with each 214 

other, y120, jy360, and jy450 samples can be separated from the other samples. The areas under the response 215 

curves obtained during the entire measurement were taken as the feature data, and the aftertaste values were 216 

taken as one part of the features. The aftertaste signals made the olfactory information more complete and 217 
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increased the differences among the samples. This may be the reason that the total-area method worked more 218 

effective than other methods in the classification works.  219 

As discussed above, these tea samples could not be separated from each other completely using the e-nose. 220 

The e-nose was not sensitive enough to identify the slight differences between the volatile compounds of the 221 

samples. To explain the differences between the main volatile compounds of each kind of Longjing tea, GC-MS 222 

was employed to detect the same samples as a reference. The concentrations of five main volatile flavor 223 

compounds, nonanal, linalool oxide I (trans, Furanoid), decanal, β-Lonone and methyl salicylate, are 224 

summarized in the Table 2. It is obvious that teas plucked before TSD have higher concentrations of nonanal 225 

and decanal, and lower concentrations of methyl salicylate, β-Lonone, and geraniol than the teas plucked after 226 

TSD. The teas plucked in these two time phases have similar concentrations of linalool oxide I (trans, Furanoid). 227 

The concentrations of nonanal and decanal increased as the tea grade became higher, revealing their positive 228 

contribution to the Longjing tea aroma; however, the levels of β-Lonone, methyl salicylate, and geraniol 229 

decreased as the tea grade became higher, revealing their negative contribution to the Longjing tea aroma. 230 

Furthermore, we could determine why jy120, jy360 and jy450 samples could be separated from the other 231 

samples in the PCA plot: the jy120 sample has the highest concentrations of methyl salicylate and β-Lonone, 232 

and the lowest concentrations of nonanal and decanal. Further, the jy450 sample has the highest concentrations 233 

of nonanal and decanal and the lowest concentrations of methyl salicylate. The jy360 sample has medium 234 

concentrations of almost all of the six volatile compounds. 235 

3.2.2 The PCA result of e-tongue and HPLC. The e-tongue data obtained from the tea samples were 236 

calculated with a PCA. As shown in Fig. 5, the total accumulative variance contributions from PC1 and PC2 are 237 

69.07% (Fig. 5a), 66.37% (Fig. 5b), and 66.9% (Fig. 5c). None of the contributions rate over 85%, and the 238 

samples cannot be separated from each other completely using the three feature-data extraction methods. 239 

Moreover, the samples have similar distributions in the PCA score plot: the samples of jy120, jy280, jy360, and 240 

jy510 could be separated from other samples on the basis of the data obtained by the three methods: the 110
th

 s 241 

datum, the partial-area, and the total-area methods; the jy170, jy190, and jy450 samples overlapped with each 242 

other in the three PCA plots. The PCA analysis results for the e-tongue data could not be improved by including 243 

the aftertaste responses. Because there was very little change in the response values during the e-tongue 244 

measurement (even the slightly oscillations in the initial phase of measurement), the feature data based on the 245 

three feature-extraction methods have high correlations. PC1 vs. PC2 explains the similar contributions of 246 
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variance. The classification results on the basis of the e-tongue data with the PCA were better than those on the 247 

basis of e-nose data,  248 

The concentrations of polyphenol (bitterness, astringent), amino acids (umami), total sugars (sweetness), 249 

water extracts (kokumi), and the protein (umami) of Longjing teas were analyzed by chemical methods; the 250 

catechins (bitterness, astringent) and caffeine (bitterness) of the Longjing teas were analyzed by HPLC. Table 3 251 

lists the chemical compositions identified in Longjing teas. The teas plucked after TSD have higher 252 

concentrations of polyphenol, amino acids, total sugars, water extracts, catechins, and caffeine contents than the 253 

teas plucked before TSD. Therefore, the tea infusions made by soft buds and/or the first young leaves may have 254 

a mild taste; whereas the tea infusions made by more mature, fresh leaves have a stronger taste. The high price 255 

of the high-grade Longjing teas may be caused by two reasons: (1) young leaves are few in number, and their 256 

values are determined by the number and (2) although the tea infusions made by the young leaves have a mild 257 

taste, they may have suitable flavor for most people. Jy170 and jy190 samples have similar concentrations of the 258 

seven chemical substances, which is the reason why the two grades of samples could not be separated from each 259 

other in the PCA plots. However, it was not possible to determine a reason for the distribution of jy450 from 260 

Table 3. There might be substances other than the chemical compounds detected that could influence the 261 

classification results, or the sensitivity of the e-tongue was not high enough to classify the Longjing tea samples. 262 

There were four type of tea samples (jy120, jy280, jy360, and jy510) that could be separated from the other 263 

samples, and the e-tongue worked better than the e-nose for the classification. Therefore, even though the 264 

classification results were not good enough, the clearly distributed results of the tea samples in the PCA plots 265 

have confirmed that the e-tongue was able to accurately respond to different tea samples. 266 

3.3. The classification results on the basis of the fusion data  267 

Owing to the high complexity of the tea samples, the use of only the e-nose or e-tongue data for the 268 

identification is insufficient. Only one type of sensor array (the MOS gas or liquid potentiometric sensor array) 269 

restricted the amount of useful information. Emerging strategies (multi-sensor data fusion techniques) have 270 

recently been demonstrated to efficiently overcome these problems. In a study, the e-nose and e-tongue sensing 271 

systems were combined to enhance the classification between tea samples of different grades. The e-nose and 272 

e-tongue data were simultaneously obtained to form a feature data matrix with its number of rows equal to the 273 

number of measures, and its number of columns equal to the total number of sensors in the e-nose plus the 274 
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e-tongue. Furthermore, two fusion feature datasets were established on the basis of the partial-area (partial-area 275 

fusion dataset, PAFD) and total-area (total-area fusion dataset, TAFD) methods, and a comparison of the 276 

efficiency of the two fusion feature datasets in classifying the tea samples using PCA and DFA were presented.  277 

3.3.1. The PCA results. Fig. 6 shows a PCA description of the data structure of the seven tea groups on the 278 

basis of the fusion data. The tea samples could not be completely classified completely on the basis of the PAFD 279 

(Fig. 6a), and the total contribution to variance of PC1 and PC2 was 61.21%, which is lower than 85%, meaning 280 

that the first two PCs are insufficient for explaining the total variance of the dataset. Jy120, jy170, jy190, jy360, 281 

and jy450 could be separated from the other samples, except for one jy360 sample and three jy170 samples. In 282 

Fig. 6b, PC1 versus PC2 versus PC3 is shown and explains 73.37% of total variance. Only jy360 and jy450 283 

overlapped with each other, and five other group samples could be separated from the other samples. It was 284 

obvious that use of fusion data improves the classification result; however, the tea samples on the basis of the 285 

PAFD still could not be completely separated. The PCA results using the TAFD are shown in Fig. 6c, d. PC1 286 

versus PC2 is shown and explains 55.39% of total variance. All of the samples could be separated from each 287 

other except for the jy170 and jy190 samples which have similar volatile compounds and chemical substance 288 

concentrations. As shown in Fig. 6c, the teas under the black stripe were plucked before TSD, and the teas 289 

above the black stripe were plucked after TSD, except for jy280. The interval of the plucking time between the 290 

jy190 and jy280 samples was few days, which made the tea samples have similar gustatory and olfactory 291 

sensations. PC1 versus PC2 versus PC3 are shown, and explains 70.25% of total variance (Fig. 6d). Although the 292 

distributions of each group of samples were close to each other, and samples with the same grade did not group 293 

very well, all samples could be separated using a 3D-PCA on the basis of the TAFD. For the fusion model using 294 

e-nose and e-tongue, the classification error is much smaller compared with the individual systems for tea 295 

classification, and differentiating the varieties of tea samples is distinctly more effective.  296 

3.3.2. The DFA results. The classification results of the tea samples using the DFA on the basis of the PAFD 297 

are shown in Fig. 7(a), where DF1 vs. DF2 explains 80.62% of variance. All seven grades of tea samples were 298 

well separated in the 2D plot. The DFA assumes that replicated samples are clustered, whereas the PCA treats 299 

each replicated sample as an individual data point. Therefore, the rice wine samples were grouped much better 300 

in the DFA plots than in the PCA plots. In addition, the tea samples that were close to one another shared more 301 

similar characteristics in the DFA score plots, according to which the samples were divided into three 302 

independent parts (Fig. 7(a)): jy280, jy360, jy450, and jy510 (it belong to the high grade) located at the top of 303 
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the plot; jy120, jy170, and jy190 (it belong to the low grade) located further below, and jy120 located at the 304 

bottom of the plot (according to the Table 2 and Table 3, jy120 located at the right place). Otherwise, the tea 305 

samples plucked before TSD were located above the horizontal line, and the tea samples plucked after TSD 306 

were located below the horizontal line. Fig. 7(b) shows the DFA scores on the basis of the TAFD, where DF1 307 

versus. DF2 explains 78.91% of the variance. All of the tea samples could also be well separated from each other, 308 

and the distributions of each sample group in Fig. 7(b) were similar to those in Fig. 7(a). Although the addition 309 

of the aftertaste values did not result in a significant improvement in the classification results, samples of the 310 

same grade were grouped slightly better than those in Fig. 7(b). 311 

As discussed above, the aftertaste values are positively correlated with the same characteristics of the 312 

sensors indirectly, and the ability of each gas sensor and liquid potentiometric sensor for desorbing the flavor 313 

substances and volatile compounds. The aftertaste values enriched the samples’ information, and the 314 

classification results demonstrated that the pattern-recognition methods on the basis of the TAFD performed 315 

more efficiently than those on the basis of the PAFD. Moreover, all of the samples could be separated from each 316 

other using a 2D-DFA, which presented more accurate and clearer classification results than the PCA. The good 317 

performance of the DFA indicated that it is possible to classify the Longjing teas of different grades using the 318 

TAFD.   319 

3.4. The prediction results on the basis of the fusion data  320 

In this study, each grade of tea sample was given a reference value (Table 1), and PLSR was employed for 321 

forecasting using the PAFD and TAFD. Overall, 280 samples (40 samples of each grade) in the experimental 322 

session were divided randomly into calibrating and test subsets: 182 samples (26 samples of each category) for 323 

the training set and 98 samples (14 samples of each category) for the testing set. The PAFD and TAFD were 324 

condensed by a PCA in the section 3.3.1. The accumulative explanations rates of the first seven PCs (for PAFD 325 

was 95.53%, and for TAFD was 95.22%) were greater than 95%, which contained the majority of information 326 

and features of the tea samples. Therefore, the first seven PCs were used as regression factors to be analyzed by 327 

PLSR. 328 

3.4.1. The PLSR results of tea quality grades. Leave-one-out cross-validation was applied to verify the 329 

PAFD and TAFD results. The cross-validation residual sum of squares (CVRss) and the correlation coefficient 330 

between the measured and predicted values (R
2
) on the basis of PAFD were 23.9824 and 0.9452, respectively 331 
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(Fig. 8a). The results indicated that the combination of the e-nose and e-tongue was effective for forecasting the 332 

quality grade, and the volatility and flavor information contained in the fusion data could reflect the quality 333 

grades of green teas. The aftertaste values were included in the feature data for forecasting the quality grade, and 334 

the CVRss and R
2
 on the basis of TAFD were 18.7225 and 0.9518, respectively (Fig. 8b). The predicted results 335 

on the basis of TAFD were somewhat better. The characteristics of the green teas were obtained during the 336 

adsorption and desorption processes of the e-nose and e-tongue sensors. Taste and aftertaste detection could be 337 

interpreted as the effective ability of adsorption and desorption of those sensors, and the aftertaste values 338 

completed the information for the samples. The PLSR provided a clear indication of the ability of the 339 

combination of the e-nose and e-tongue, and the PLSR performed better in predicting he tea grade based on the 340 

TAFD. 341 

3.4.2. The PLSR results of the main volatile and flavor compounds. The main volatile and flavor 342 

compounds of the Longjing teas were predicted by PLSR using the solo e-nose (used for the prediction of 343 

geraniol and linalool oxide) or e-tongue data (used for the prediction of water extract and polyphenol)-PAFD 344 

and TAFD, respectively (Fig. 9 - Fig. 10). The sole usage of e-nose to predict geraniol was ineffective, and R
2
 = 345 

0.6795 (Fig. 9a1). As discussed in the previous section, the information obtained by the e-nose was not enough 346 

to classify green teas with different quality grades. Therefore, the regression results based on the e-nose signals 347 

were bad. As showed in Fig. 9a2 and a3, the PLSR performed well in predicting geraniol on the basis of PAFD 348 

and TAFD, R
2
 = 0.9175 and R

2
 = 0.9252, respectively. The TAFD, which contained more useful information 349 

(the aftertaste values), worked better than the PAFD. All three types of feature data performed well for 350 

predicting linalool oxide. The prediction results obtained on the basis of the e-nose data alone (R
2
 = 0.8142) 351 

were much better than the prediction results of geraniol obtained on the basis of the same database (Fig. 9b1). 352 

Although the PAFD contained less information than the TAFD, the PAFD was more effective than the TAFD for 353 

predicting linalool oxide, R
2
 = 0.9520 for the PAFD and R

2
 = 0.9065 for the TAFD (Fig. 9b2 and b3). The 354 

results may be caused by some volatile compounds which have stronger influence than aftertaste on the 355 

responses.  356 

The PLSR prediction results of the water extracts and polyphenol on the basis of the e-tongue data alone were 357 

not good, R
2
 = 0.7422 and R

2
 = 0.6480, respectively (Fig. 10a1 and b1). The PAFD exhibited good results for 358 

predicting the water extracts and polyphenol, and R
2
 = 0.9004 and R

2
 = 0.9086, respectively (Fig. 10a2 and b2). 359 

It was obvious that the performances based on fusion were much better than that based on the use of the 360 
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e-tongue alone. Although the volatile compounds of the green teas could not be detected by the e-tongue sensors, 361 

the flavor compounds were influenced by the volatile compounds whose characteristics could be reflected by 362 

the detection of flavor compounds indirectly. This can be observed in Fig. 10a3 and b3, where the aftertaste 363 

values had a positive effect on the prediction. Furthermore, the TAFD exhibited the best results for predicting 364 

both water extracts and polyphenol, R
2
 = 0.9298 and R

2
 = 0.9202, respectively.  365 

As discussed above, the combined usage of the e-nose and e-tongue worked more effectively than the use of 366 

the e-nose or e-tongue alone. With the exception of the prediction of linalool oxide, the TAFD exhibited the best 367 

results for predicting those volatile and flavor compounds. The desorption process of the sensors was not a 368 

simple inverse process of adsorption, which meant that the aftertaste values contained independent feature 369 

information of the green teas, thereby serving a crucial role in classification and prediction.  370 

4. Conclusions  371 

(1) Three feature extraction methods, the 80 s’ datum method, the partial-area method, and the total-area method, 372 

were employed to extract the feature data from the original responses of the e-nose and e-tongue, and the areas 373 

under the aftertaste values were obtained by the total-area method. The PCA results showed that neither the 374 

e-nose nor e-tongue could classify the tea samples independently using the three methods, but the aftertaste 375 

values increased the efficiency of the total-area method. Using the total-area method, jy120, jy360, and jy450 376 

can be separated from the other samples using the e-nose and jy120, jy280, jy360, and jy510 could be separated 377 

from the other samples using the e-tongue. All the samples could be separated on the basis of DFA with PAFD 378 

or TAFD. The position of each type of the rice wine samples were grouped much better in the DFA plots than in 379 

the PCA plots, moreover, the tea samples plucked before TSD could also be separated clearly with the tea 380 

samples plucked after TSD.   381 

  (2) The e-nose and e-tongue sensing systems were combined, and two fusion feature datasets were 382 

established: PAFD and TAFD. The tea samples could not be separated by the 2D-PCA on the basis of the PAFD 383 

or TAFD, the 3D-PCA exhibited a better result and all tea samples could be separated on the basis of the TAFD.  384 

The first seven PCs were used as the PLSR regression factors for the tea grade prediction, and PLSR gave a 385 

clear indication of the ability of the combination of e-nose and e-tongue. The correlation coefficient between the 386 

measured and predicted values of the PAFD and TAFD were 0.9452 and 0.9518, respectively. The combined 387 
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usage of the e-nose and e-tongue was worked more effective than the use of the e-nose or e-tongue alone in 388 

predicting volatile and flavor compounds, and TAFD presented the best results in predicting geraniol (R
2
 = 389 

0.9252), water extract (R
2
 = 0.9298), and polyphenol (R

2
 = 0.9202) contents. 390 

In conclusion, the quality grades of teas can be detected by the combination of e-nose and e-tongue, and the 391 

addition of aftertaste values could enrich the tea sample’s information and improve the classification and 392 

prediction results. Based on this study, it is evident that more effort should be directed into correlating fusion 393 

response data with human sensory data, and monitoring the production process of teas. Moreover, the feasibility 394 

to combine the hardware of e-tongue and e-nose should be performed in the future study. 395 
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Captions of Figure and Table 1 

Table 1. Different grades of green tea 2 

Table 2. Average values and standard deviation (SD) for the main volatile compounds in different grades 3 

of green teas (ng/g) obtained by GC––––MS. 4 

Table 3. Average values and standard deviation (SD) for the main chemical substances in different grades 5 

of green teas (% dry weight) obtained by chemical methods and HPLC. 6 

 7 

Fig. 1. Response curves of the ten gas sensors to the tea samples: (a) jy190, (b) jy510. 8 

Fig. 2. The response curves obtained by liquid potentiometric sensors (CA, HA, BA, ZZ, GA, JB and BB) 9 

from different tea samples: (a) and (b) were the responses and aftertaste values obtained from 10 

jy190, respectively; (c) and (d) were the responses and aftertaste values obtained from jy510, 11 

respectively.  12 

Fig. 3. The four methods for extracting the feature data from e-nose and e-tongue responses: (a) e-nose, (b) 13 

e-tongue. 14 

Fig. 4. The PCA classification results using e-nose on the basis of the four features extracting methods: (a) 15 

the 80 s’ datum method, (b) the partial-area method, (c) the total-area method.  16 

Fig. 5. The PCA classification results using e-tongue on the basis of the four features extracting methods: 17 

(a) the 120 s’ datum method, (b) the partial-area method, (c) the total-area method.  18 

Fig. 6. The PCA classification results on the basis of PAFD and TAFD: (a) 2D-PCA and (b) 3D-PCA on 19 

the basis of PAFD, (c) 2D-PCA and (d) 3D-PCA on the basis of TAFD  20 

Fig. 7. The PLSR prediction results on the basis of PAFD and TAFD: (a) on the basis of PAFD, (b) on the 21 

basis of TAFD. 22 

Fig. 8. The PLSR prediction results of geraniol and linalool oxide on the basis of e-nose data, PAFD and 23 

TAFD:(a1) and (b1), (a2) and (b2), (a3) and (b3) on the basis of e-nose data, PAFD and TAFD 24 

for the geraniol and linalool oxide prediction, respectively. 25 

Fig. 9. The PLSR prediction results of water extract and polyphenol on the basis of e-tongue data, PAFD 26 

and TAFD:(a1) and (b1), (a2) and (b2), (a3) and (b3) on the basis of e-tongue data, PAFD and TAFD for 27 

the water extract and polyphenol prediction, respectively.28 
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 29 

Table 1 Different grades of green tea 30 

Tea Grade Price (￥￥￥￥/500g) Plucking time Reference values 

Jy120 Low-level 120 After TSD 7 

Jy170 Low-level 170 After TSD 6 

Jy190 Low-level 190 After TSD 1 

Jy280 High-level 280 Before TSD 2 

Jy360 High-level 360 Before TSD 3 

Jy450 High-level 450 Before TSD 4 

Jy510 High-level 540 Before TSD 5 

 31 

  32 
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Table 2 Average values and standard deviation (SD) for the main volatile compounds in different grades of green teas (ng/g) obtained by GC–MS
a
. 33 

Violate 

compound 
RI

b
 jy120 jy170 jy190 jy280 jy360 jy450 jy510 

Nonanal 1104 675±72 739±87 751±75 965±102 813±73 1044±121 1167±138 

Linalool 

oxide 
1099 1003±119 1139±156 987±123 829±130 788±110 1049±128 1212±149 

Decanal 1205 309±36 327±42 321±31 502±67 409±60 618±59 662±64 

β-Lonone 1485 125±18 118±23 120±17 88±14 84±11 109±20 96±12 

Methyl 

salicylate 
1190 737±139 707±128 720±124 640±136 457±119 420±97 427±145 

Geraniol 1255 1749±297 1780±380 1486±346 1153±245 771±162 969±176 825±163 

a
 Three samples of each group were tested, and the SD of each values demonstrated high stability of the test. 34 

b Retention index (RI), defined as a relationship between the retention of the analyte and two members of an homologous series enclosing it. RI is always applied as the reference value to qualitative 35 

discrimination of the volatiles based on GC-MS.   36 

37 
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Table 3 Average values and standard deviation (SD) for the main chemical substances in different grades of green teas (% dry weight) obtained by chemical methods and 38 

HPLC
a
. 39 

Tea Polyphenol 
amino 

acid 
protein 

total 

sugar 

water 

extracts 
catechins caffeine 

jy120 23.42±0.17 6.17±0.01 2.65±0.01 8.39±0.07 44.19±0.55 14.43±0.00 3.45±0.01 

jy170 24.51±0.50 5.90±0.01 2.76±0.02 8.51±0.08 43.66±0.06 14.39±0.00 3.75±0.07 

Jy190 24.56±0.07 5.91±0.01 2.70±0.04 7.86±0.20 44.64±0.44 13.37±0.10 3.64±0.08 

Jy280 23.64±0.11 6.09±0.00 2.36±0.12 7.87±0.14 43.58±0.07 13.67±0.00 3.71±0.01 

Jy360 23.77±0.13 5.71±0.05 2.22±0.17 7.83±0.02 41.59±0.88 11.56±0.00 3.56±0.06 

Jy450 23.72±0.05 5.61±0.03 2.45±0.02 8.33±0.04 42.29±0.04 14.63±0.00 3.43±0.03 

Jy510 22.74±0.03 5.24±0.04 3.01±0.03 8.50±0.11 41.62±0.95 14.66±0.00 3.25±0.06 

a 
Three samples of each group were tested, and the SD of each values demonstrated high stability of the test. 40 

 41 

 42 

 43 

 44 

 45 

 46 
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 47 

Fig 1. Response curves of the ten gas sensors (W1C, W5S, W3C, W6S, W5C, W1S, W1W, W2S, W2W and W3S) to the tea samples: (a) jy190, (b) jy510.  48 
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 49 

Fig 2. The response curves obtained by liquid potentiometric sensors (CA, HA, BA, ZZ, GA, JB and BB) from different tea samples: (a) and (b) were the responses and 50 

aftertaste values obtained from jy190, respectively; (c) and (d) were the responses and aftertaste values obtained from jy510, respectively.  51 

52 
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 53 

Fig 3. The four methods for extracting the feature data from e-nose and e-tongue responses: (a) e-nose, (b) e-tongue. 54 

55 
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 56 

Fig 4. The PCA classification results using e-nose on the basis of the four features extracting methods:  57 

(a) the 80 s’ datum method, (b) the partial-area method, (c) the total-area method.  58 

  59 
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 60 

Fig 5. The PCA classification results using e-tongue on the basis of the four features extracting methods:  61 

(a) the 120 s’ datum method, (b) the partial-area method, (c) the total-area method.  62 

  63 
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 64 

Fig 6. The PCA classification results on the basis of PAFD and TAFD:  65 

(a) 2D-PCA and (b) 3D-PCA on the basis of PAFD, (c) 2D-PCA and (d) 3D-PCA on the basis of TAFD 66 
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 67 

 68 

Fig 7. The DFA classification results on the basis of PAFD and TAFD: (a) on the basis of PAFD, (b) on the basis of TAFD. 69 
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 75 

Fig 8. The PLSR prediction results of the quality levels on the basis of PAFD and TAFD: (a) on the basis of PAFD, (b) on the basis of TAFD. 76 
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 78 

Fig 9. The PLSR prediction results of geraniol and linalool oxide on the basis of e-nose data, PAFD and TAFD: 79 

(a1) and (b1), (a2) and (b2), (a3) and (b3) on the basis of e-nose data, PAFD and TAFD for the geraniol and linalool oxide prediction, respectively. 80 
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 82 

Fig 10. The PLSR prediction results of water extract and polyphenol on the basis of e-tongue data, PAFD and TAFD: 83 

(a1) and (b1), (a2) and (b2), (a3) and (b3) on the basis of e-tongue data, PAFD and TAFD for the water extract and polyphenol prediction, respectively. 84 
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