This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Synthesis, linear and nonlinear optical properties of thermally stable ferrocene-diketopyrrolopyrrole dyads

Sarbjeet Kaur,2 Sugandha Dhoun,3 Griet Depoter,b Paramjit Kaur,a,b Koen Claysb and Kamaljit Singh a

A set of new ferrocene-diketopyrrolopyrrole (Fc-DPP) conjugated dyads was synthesized and their optical, nonlinear optical (NLO) and electrochemical properties were investigated. The second-order nonlinear polarizabilities were determined using Hyper-Rayleigh Scattering with femtosecond pulsed laser light at 840 nm. The dyads depicted structure dependent NLO response, which could be explained by correlating optical as well as electrochemical data. In the latter case, it is shown that the amplitude of the Fc based one-electron redox process of D-π-A type dyads is doubled in the dyads of the type D-π-A-π-D, where the acceptor (DPP) is flanked by two Fc donors.

INTRODUCTION

Materials exhibiting nonlinear optical (NLO)1-5 response are of great interest for the development of optical devices for applications in the field of photonics,6-10 nanophotonics11 and optoelectronics12 such as optical signal processing, broadband optical communications, integrated optics, optical sensing, optical poling, optical limiting, optical computing etc. Standard materials generally contain a donor-acceptor combination linked by a conjugated bridge.13-15 The NLO response of ferrocene (Fc) based dyads has been a subject of numerous investigations owing to many attractive features of this organometallic species.16-18 Depending upon the oxidation state of the metal centre, the Fc unit can turn a strong donor or acceptor, a feature that has also been exploited in the reversible redox switching of the NLO response in Fc dyads.19-22 Ferrocene dyads generally possess low oxidation potential and upon facile charge transfer (CT) to an acceptor yield stable α-ferrocenyl carbocations.17,25-28 Further, as a specific feature of the substitution pattern of the Fc unit, the non-centrosymmetric dyads are associated with high optical nonlinearities.22,27-29 Suitable functionalized push-pull dyads (D-π-A) in which electron donor (D) Fc is connected by π-conjugating spacers to strong electron acceptors (A), have witnessed significant interest in their synthesis, owing to their structure dependent electrochemical, optical and nonlinear optical properties.29,30-31 Correlating the absorption, electrochemical, theoretical calculations and Hyper-Rayleigh Scattering (HRS) experiments, we earlier23 demonstrated that varying the conjugation pathway between D (Fc) and A (increasing π-bridge length) has more impact (greater red shift of the absorption band and smaller optical band gap) on the NLO response than by modulating the acceptor strength.23 As a consequence, the Fc based (D-π-A) compounds with shortest conjugation path showed higher intrinsic hyperpolarizability. Additionally, owing to their reversible redox behaviour, these chromophores recorded different hyperpolarizability values in each of the two redox states and a high on/off (βon/βoff) ratio. Among the various known acceptors such as thiazole,32 and benzodiazathiazole,33 diketopyrrolopyrrole unit14-36 has emerged a promising candidate for optoelectronics37 and organic photovoltaics38-40 such as organic light emitting diodes (OLEDs),39-41 organic field-effect transistors (OFETs),42-44 organic solar cells (OSCs),45,47 dye sensitized solar cells (DSSCs)46,49 etc. This sub-unit has two amide groups that make it a strong acceptor, and consequently the energy of the lowest unoccupied molecular orbital (LUMO) of D-A or D-π-A systems, wherein appropriately substituted diketopyrrolopyrrole is used as acceptor, is considerably lowered.50 In addition to a good acceptor, this planar, conjugated bicyclic core51 also possesses exceptionally high photochemical, mechanical and thermal stability,52,53 thus rendering it a good candidate for π-conjugated donor-acceptor (D-A) dyads. To the best of our knowledge, the second-order nonlinear polarizability (β) of diketopyrrolopyrrole-based dyads has not been explored yet.

In this work, new dyads having a Fc donor and an appropriately subststituted 2,5-bis-(n-decyl)-3,6-di(furan-2-yl)pyrrole[3,4-c]pyrrole-1,4(2H,5H)-dione (DPP) acceptor,54-55 were designed by a conjugated linker (Figure 1, A and B), representing D-A or D-A-D type design in which the acceptor is flanked by two Fc units through a conjugated bridge (Figure 1, C) have been prepared. Their structure is determined by means of microanalytical data,1H and 13C NMR, UV-visible, and FTIR spectroscopy. The NLO properties have been determined in THF solution by means of the HRS technique (under femtosecond pulsed 840 nm laser light). The experimental linear...
optical properties of the above derivatives have also been computed by employing density functional theory (DFT) calculations and revealed a good correlation between the experimental results and the theoretically calculated data. Energies of the frontier molecular orbitals (FMOs) have been computed from time and the theoretically calculated data. Femtosecond HRS measurements were carried out at 1 x 10⁻⁴ M solution of the compound in dichloromethane using 2 x 10⁻² M tetrabutylammoniumhexafluorophosphate as supporting electrolyte. The solutions were purged with nitrogen for 10 min and the working electrode as well as the reference electrode was cleaned after each reading. The experiments were carried out at scan rate of 100 mVs⁻¹. Thermogravimetric analysis were recorded on TGA/DSC 1 STAR SYSTEM FROM METTLER TOLEDO in the temperature range of 0-800 °C at the heating rate of 10 °C min⁻¹ under nitrogen atmosphere. Femtosecond HRS measurements were performed at 840 nm using a commercial Ti: sapphire laser at ambient temperature. Crystal Violet in methanol was used as the reference, with a value of 434 x 10⁻¹⁰ esu at 840 nm for the octopolar β₁₁₁₁ hyperpolarizability tensor component.

EXPERIMENTAL SECTION

Materials and reagents

All liquid reagents were dried/purified by using the recommended drying agents and/or distilled over 4 Å molecular sieves. Tetrahydrofuran was dried using sodium metal/benzophenone, while chloroform and dichloromethane were dried over fused CaCl₂. Triethylamine and piperidine were distilled and stored over KOH under nitrogen. N,N-Dimethylformamide was distilled over CaH₂ and stored over 4Å molecular sieves. Acetyl ferrocene and malononitrile were purchased from Spectrochem and/or chloroform/hexane mixtures. Electrochemical measurements were made using CHI660D electrochemical workstation using three electrodes- platinum as working as well as counter electrode and Ag/AgCl as reference electrode.

Theoretical calculations were carried out by using the Gaussian 09 suite of programs. Optimization of molecular geometries of all the chromophores and related calculations were performed by density functional theory (DFT) method using B3LYP functional group and 6-31G as the basis set. The first 15-30 excited states were calculated by using time-dependent density functional theory (TD-DFT calculations) in gas phase as well as in dichloromethane as solvent using CPCM model. The molecular orbital contours were plotted using Gaussian view 5.09.

Synthesis of dyads and intermediates

Nitrogen was purged (15 min) in 2-methyl-1-butanol (60 ml) contained in a three-neck round bottomed flask (250 ml) equipped with a reflux condenser. Sodium metal (3.45 g, 150 mmol) and FeCl₃ (0.05 g, 0.31 mmol) were added and the reaction mixture was heated at 90 °C until sodium metal had completely reacted (indicated by complete dissolution). The reaction mixture was cooled to 85 °C and 2-furonitrile (9.31 g, 100 mmol) was added followed by dropwise addition of

Figure 1. Chemical structures of Fc-DPP dyads: D-A (A), D-A-D (C).

Computational details

Synthesis of 3,6-di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4-(2H,5H)-dione 1

UV-visible studies were carried out using HITACHI U-2910 Spectrophotometer.

\[^{1}H \text{ NMR and } ^{13}C \text{ NMR spectra were recorded on Bruker Biospin Avance III HD at 500 MHz, in CDCl}_3 \text{ and/or DMSO-d}_6 \text{ containing TMS as internal standard. Data are reported as follows: chemical shift in ppm (δ), integration, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad) and coupling constant } J \text{ (Hz). The purity of the compounds was determined by elemental analysis carried out on Thermoscientific FLASH 2000 organic elemental analyzer and was within ±0.4% of the theoretical values. IR spectrum was recorded on Perkin-Elmer FTIR-C92035 Fourier-transform spectrophotometer in range 400–4000 cm⁻¹ as KBr pellets. IR spectrum was recorded on Perkin-Elmer FTIR-C92035 Fourier-transform spectrophotometer in range 400–4000 cm⁻¹ as KBr pellets.**
diisopropyl succinate (8.10 g, 40 mmol) over a period of 1 h. Reaction mixture was heated at 85 °C for 2 h, after which it was cooled to 50 °C and 50 ml methanol was added. The reaction mixture was neutralized using glacial acetic acid and stirred for 15 min. and then cooled to ambient temperature and the contents were filtered over sintered glass (G4) funnel. Residue was washed twice with hot methanol and de-ionized water to yield analytically pure dark red solid 1 (61%). Mp> 300 °C IR (KBr): ν\textsubscript{max} 1628, 1648, 2315, and 3147 cm\(^{-1}\). \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 25 °C): δ (ppm) 131.74, 144.22, 147.33 and 161.63. Anal. Calcd. for C\(_{34}\)H\(_{48}\)O\(_3\): C, 61.96; H, 7.83. Found: C, 62.73; H, 7.30; N, 10.48.

Synthesis of 2,5-bis-(n-decyl)-3,6-difuran-2-yl)pyrrolo[3,4-c]pyrrole-1,4-(2H,5H)-dione 2

To a solution of 1 (3 g, 11.2 mmol) in anhydrous DMF (250 ml) under blanket of anhydrous N\(_2\) gas, anhydrous KBrCO\(_3\) (4.64 g, 33.60 mmol) was added and the reaction mixture was heated at 120 °C for 1 h. 1-Bromodecane (7.44 g, 33.60 mmol) was added dropwise and reaction was stirred for 12 h at 120 °C until it completed. DMF was removed under reduced pressure and the residue was extracted with chloroform (3 x 30 ml). The organic extract was washed with water (2 x 25 ml), which was purified by column chromatography using 5:95 (ethyl acetate/hexane) as eluents to obtain dark red solid 2 (48%). Mp 80-82 °C IR (KBr): ν\textsubscript{max} 1587, 1668, 2850, 2919 and 3124 cm\(^{-1}\). \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 25 °C): δ (ppm) 14.13, 22.69, 29.30, 29.50, 29.59, 29.61, 31.88, 31.92, 42.77, 106.78, 110.56, 113.90, 119.86, 122.26, 144.30, 148.32, 152.77, 160.33, 161.10 and 177.00. Anal. Calcd. for C\(_{34}\)H\(_{48}\)N\(_2\)O\(_3\): C, 69.65; H, 6.68; N, 6.63. Found: C, 69.73; H, 6.70; N, 6.66.

Synthesis of 3,6-bis-(5-bromofuran-2-yl)-2,5-bis-(n-decyl)-pyrrolo[3,4-c]pyrrole-1,4-(2H,5H)-dione 3

A solution of bromine (1.93 g, 12.10 mmol) in CHCl\(_3\) (100 ml) was slowly added to a solution of 2 (3 g, 5.50 mmol) anhydrous CHCl\(_3\) (150 ml) precooled to 0 °C. The reaction mixture was stirred for completion at the same low temperature and treated with saturated aqueous solution of sodium thiosulfate. The bromine free solution was extracted with chloroform (3 x 30 ml) and the organic extract was washed with water (2 x 25 ml). The organic extract was dried over anhydrous sodium sulphate, filtered and evaporated under reduced pressure to obtain crude 3, which was purified by column chromatography using 30:70 (CHCl\(_3\)/hexane) as eluents to obtain dark red solid 3 (58%). Mp 138-140 °C IR (KBr): ν\textsubscript{max} 1548, 1584, 1665, 2851, 2919, 2954 and 3128 cm\(^{-1}\). \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 25 °C): δ (ppm) 131.74, 144.22, 147.33 and 161.63. Anal. Calcd. for C\(_{50}\)H\(_{62}\)Br\(_2\): C, 57.89; H, 6.59; N, 3.95. Found: C, 57.89; H, 6.59; N, 3.95.

Synthesis of 5-(2,5-bis-(n-decyl)-4-(furan-2-yl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrol-1-yl)furan-2-carbalddehyde 4

Vilsmeier-Haack formylation of 2 was performed by mixing anhydrous DMF (10 ml) and POCl\(_3\) (0.38 g, 2.48 mmol) and stirring the solution at 0 °C for 1 h to provide the red coloured chloroiminium ion (Vilsmeier reagent). Solution of 2 (0.5 g, 0.91 mmol) in anhydrous DMF (5 ml) was added to this reagent at 0 °C and the reaction was warmed and stirred at 100 °C for 4 h. Subsequent to the completion (TLC), the reaction mixture was cooled and quenched with pre-cooled saturated aqueous solution of sodium acetate and extracted with DCM (3 x 30 ml). The organic extract was washed with water (2 x 25 ml), dried over anhydrous sodium sulphate and evaporated under reduced pressure to obtain crude 4, which was purified by column chromatography using 5:95 (ethyl acetate/hexane) as eluents to obtain dark red solid 4 (50%). Mp 80-82 °C IR (KBr): ν\textsubscript{max} 1587, 1668, 2850, 2919 and 3124 cm\(^{-1}\). \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 25 °C): δ (ppm) 0.87 (t, J = 7.5 Hz, 6H, -CH\(_3\)), 1.25-1.43 (m, 28H, -CH\(_2\)), 1.68-1.74 (m, 4H, -CH\(_2\)), 4.10-4.19 (m, 4H, -CH\(_2\)), 6.74-6.75 (dd, 1H, furanyl C3'-CH), 7.41 (d, J = 5 Hz, 1H, furanyl C4'-CH), 7.70 (d, J = 1.5 Hz, 1H, furanyl C2'-CH), 8.34 (d, J = 4 Hz, 1H, furanyl C4'-CH), 8.47 (d, J = 5 Hz, 1H, furanyl C3'-CH) and 9.74 (s, 1H, -CHO). \(^{13}\)C NMR (125 MHz, CDCl\(_3\), 25 °C): δ (ppm) 14.12, 22.69, 29.30, 29.35, 29.51, 29.58, 29.62, 29.65, 31.88, 31.92, 42.77, 106.78, 110.56, 113.90, 119.86, 122.26, 144.30, 148.32, 152.77, 160.33, 161.10 and 177.00. Anal. Calcd. for C\(_{34}\)H\(_{48}\)N\(_2\)O\(_3\): C, 69.65; H, 6.68; N, 6.63. Found: C, 69.73; H, 6.70; N, 6.66.

Synthesis of 5-(4-(5-bromofuran-2-yl)-2,5-bis-(n-decyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrol-1-yl)furan-2-carbalddehyde 5

A solution of 4 (0.13 g, 0.23 mmol) in anhydrous CHCl\(_3\) (15 ml) was cooled to 0 °C and portion-wise addition of NBS (0.043 g, 0.24 mmol) was made and the reaction mixture stirred at 0 °C for 2 h. After completion of the reaction (TLC), saturated aqueous solution of sodium thiosulfate was introduced to quench the reaction and extracted with chloroform (3 x 25 ml). The extract was washed with water (2 x 25 ml), dried over anhydrous sodium sulphate and evaporated under reduced pressure to obtain crude 5, which was recrystallized from hexane to obtain dark red solid 5 (71%). Mp 140-142 °C IR (KBr): ν\textsubscript{max} 1584, 1666, 2850, 2920 and 3128 cm\(^{-1}\). \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 25 °C): δ (ppm) 131.74, 144.22, 147.33 and 161.63. Anal. Calcd. for C\(_{52}\)H\(_{66}\)Br\(_2\): C, 57. 89; H, 6.59; N, 3.95. Found: C, 57.89; H, 6.59; N, 3.95.
General procedure for synthesis of 7a-b.

Synthesis of 4-ferrocenylethynylbenzene 6b

A solution of sodium nitrite (30.36 g, 44.00 mmol) in 20 ml water precooled to 0 °C was added dropwise to a stirred solution of 4-aminocacetophenone (3 g, 22.00 mmol) in 2:1 THF/hydrochloric acid (24 ml) kept at 0 °C and the mixture was stirred at 0 °C for 30 min to ensure complete diazotization. Separately, ferrocene (6.95 g, 37.40 mmol) was added to 48 ml sulphuric acid and the resulting deep blue solution of ferrocinium ion was stirred at ambient temperature for 2 h. The solution of the ferrocinium ion was then poured in crushed ice and warmed to room temperature after which addition of copper powder (1.82 g) was made. Addition of the diazonium salt solution prepared as above was made dropwise and the reaction mixture stirred for 24 h at room temperature. Ascorbic acid (9.11 g, 51.72 mmol) was added to reduce the unreacted ferrocinium ion to ferrocene. Reaction mixture was passed through celite and the filtrate was extracted with DCM (3 x 30 ml). The DCM extract was then washed with water (2 x 25 ml), dried over anhydrous sodium sulfate and evaporated under reduced pressure to obtain analytically pure solid 6b.

(2-Formyl-1-chlorovinyl)ferrocene 7a. Red solid. Yield: 90%. Mp 72-74 °C IR (KBr): νmax 1027, 1417, 1617, 2849, 2924 and 2956 cm⁻¹. H (500 MHz, CDCl₃, 25 °C): δ (ppm) 4.25 (s, 5H, Fc), 4.57 (s, 2H, Fc), 4.75 (s, 2H, Fc), 6.41 (s, 1H, -CHO) and 10.10 (s, 1H, CHO). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ (ppm) 68.91, 70.84, 72.31, 120.48, 155.29 and 190.82. Anal. Calcd. for C₁₅H₁₅ClFeO: C, 56.88; H, 4.04. Found: C, 56.93; H, 4.03.

(4-(2-Formyl-1-chlorovinyl)phenyl)ferrocene 7b. Red solid. Yield: 97%. Mp 100-102 °C IR (KBr): νmax 1032, 1591, 1668, 2860, 2921, 3085 and 3100 cm⁻¹. H (500 MHz, CDCl₃, 25 °C): δ (ppm) 4.05 (s, 5H, Fc), 4.42 (s, 2H, Fc), 4.72 (s, 2H, Fc), 6.71 (d, J = 10 Hz, 1H, -CHO) and 7.72 (d, J = 5 Hz, 2H, -CH₂). ¹⁵N NMR (125 MHz, CDCl₃, 25 °C): δ (ppm) 66.87, 69.89, 69.99, 82.97, 123.14, 126.07, 127.33, 132.40, 144.66 and 191.57. Anal. Calcd. for C₁₅H₁₃ClFeNo: C, 65.09; H, 4.31. Found: C, 65.04; H, 4.33.

General procedure for synthesis of 8a-b. A solution of appropriate 7a/7b (47.50 mmol) in dioxane (150 ml) was heated at 110 °C for 15 min and 1N NaOH (125 ml) was added and reaction mixture was stirred at the same temperature for 1 h. The contents of the reaction were poured into ice, neutralized with 1N HCl, passed through celite. The filtrate was extracted with hexane (3 x 30 ml). The hexane extract was dried over anhydrous sodium sulfate and the solvent removed under reduced pressure to obtain corresponding crude 8a/8b, respectively, which was purified by column chromatography using hexane as eluents to isolate pure 8a/8b, respectively.

Ethylniferrocene 8a. Orange solid. Yield: 72%. Mp 50-52 °C (Hexane) IR (KBr): νmax 1022, 1443, 1639, 2104, 2854, 2924, 3089, 3105 and 3280 cm⁻¹. H (500 MHz, CDCl₃, 25 °C): δ (ppm) 2.72 (s, 1H, -CHO), 4.19 (s, 2H, Fc), 4.21 (s, 5H, Fc) and 4.45 (s, 2H, Fc). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ (ppm) 63.87, 68.74, 70.07, 71.77 and 73.57. Anal. Calcd. for C₁₃H₁₅FeO: C, 68.62; H, 4.80. Found: C, 68.66; H, 4.82.

(4-Ethynylphenyl)ferrocene 8b. Orange solid. Yield: 65%. Mp 68-70 °C (Hexane) IR (KBr): νmax 1027, 1435, 1523, 1604, 1667, 2104, 2924, 3088 and 3286 cm⁻¹. H (500 MHz, CDCl₃, 25 °C): δ (ppm) 3.10 (s, 1H, -CHO), 4.00 (s, 5H, Fc), 4.35 (s, 2H, Fc), 4.65 (s, 2H, Fc), 7.44-7.56 (m, 4H, -CH₂-CH₃). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ (ppm) 66.56, 69.39, 69.72, 84.01, 84.09, 125.77, 126.38, 132.15 and 140.47. Anal. Calcd. for C₁₅H₁₃FeO: C, 75.55; H, 4.93. Found: C, 75.54; H, 4.91.

General procedure for synthesis of 9a, 9d, 9e and 9f. For the synthesis of 9a, anhydrous nitrogen gas was filled in a septum capped three-neck round bottom flask containing 5 (0.1 g, 0.2 mmol), Cul (0.006 g, 0.02 mmol) and bistriphenylphosphinedichloropalladium (II) (0.02 g, 0.02 mmol). A mixture of THF: Et₂N (1:1, v/v) (10 ml) was added using hypodermic syringe and the reaction was cooled to 0 °C, followed by evacuation and refilling with N₂ gas. A solution of 8a (0.105 g, 0.80 mmol) in anhydrous THF (5 ml) maintained under inert atmosphere was added dropwise to the reaction mixture at 0 °C using cannula and the reaction stirred at ambient temperature. After completion (TLC), the reaction mixture was passed through celite and the bed washed with DCM (20 ml). The combined filtrate was washed with water (2 x 20 ml) and the organic layer dried over anhydrous sodium sulfate and the solvent removed under reduced pressure to
obtain crude 9a, which was purified by column chromatography using 5:95 (ethyl acetate/hexane) as eluents to isolate analytically pure 9a.

Following the above procedure and using 3 (0.01 g, 0.14 mmol), CuI (0.001 g, 0.008 mmol) and bistrimethylphosphine dichloropalladium (II) (0.0089 g, 0.01 mmol) and 8a (0.0949 g, 0.42 mmol), 9e was obtained. Similarly, using 3 (0.1 g, 0.14 mmol), CuI (0.001 g, 0.008 mmol) and bistrimethylphosphine dichloropalladium (II) (0.0089 g, 0.01 mmol) and 8b (0.06 g, 0.21 mmol), 9d and 9f were isolated in 51 % and 17 % yields, respectively. However, when the molar ratio of the reactants was changed to 3 (0.1 g, 0.14 mmol), CuI (0.001 g, 0.008 mmol) and bistrimethylphosphine dichloropalladium (II) (0.0089 g, 0.01 mmol) and 8b (0.12 g, 0.42 mmol), 9d and 9f were isolated in 20 % and 40 % yields, respectively. Further, in these reactions varying but significant amounts of the corresponding diacetylene product as a consequence of Glaser coupling reaction were isolated.

5-(2,5-bis-(n-decyl)-3,6-dioxo-4-(5-ferrocenylethenyl)furano-2-yl)-2,3,5,6-tetrahydro pyrrole[3,4-c][pyrrole-1,4(2H,5H)-dione]. Yield: 40%. Mp 146-148 °C (30:70 (CHCl3/hexane) IR (KBr): νmax 1026, 1583, 1665, 2195, 2852, 2921 and 2953 cm⁻¹. ¹H (500 MHz, CDCl₃, 25 °C): δ (ppm) 0.86 (t, J = 7.5 Hz, 6H, -CH₂), 2.25- 2.35 (m, 8H, -CH₂), 4.28 (s, 10H, Fc), 4.33 (s, 4H, Fc), 4.56 (s, 4H, Fc), 6.81 (d, J = 5 Hz, 2H, furanyl C4'-CH) and 8.35 (d, J = 5 Hz, 2H, furanyl C3'-CH). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ (ppm) 41.13, 22.70, 25.97, 28.98, 29.12, 29.17, 29.31, 29.37, 29.56, 29.71, 31.64, 31.91, 31.94, 33.84, 65.54, 66.64, 66.94, 69.80, 69.85, 114.08, 115.93, 123.51, 124.06, 125.76, 125.93, 128.60, 131.66, 139.28 and 156.91. Anal. Calcd. for C₉nH₂₂Fe₂N₂O₄: C, 72.26; H, 6.52; N, 2.52. Found: C, 72.33; H, 6.52; N, 2.52.

Synthesis of 2-[[2-(5-(2,5-bis-(n-decyl)-3,6-dioxo-4-(5-ferrocenylethenyl)furano-2-yl)-2,3,5,6-tetrahydro pyrrole[3,4-c][pyrrole-1,4(2H,5H)-dione]]methylenemalononitrile 9b and (E)-2-[[2-(5-(2,5-bis-(n-decyl)-3,6-dioxo-4-(5-ferrocenylethenyl)furano-2-yl)-2,3,5,6-tetrahydro pyrrole[3,4-c][pyrrole-1,4(2H,5H)-dione]]vinyl]-5,5-dimethylcyclohex-2-ENylidene]malononitrile 9c.
2-[(5-(2,5-bis-(n-decyl)-3,6-dioxo-4-(5-ferrocenylethynyl)furan-2-yl)-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrol-1-yl)furan-2-yl)methylene]malononitrile 9b. Yield: 65%. Mp 100-102 °C IR (KBr): ν_max 1099, 1384, 1523, 1560, 1660, 1718, 2216, 2553 and 2924 cm⁻¹. 1H NMR (500 MHz, CDCl₃, 25 °C): δ (ppm) 0.65-0.88 (m, 6H, -CH₂CH₃), 1.26-1.34 (m, 28H, -CH₂CH₃), 1.74-1.78 (m, 4H, -CH₂CH₃), 4.16 (t, J = 7.5 Hz, 2H, -CH₂CH₃), 4.25-4.28 (br, 7H, Fc + 2 CH₂), 4.36 (s, 2H, Fc), 4.57 (s, 2H, Fc), 6.72 (s, 1H, -CH=), 6.86 (d, J = 5 Hz, 1H, furanyl C₃' -CH), 8.37 (d, J = 5 Hz, 1H, furanyl C₃' -CH), 8.52 (d, J = 5 Hz, 1H, furanyl C₄' -CH), 7.41 (d, J = 10 Hz, 1H, furanyl C₃' -CH), 8.57 (d, J = 5 Hz, 1H, furanyl C₄' -CH) and 8.58 (d, J = 5 Hz, 1H, furanyl C₃' -CH). 13C NMR (125 MHz, CDCl₃, 25 °C): δ (ppm) 0.85-0.88 (m, 6H, -CH₂CH₃), 14.13, 22.69, 25.30, 26.96, 27.16, 28.64, 28.72, 28.82, 62.47, 69.95, 70.33, 71.90, 98.76, 107.83, 118.09, 121.63, 124.80, 129.12, 135.27, 141.86, 143.51, 149.07, 150.18, 160.12 and 161.04. Anal. Calcd. for C₄₂H₅₆FeN₄O₂: C, 74.39; H, 7.22; N, 5.86. Found: C, 74.39; H, 7.22; N, 5.86.

RESULTS AND DISCUSSION

Synthesis and characterization

3,6-Di(furan-2-yl)-2,5-dihydroxyprodrolo[3,4-c]pyrrole-1,4-dione 1 (61%) was prepared from disopropyl succinate and 2-furonitrile using a reported method.³⁰ Dialkylation of 1 was achieved by using n-decylobromide in anhydrous DMF at 120 °C (Scheme 1).³⁰ The resultant 2,5-bis-(n-decyl)-3,6-di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione 2 (48%) was then brominated (vide experimental) to obtain 3,6-bis-(5-bromofuran-2-yl)-2,5-bis-(n-decyl)-pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione 3 (58%) using bromine in chloroform. Intermediate 2 was then mono formylated using Vilsmeier-Haack reaction conditions to obtain 5-(2,5-bis-(n-decyl)-4-(furan-2-yl)-3,6-dioxo-2,3,5,6-tetrahydropyrolo[3,4-c]pyrrole-1-yl)furan-2-carbaldehyde 4 (50%) (Scheme 1).⁶⁶⁶⁷ Subsequent bromination of 4 using N-bromosuccinimide (NBS) in chloroform yielded 5-(4-(5-bromofuran-2-yl)-2,5-bis-(n-decyl)-3,6-dioxo-2,3,5,6-tetrahydropyrolo[3,4-c]pyrrole-1-yl)furan-2-carbaldehyde 5 in good yield (71%) (Scheme 1).⁶⁸ Ethynylferrocene 8a (72%) and 4-(ethynylphenyl)ferrocene 8b (65%) were prepared (Scheme 2) using known methods.

![Scheme 1. Synthetic route to precursors 2, 3 and 5.](image)

![Scheme 2. Synthetic route to precursors 8a-b.](image)
Scheme 3. Synthetic route to 9a.

Dyads of design A (Figure 1) were easily prepared (Schemes 3-5) by Sonogashira coupling reaction71-72 of 5-(4-(5-bromofuran-2-yl)-2,5-bis-(n-decyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrol-1-yl)furan-2-carbaldehyde 5 and ethynylferrocene 8a using bis-triphenylphosphine dichloropalladium (II) and CuI as catalysts resulting in the formation of 5-(2,5-bis-(n-decyl)-3,6-dioxo-4-(5-ferrocenylethynyl)furan-2-yl)furan-2-carbaldehyde 9a (45%) (Scheme 3). Dyad 9a served as a common precursor for preparing the other two congeners of design A. Thus, Knoevenagal condensation reaction23 of 9a with malononitrile or 2-(3,5,5-trimethylcyclohex-2-enylidene)malononitrile 1057 in anhydrous THF (dried over benzophenoneketyl) and piperidine as base furnished 2-((5-(2,5-bis-(n-decyl)-3,6-dioxo-4-(5-ferrocenylethynyl)furan-2-yl)-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrol-1-yl)furan-2-yl)methylene)malononitrile 9b (65%) and (E)-2-(3-(2-(5-(2,5-bis-(n-decyl)-3,6-dioxo-4-(5-ferrocenylethynyl)furan-2-yl)-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrol-1-yl)furan-2-yl)vinyl)-5,5-dimethylcyclohex-2-enyldene)malononitrile 9c (60%) (Scheme 4), respectively. Similarly, Sonogashira coupling of 3 with 8a led to the

Scheme 4. Synthetic route to 9b & 9c.

Scheme 5. Synthetic route to 9e, 9d & 9f.
formation of 2,5-bis-(n-decyl)-3,6-bis-(5-(ferrocenylenethynyl)furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4,5-(2H,5H)-dione 9e (40%) (Scheme 5). Finally, Sonogashira coupling of 3 and 8b furnished 3-(5-bromo furan-2-yl)-6-(5-(4-ferocenylphenylethynyl)furan-2-yl)-2,5-bis-(n-decyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione 9d (51%) (Scheme 5) in a synthetically useful manner. Dyad 3 ,6-bis-(5-(4-ferrocenylphenylethynyl)furan-2-yl)-2,5-bis-(n-decyl)-pyrrolo[3,4-c]pyrrole-1,4-(2H,5H)-dione 9f (40%) was also isolated (Scheme 5) along with 9d. All compounds were characterized using spectral techniques. The thermogravimetric analysis showed that 9a-9c and 9e are thermally stable up to 500 °C whereas, 9d and 9f show thermal stability up to 200 °C (See SI Figure S1).

UV-visible absorption study

Chromophore 5 and dyads 9a-9f show intense low energy (LE) charge transfer bands (MLCT or D-A) and weak intensity high energy (HE) bands (LMCT or π-π*) in the region of 500-700 nm and 300-450 nm, respectively, which are characteristic bands of DPP based chromophores.55,73-79 Owing to extensive overlap, the absorption bands have been resolved using band fitting analysis (See SI Figure S2), although typical LE (MLCT) and HE (ILCT) bands of the pristine Fc merged extensively with the HE and LE bands of the DPP core. However, on the basis of TD-DFT studies (carried using B3LYP/6-31G basis set and CPCM model using dichloromethane as solvent),65 apparent contributions of the relevant transitions to the absorption bands have been assigned (See SI Table S1). The TD-DFT deduced FMOs of 5 & 9a-9f and the associated energies are depicted in Figure 2. The position of the LE CT bands of the dyads show a shift upon varying the strength of the acceptor as well as upon altering the length of the π-conjugation intervening D and A. Thus, the dipolar 9a-9c show red shifted LE CT bands (Δλ = 28 nm, 5→9a, Δλ = 100 nm, 5→9b, Δλ = 68 nm, 5→9c) w.r.t. the core 5 owing to the influence of the donor Fc and the acceptor moieties (Figure 3). On increasing the acceptor strength from 9a→9c→9b, a red shift is observed in the LE CT bands (Δλ = 40 nm, 9a→9c,

![Figure 2](image1.png)

Figure 2. Illustration of frontier molecular orbitals of 5, 9a-9c (A); 9d-9f (B) at B3LYP/6-31G basis set.

![Figure 3](image2.png)

Figure 3. Overlay of UV-visible spectra of 9a-9c & 5 in dichloromethane at 1 x 10⁻⁵ M and Fc in dichloromethane at 1 x 10⁻³ M at 293 K.

![Figure 4](image3.png)

Figure 4. Overlay of UV-visible spectra of 9d-9f & 3 in dichloromethane at 1 x 10⁻⁵ M and Fc in dichloromethane at 1 x 10⁻³ M at 293 K.
Δλ = 32 nm, 9c→9b). The red shift could be attributed to the stabilization of the LUMO energy as a consequence of increasing the acceptor strength from 9a→9c→9b, whereas the energy of HOMO remains nearly the same (Table 1) in all these three dyads. The experimental linear optical data showed good correlation with the theoretical data. The latter also reveals that on increasing the strength of acceptor, the order of the stabilization of LUMO follows the same trend as obtained experimentally (Table 1). As the extent of π-conjugation is increased from 9e→9f, slight red shift in the LE CT band is seen in the LE CT band (Δλ = 2 nm, 9e→9f). Theoretical data also provides the evidence for this red shift as the calculated energy of HOMO is nearly the same for both 9e and 9f. Evidently, the weak electron donor of the Br group leads to an increased band gap as is also attested from the

Table 1. Comparison of experimental (CV/ UV-visible) and the calculated (TD-DFT) HOMO-LUMO Energy data and dipole moments of 5 & 9a-9f.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Experimental data</th>
<th>TD-DFT calculationsa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_HOMO (eV)b</td>
<td>E_LUMO (eV)d</td>
</tr>
<tr>
<td></td>
<td>E_optical (eV)c</td>
<td>E_LUMO (eV)d</td>
</tr>
<tr>
<td>5</td>
<td>-5.464</td>
<td>2.066</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9a</td>
<td>-5.012</td>
<td>1.913</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9b</td>
<td>-5.03</td>
<td>1.657</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9c</td>
<td>-5.00</td>
<td>1.675</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9d</td>
<td>-4.925</td>
<td>2.066</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9e</td>
<td>-5.012</td>
<td>1.937</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9f</td>
<td>-4.85</td>
<td>1.943</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) B3LYP/6-31G level. b) Calculated as E_HOMO = -e[E_\text{ox}^{\text{onset}} + 4.4]. c) Calculated as E_LUMO = E_{g_{\text{optical}}} + 1239.84187/\lambda_\text{onset}. d) Calculated as E_LUMO = E_{g_{\text{optical}}} + E_{HOMO}.
ARTICLE

Theoretical data (Table 1).

The dyads 9a-9f show blue shift in LE CT band with the increase in the polarity of the solvent (See SI Table S2). The concentration dependence of the extinction coefficients was ruled out as no significant change in the relative intensity of the absorption bands was noticed when the absorption spectrum of the dipolar dyads 9b and 9c were recorded at five different concentrations (1.2-6.0 x 10^{-5} M (9b) and 0.9-4.7 x 10^{-5} M (9c) in THF), which were also used in the HRS study (vide infra). Thus, the influence of aggregation in modulating the position of the absorption band and/or intensity has been ruled out. Hence, the observed shift in the absorption bands is attributed to solvatochromism. However, solvatochromism is only significant in the dipolar dyads 9b and 9c, although it is negative, which suggests existence of a more polar ground state of these compounds compared to the corresponding excited states. 80-82 suggesting that the ground state is already a strong charge transfer state represented by the quinoidal forms (Figure 5, 6) as has indeed been described for similar dicyanovinyl chromophore. 83 The marginally higher bond length alternation (BLA) 83-86 of 9c (Figure 6) compared to shorter dyad 9b suggests greater equalization of bond lengths in the latter, owing to the influence of the stronger dicyanovinyl acceptor. Thus, the dyads 9b and 9c were expected to show higher β-values in the present series of compounds. The observed more polar ground states of 9b and 9c also draw precedence from the literature, wherein the chromophores possessing MLCT ($d\rightarrow\pi^*$) and $n\rightarrow\pi^*$ transitions, depict an increase in the dipole moment of the ground state. This leads to hypsochromic shift of both the transitions on increasing the solvent polarity and has been ascribed to the electrostatic dipole-dipole interactions, which stabilize the ground state more than the excited state, resulting in a more dipolar ground state. 86 Also, polar protic solvents are capable of hydrogen bonding with the available lone pairs, hence stabilizing the ground state more than the excited state. 86

Electrochemistry

Electrochemistry was performed in DCM (freshly distilled from CaH$_2$), with 2 x 10^{-2} M tetrabutyl ammonium hexafluorophosphate (TBAPF$_6$) as a supporting electrolyte (Aldrich, Electrochemical grade). A platinum electrode was used both as working as well as counter electrode and Ag/AgCl as reference electrode (CHI660D Electrochemical Workstation). All experiments were performed in N$_2$ purged solvent, and a N$_2$ gas blanket was maintained over the solution during the experiments.Fc was used as an internal reference. Voltammograms displayed in the paper were recorded with a scan rate of 100 mVs$^{-1}$. Variation in scan rates had minimal effect on peak potentials as well as in $E_{1/2}$ values. $E_{1/2}$ values are taken as the half-way point between the forward and reverse peak for each reversible redox process.

Figure 5. DFT/ B3LYP/ 6-31G optimized bond lengths (in Å) of 9b and 9c.

Figure 6. DFT/ B3LYP/ 6-31G optimized bond lengths (in Å) of 9b and 9c.

(where bond lengths (Å): 1→2 = 1.3880; 2→3 = 1.4145; 3→4 = 1.3896; 4→5 = 1.4917; 5→6 = 1.3988; 5→7 = 1.4021; 7→8 = 1.4166; 8→9 = 1.3966; 9→10 = 1.4230; 10→11 = 1.3944; 11→12 = 1.4104; 12→13 = 1.3936; 13→14 = 1.4158; 14→15 = 1.3786; 15→16 = 1.4273).
In analogy to the redox behaviour of Fc as well as the core 5, dyads 9a-9f show electrochemically reversible oxidation peaks (See SI Figures S10-S16). Dyads 9a and 9b show nearly identical \(E_{1/2} \) values with a negligible cathodic shift \(\left(\Delta E_{1/2} = 0.002 \text{ V} \right) \), although the acceptor strength in the latter is large. This could be attributed to the slight difference in the energies of HOMO of both the acceptors. Similarly, the disubstituted chromo-phores also show cathodic shift in \(E_{1/2} \) (Table 1). Similarly, the disubstituted chromo-phores also show cathodic shift in \(E_{1/2} \) (Table 1). However, 9c shows a cathodic shift in the oxidation potential as compared to 9b \(\left(\Delta E_{1/2} = 0.018 \text{ V} \right) \) (Table 2) possibly due to decreased acceptor strength, increased intervening \(\pi \)-conjugation in the former and the marginally higher energy of the HOMOs (Table 1). Similarly, the disubstituted chromo-phores also show cathodic shift in \(E_{1/2} \) on increasing \(\pi \)-conjugation from 9e to 9f \(\left(\Delta E_{1/2} = \left| 0.034 \text{ V} \right| \right) \) (Table 2) due to rise in energy of HOMO of 9f. However, 9d shows anodic shift in \(E_{1/2} \) w.r.t. 9f \(\left(\Delta E_{1/2} = 0.023 \text{ V} \right) \), which could be attributed to the stabilization of HOMO of 9d due to the decreased \(\pi \)-conjugation in 9d, indicative of an increased electronic communication between donor and acceptor. Theoretical data also correlates well with the experimental observation. Further, whereas in 9a, an additional reversible oxidation wave corresponding to the core 5 was observed at \(E_{1/2} = 1.148 \text{ V} \), the same was not observed in both 9b and 9c, which also suggests these dyads to be efficient D-A systems owing to the increased strength of the acceptors. Similarly, 9e and 9f represent disubstituted analogues with D-A-D type constitution and consequently show an additional reversible oxidation peak at \(E_{1/2} = 1.056 \text{ V} \) and 0.957 V (Table 2), respectively, attributable to the DPP unit. Dyad 9d however, shows two reversible oxidation peaks at \(E_{1/2} = 0.992 \text{ V} \) and 1.343 V, respectively, in a manner similar to 5, in addition to the redox wave of Fc donor. Further, the amplitude of the cathodic peak of the one Fc unit containing 9a, that correspond to a single electron redox process was roughly doubled (Table 2) in case of 9e and 9f that contain two Fc units.

Computational Studies

The molecular geometries of the dyads were optimized on B3LYP/6-31G level along with the TD-DFT calculations using same basis set in gas phase as well as in solvent medium using PCM model to get a deeper insight into the effect of varying donor, acceptor and the extent of \(\pi \)-conjugation on the dipole moment, second-order nonlinear polarizability \((\beta) \) and other related properties. The calculated HOMO-LUMO band gaps show a good correlation with the optical band gaps obtained from CV and UV-visible absorption data (Table 1 & See SI Figure S17). The calculated energies of the sets HOMO and LUMO (See SI Table S3 & S4) of the dyads show good correlation with experimental data as discussed in the above sections. The plots of FMOs (See SI Figure S18) reveal that HOMO-LUMO band gap is modulated possibly by both the strength of the acceptors as well as the length of the \(\pi \)-conjugation. Thus, 9b appended with a stronger dicyanovinyl acceptor shows HOMO-LUMO band gap \((\Delta E = 1.85718 \text{ eV}) \) comparable to 9c \((\Delta E = 1.82344 \text{ eV}) \), appended with a relatively weaker acceptor through a longer \(\pi \)-conjugation bridge even as a minor stabilization of LUMOs of 9f \((E_L = -2.97829 \text{ eV}) \) bearing a longer \(\pi \)-conjugation was observed compared to 9e \((E_L = -2.90889 \text{ eV}) \) (Table 1, Figure 2). The contour plots of the orbitals involved in the transitions are shown in Figures 6-10.

Figure 6 Depiction of possible quinoid like structures (A-D) of 9b and 9c.
Table 2. Electrochemical data for Fc, 5 & 9a-9f in CH$_2$Cl$_2$. a

<table>
<thead>
<tr>
<th>Compound</th>
<th>E_{pa} (V)</th>
<th>E_{pc} (V)</th>
<th>$E_{1/2}$ (V)</th>
<th>$i_{pa} \times 10^{-6}$ (A)</th>
<th>$i_{pc} \times 10^{-6}$ (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fc</td>
<td>0.572</td>
<td>0.472</td>
<td>0.522</td>
<td>-2.116</td>
<td>-2.180</td>
</tr>
<tr>
<td>5</td>
<td>1.176</td>
<td>1.070</td>
<td>1.123</td>
<td>-0.902</td>
<td>0.379</td>
</tr>
<tr>
<td></td>
<td>1.496</td>
<td>1.406</td>
<td>1.451</td>
<td>-1.897</td>
<td>-0.279</td>
</tr>
<tr>
<td>9a</td>
<td>0.760</td>
<td>0.640</td>
<td>0.700</td>
<td>-0.788</td>
<td>0.868</td>
</tr>
<tr>
<td></td>
<td>1.208</td>
<td>1.089</td>
<td>1.148</td>
<td>-0.813</td>
<td>-0.295</td>
</tr>
<tr>
<td>9b</td>
<td>0.748</td>
<td>0.648</td>
<td>0.698</td>
<td>-0.074</td>
<td>0.085</td>
</tr>
<tr>
<td>9c</td>
<td>0.725</td>
<td>0.635</td>
<td>0.680</td>
<td>-0.107</td>
<td>0.089</td>
</tr>
<tr>
<td>9d</td>
<td>0.637</td>
<td>0.526</td>
<td>0.581</td>
<td>-2.188</td>
<td>2.091</td>
</tr>
<tr>
<td></td>
<td>1.043</td>
<td>0.941</td>
<td>0.992</td>
<td>-1.596</td>
<td>1.291</td>
</tr>
<tr>
<td></td>
<td>1.394</td>
<td>1.293</td>
<td>1.343</td>
<td>-2.063</td>
<td>-0.938</td>
</tr>
<tr>
<td>9e</td>
<td>0.751</td>
<td>0.638</td>
<td>0.694</td>
<td>-1.700</td>
<td>1.749</td>
</tr>
<tr>
<td></td>
<td>1.106</td>
<td>1.006</td>
<td>1.056</td>
<td>-0.759</td>
<td>0.432</td>
</tr>
<tr>
<td>9f</td>
<td>0.601</td>
<td>0.516</td>
<td>0.558</td>
<td>-0.979</td>
<td>1.892</td>
</tr>
<tr>
<td></td>
<td>1.004</td>
<td>0.910</td>
<td>0.957</td>
<td>-0.510</td>
<td>0.229</td>
</tr>
</tbody>
</table>

a Half-wave potential, $E_{1/2} = (E_{pc} + E_{pa})/2$, where E_{pc} and E_{pa} correspond to the cathodic and anodic peak potentials, respectively; $\Delta E_p = 80–120$ mV; and a scan rate of 100 mV s$^{-1}$. b Amplitudes of the anodic and cathodic peaks.

S19 and S20 (See SI) and tentative assignment to the electronic transitions is made (See SI Table S1). In the dipolar dyads 9a-9c, LE transition is assigned as D→A CT transition in which HOMO is mainly located on Fc unit along with small contributions from the π-bridge and DPP unit, whereas the electron density is shifted towards the acceptor showing the LUMO mainly located on the acceptor along with some contributions from the π-bridge and DPP unit. However, H-2→LUMO also shows contribution to LE D→A CT transition in 9a. Similarly, in the disubstituted chromophores 9e and 9f, the LE transitions are assigned as HOMO→LUMO (MLCT) transitions since the HOMO is mainly located on Fc unit with small contribution from π-bridge and DPP unit, whereas the LUMO is mainly located on DPP unit with small contribution from π-bridge (the contour plots show increased electron density on the DPP unit). On the similar basis, LE transition in 9d is assigned as HOMO→LUMO CT (MLCT) transition. These LE CT transitions show higher oscillator strength (f) (See SI Table S1) than that of HE transitions. The HE transitions are expected to have contributions from multiple transitions i.e. LMCT, π-π*, A→D or intra-ligand CT transitions (See SI Table S1). Thus, HOMO→LUMO transitions correspond to LE CT absorption bands in all the chromophores except in 9a in which H-2→LUMO also contributes to LE CT absorption band. Further, it has been observed that HE transitions in 9c with relatively large f-values also correspond to D→A CT transition as visualized from the contour plots of the orbitals (See SI Figure S19). Thus, the charge transfer is expected to increase due to the contributions from both HE (H-3→LUMO & H-4→LUMO) and LE (HOMO→LUMO) CT transitions, thus β is expected to be largest for 9c.

The calculated values of dipole moments (µ) in gas phase as well as in solvent phase correlate well with the structures of the dyads (Table 1). The central core 5, being a strong acceptor shows a large dipole moment. On increasing the acceptor strength from 9a→9c→9b, the dipole moment shows the same trend. Similarly,
The more symmetrically substituted 9a and 9f dyads (Table 1) were measured for dilution series \((10^{-5} - 10^{-6} \text{ M})\) in THF at 840 nm using HRS method\(^{25,64}\) under ambient conditions. The octopolar symmetry\(^{27,28,87}\) of the reference crystal violet was appropriately taken care of and the difference in solvent was corrected for by the optical local field correction factors. A multiphoton fluorescence discrimination technique in the frequency domain has been applied. Only for the DPP core 5, multiphoton fluorescence at 420 nm was contributing to the scattering signal. With the high frequency demodulation technique, it was possible to obtain an accurate fluorescence-free second-order nonlinear polarizability value. The concentration range used for the nonlinear experiments was small enough to preclude any aggregation effects. The photostability (under femtosecond pulsed 840 nm laser light) was checked by comparing absorbance before and after the nonlinear experiment and no differences were observed.

The principle factors, which determine the degree of polarization are strength of donor and acceptor as well as the intervening π-conjugation bridge.\(^{2,12,27,88-94}\) According to the two-level model (equation 1)\(^{95-96}\):

\[
\beta = \frac{\alpha \Delta \mu_{\text{exc} - \text{g}}^2}{(E_{\text{g}})^2} \quad (1)
\]

Where, \(\beta\) = second-order nonlinear polarizability.
\(\Delta \mu_{\text{exc} - \text{g}}\) = difference in excited state and ground state dipole moments.
\(E_{\text{g}}\) = transition dipole moment, which can be directly correlated to oscillator strength \((f)\) or molar extinction coefficient \((\epsilon)\).

\(E_{\text{g}}\) = LE CT transition band gap.

Dyad 9c shows a greater \(\beta\) value as compared to 9a and 9b compared to the central DPP core 5. The order of the \(\beta\) values for the dyads is: 9c > 9b > 9a (Table 3), although, 9b is appended with a stronger dicyanovinyl electron acceptor compared to 9c as inferred from the trend (9b > 9c > 9a, Table 1) of the calculated (TD-DFT: B3LYP/6-31G) dipole moments in DCM medium. As the acceptor strength increases from 9a → 9b, whereas, the calculated band gap decreases (Table 1), the oscillator strength \((f)\) of CT band shows an increasing trend (See SI Table S1), which could account for the observed trend (9b > 9a) of the \(\beta\) values (Table 3). However, 9c shows exceptionally high \(\beta\) (Table 3) as compared to 9b, although the former has a weaker acceptor as well as smaller dipole moment (Table 1). This could be attributed to the high oscillator strength of charge transfer LE absorption band (See SI Table S1) in 9c, as well as there is marginal increase in energy of the HOMOs in 9c owing to longer conjugation. Further, in addition to the LE CT absorption band in 9c, HE band at 306 nm also corresponds to \(\rightarrow\)A CT transition as depicted from the FMO diagram (See SI Figure S19). Thus, both HE and LE absorption bands are expected to contribute to the charge transfer and the associated larger \(\beta\). Similarly, in disubstituted analogues 9e and 9f, the observed trend in the \(\beta\) values: 9f > 9e (Table 3) is attributable to the increase in the π-

Table 3. Quadratic nonlinear optical parameters of 5 & 9a-9f.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\beta_{\text{HRS}}) (^{a}) (10(^{-30})esu)</th>
<th>(\beta_{\text{HRS,0}}) (^{a}) (10(^{-30})esu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>68 ± 4</td>
<td>31 ± 2</td>
</tr>
<tr>
<td>9a</td>
<td>207 ± 8</td>
<td>104 ± 4</td>
</tr>
<tr>
<td>9b</td>
<td>303 ± 13</td>
<td>170 ± 7</td>
</tr>
<tr>
<td>9c</td>
<td>913 ± 30</td>
<td>502 ± 6</td>
</tr>
<tr>
<td>9d</td>
<td>173 ± 8</td>
<td>81 ± 4</td>
</tr>
<tr>
<td>9e</td>
<td>152 ± 9</td>
<td>77 ± 5</td>
</tr>
<tr>
<td>9f</td>
<td>160 ± 8</td>
<td>82 ± 4</td>
</tr>
</tbody>
</table>

\(^{a}\)second-order nonlinear polarizability, \(\beta_{\text{HRS}}\), recorded at 840 nm in THF. \(^{b}\)second-order nonlinear polarizability corrected for resonance enhancement, \(\beta_{\text{HRS,0}}\).

CONCLUSIONS

Synthesis of new ferrocene-DPP dyads has been described. Femtosecond HRS measurements were performed at 840 nm using a commercial Ti: sapphire laser at ambient temperature and revealed structure dependent high quadratic hyperpolarizabilities. As deduced from the UV-visible absorption, electrochemical, theoretical calculations, the second-order nonlinear polarizability, \(\beta\), increased on increasing both, the strength of acceptor as well as the length of the intervening π-
conjugated linker, although the effect of former was more pronounced. This is in contrast to our earlier finding, wherein the \(\beta \)-values of ferrocene dyads were significantly modulated upon increasing the length of the \(\pi \)-conjugated chain connecting the ferrocene donor with an acceptor. Also, the LE CT bands of the dipolar (D-A) dyads D-s-A-A (9a); D-s-A-A’ (9b); D-A-A’ (9c), where a-weak acceptor (CHO); D-strong donor (Fc); A-strong acceptor (central unit); s-short conjugated bridge; l-long conjugated bridge and A’ or A”-dicyaovinyl acceptors, appeared at lower energy as well as showed smaller HOMO-LUMO band gaps as compared to the disubstituted dyads, D-s-A-s-D (9e) and D-l-A-l-D (9f). Further, these dyads showed negative solvatochromism. Further, the cyclic voltammograms of the dipolar dyads possessed roughly doubled amplitude due to two Fc units, compared to that of the dipolar dyad 9a. Additionally, the disubstituted dyads showed non-zero dipole moments, indicating their non-centrosymmetric nature and hence non-zero quadratic hyperpolarizabilities. A good correlation of the structural changes of the dyads as well as effect of substituents with the experimental \(\beta \)-values was established. From the point of view of the development of electrooptic devices and applications, these new, thermally stable DPP based dyads represent a good strategy for further exploration.

Acknowledgements

We are thankful to SERB-DST, New Delhi for the project SB/S1/OC-45/2013 as well as CSIR, New Delhi for research fellowships to SK and SD.

Notes and references

56. M. M. Hale, Creative Commons Attribution License (CC-BY 2.0).

65. M. J. Frisch et al., *Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2010. (for complete reference see supporting information.)*

