

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Transformer oil based hexylamine-multiwalled carbon nanotubes coolant with optimized electrical,
2	thermal and rheological enhancements
3	
4	Ahmad Amiri ^{1,} *, S. N. Kazi ^{1,} ‡, Mehdi Shanbedi ^{2,} †, Mohd Nashrul Mohd Zubir ¹ , Hooman Yarmand ¹ , B.T. Chew ¹
5	¹ Department of Mechanical Engineering, University of Malaya, Kuala Lumpur, Malaysia
6 7	² Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
8	Corresponding Author: * <u>ahm.amiri@gmail.com</u> (A. Amiri)
9	† <u>salimnewaz@um.edu.my</u> (S. N. Kazi)
10	‡ <u>mehdi.shanbedi@stu-mail.um.ac.ir (</u> M. Shanbedi)
11	
12	
13	Abstract
14	In one-pot microwave-assisted method, multi-walled carbon nanotubes (MWNT) are functionalized with
15	hexylamine (HA). Based on the results of FT-IR, TGA-DTG, Raman, EDS, CHNS/O and TEM confirmed the
16	functionalization of MWNT with HA. The effect of microwave-assisted functionalized MWNT with HA charged
17	transformer oil at different concentrations are experimentally investigated for the electrical, thermal and
18	rheological properties. According to the results breakdown voltage, flash point, density, electrical
19	conductivity, thermal parameters, and viscosity of the synthesized transformer oil-based coolants could be an
20	appropriate alternative for different transformers operating at the nominal voltage less than 170.
21	
22	
23	
24	
24	
25	Keywords: Microwave, carbon nanotube, Electrical, Rheological, Transformer Oil, nanofluid, Breakdown

26 1. Introduction

Different common oils such as engine oil, transformer oil (TO), turbine oil etc. illustrate weak thermal property, so many of their applications cannot be entirely realized^{1, 2}. In order to synthesize TO with good voltage insulation and power apparatus cooling and/or to increase the thermal and dielectric properties as well, numerous researchers have employed different kinds of methods. It is well known that TO can be considered as a dielectric liquid with both insulating and coolant properties. As mentioned above, the low thermal conductivity of TO play a key role in decreasing the transformer performance³.

33 In the field of transformer technology, the higher thermal conductivity of TO means the higher heat transfer 34 rate and smaller equipment size, implying more lifetime and performance². In order to reach the 35 abovementioned purpose, the innovative idea was to improve the dielectric coolants ⁴. These type of fluids 36 are synthesized via adding different nanostructures to TO, with the aim of increasing insulating and thermal 37 properties of oil⁴. A number of studies demonstrated that about 5% growth in the thermal conductivity of TO 38 can result a considerable cost saving to the electrical power generation and transmission distribution 39 infrastructure⁵. Despite the idea about the fluids including solid particles with higher thermal conductivities 40 than base fluids was reported a century years ago, the innovative concept for synthesizing coolants was 41 introduced by Dr. Choi and his team in 19956.

Recently, researchers have studied the performance of transformer oil-based coolant nanofluids of different nanoparticles such as magnetite nanoparticles, Al₂O₃⁷⁻⁹. The results commonly suggested that a nanoparticlebased transformer oil coolant can be utilized to increase the cooling of a power transformer's core. It is obvious that the thermal conductivity of nanostructures may play an important role in the suspension's thermal conductivity. In the field of coolants, the higher extent of thermal conductivity of nanoparticles means the higher thermal conductivity of coolants as well as the higher heat transfer coefficient¹⁰⁻¹².

Among different nanostructures, carbon nanotubes (CNT) with unique thermo-physical, electrical, and 48 mechanical properties can be selected as the promising materials¹³⁻¹⁶. On the other hand, various applications 49 50 of CNT cannot be fully realized due to weak dispersion in solvents and feeble interaction with other materials, 51 which resulted from strong intertube van der Waals interactions^{17, 18}. To increase the interactivity of CNTs, 52 surface functionalization was suggested as an efficient and common approach. Therefore, different 53 functionalities such as carboxylic groups^{2, 19}, aminoacids ^{17, 20, 21} etc. have used for various applications. Arvind 54 et al.¹⁹ functionalized CNT with carboxylic groups to enhance the water dispersibility. Also, Zeinali et al.² 55 experimentally investigated the effects of carboxylated CNT on TO. Eight effective parameters were 56 investigated and their results reported a drop in the Breakdown voltage of TO when the carboxylated CNT 57 was applied².

It is obvious that acidity of transformer oil is a destructive property. According to the previous study⁶, the acidity of TO increases with the increase of water content in the oil and it becomes more soluble to the oil, which ultimately deteriorates the insulation property ^{22, 23}. So, despite use of carboxylic groups on CNT surface it also be used to increase despersibility in different media, thus it cannot be a good choice for TO as an additive. In order to realize an excellent dispersion of CNT in different media, a plethora number of carboxylic groups must be decorated on the surface of CNT ²⁴. This process first makes numerous defects on the CNT surface and then destroys the main structure and promising properties with the shortening of their

65 lengths ²⁴.

66 Choi et al. ²⁵ synthesized and investigated the dispersions of Al₂O₃ and AlN nanoparticles in TO with 67 surfactant of oleic acid. In order to synthesize a new kind of transformer oil-based coolant, they applied 68 ceramic nanoparticles to enhance thermal conductivity of TO and electric insulation property. An 8% 69 improvement in thermal conductivity and 20% in overall heat transfer coefficient were observed at AlN 70 volume concentration of 0.5%. In addition, the viscosity of transformer oil-based coolant plays a key role in 71 the performance of other required instruments such as pump and it has a direct connection with required 72 power through the cooling systems.

- Chen et al. ²⁶ studied the influence of different basefluids such as silicone oil, glycerol, and water and they observed Newtonian behavior at various nano particle concentrations and temperatures. Ahmadi et al. ²⁷ investigated the influence of CNT on engine oils coolant and their viscosities at various concentrations. They observed about 13% and 3.3% increases in the flash point and pour point of coolants from 0.1 weight% of CNT over base oil.
- 78 In the current study, multi-walled carbon nanotubes (MWNT) were first functionalized with hexylamine (HA)
- 79 in a one-pot by applying green procedure under microwave irradiation. In order to realize good dispersibility
- 80 in TO, decrease of defects and removal of the acidity property of TO, the proposed method have no acid
- 81 treatment phase, which is the general step of previous studies. Functionalization phase was investigated via
- 82 different characterization methods. In the application phase, the HA functionalized MWNT (MWNT-HA) was
- 83 added to the basefluid and its properties such as , breakdown voltages, density, flash point, pour point, and
- 84 transformer performance were investigated at two weight concentrations.

85 2. Experimental Section

86 2.1. Materials

- 87 The pristine MWNTs of diameter lower than 30 nm, length 5–15 μm and purity more than 95% were
- 88 prepared from Shenzhen Nano-Tech Port Co. Pristine MWNT has the properties of low electrical conductivity
- 89 and suitable thermal conductivity, which could be selected as one of the best choice for considering in this
- 90 study as per information obtained from relevant companies. All the chemical materials of analytical grade
- 91 such as methanol, NaNO₂, N, N-dimethylformamide (DMF), and H₂SO₄ were obtained from Merck Inc. In

92 addition, Hexylamine (HA) was purchased from Sigma-Aldrich Co. Also, the mineral TO was obtained from

93 Nynax, Stockholm, Sweden.

94 2.2. Functionalization of MWNT and preparation of Coolant

95 Functionalization of MWNT with diamine groups as an innovative method was reported by the present 96 researchers ³⁰ and Ellison et al. ^{28, 29}. Furthermore, Bahr et al.³⁰ and Price et al.³¹ have applied NaNO₂ for preparing a semi-stable diazonium ion, which has resulted a radical reaction with CNTs. Accordingly, the 97 98 above-mentioned method with slight modification and under microwave irradiation was applied for 99 functionalization of MWNT with HA. Pristine MWNT (200 mg), HA (20 ml) and NaNO₂ (200 mg) were poured 100 into a vessel and sonicated for 2 hours at 50 °C to form a uniform suspension. About 0.5 ml of H₂SO₄ was 101 simultaneously added drop by drop into the abovementioned suspension to accomplish the diazonium 102 reaction. The suspension was then transferred into a Teflon vessel and was exposed to microwave radiation 103 for 30 min at 120 °C and 700W power. The solution was cooled at room temperature, centrifuged with THF 104 and methanol, and easily washed by vacuum filtration with a PTFE membrane. After washing several times 105 with DMF, THF and methanol and removing any unreacted materials by checking the PH of filtrate, it was 106 vacuum-dried for 48 h at 40 °C.

- 107 To synthesize MWNT-HA based transformer oil coolant of different weight concentrations, the HA treated
- 108 MWNT (MWNT-HA) needs to sonicate with the known amounts of TO for 30 min. Due to the good
- 109 dispersibility of HA in oil phase, the MWNT-HA could achieve an appropriate dispersion in TO media. The
- easily-miscible hexylamine molecules are responsible for better dispersion of MWNT-HA. The synthesized
- transformer oil-based coolants of different weight concentrations, such as 0.001% and 0.005% were
- 112 prepared. Some essential properties of TO such as viscosity, density, flash point, pour point, breakdown
- voltage, electrical conductivity, and thermal conductivity are shown in Table S₁ (Supplementary information).

114 2.3. Experimental Apparatus

- 115 A schematic diagram of the heat transfer apparatus is shown in Figure 1. Experimental transformer was
- 116 planned and constructed based on an actual transformer. There is a good combination between the size and
- 117 materials of the experimental set-up and the oil-25 KVA transformer². The experimental transformer was oil
- 118 based including a reservoir with the dimensions of 203 *100 *221 mm³.
- A wire cylindrical heating element was employed to heat the oil and coolants. 4 PT-100 thermocouples with
- 120 the accuracy of ±0.1 °C were installed in the reservoir of fluid to measure the fluid temperatures as the
- average temperature of them. Moreover, four thermocouples were fixed at 4 different sides of the
- 122 transformer's wall to calculate the average temperature of walls as the wall temperature. Meanwhile, at an
- actual distance of 5 cm of the bigger wall, a 55 W blower was employed vertically to cool the big wall and
- 124 introduce forced convection heat transfer.

- respectively. The uncertainty of the experiments were calculated by Holman method ³² and the maximum
- uncertainty in calculating the heat transfer coefficient and Nusselt number were less than 2.1 and 5.4%,
- 128 respectively.

129 Raman spectroscopy (Renishaw confocal spectrometer at 514 nm), thermogravimetric analysis, TGA, (TGA-130 167 50 Shimadzu), and transmission electron microscopy, TEM, (HT7700, High-Contrast/High-Resolution Digital TEM) were employed to analyze samples. Regarding TGA, the mass loss of samples was measured at 131 132 the heating rate of 10 °C/min in air. The preparation of TEM samples comprised of several steps, such as the 133 sonication of MWNT in ethanol, dropping the sample on a lacey carbon grid followed by drying in vacuum 134 environment. Electrical conductivity of samples was measured by electrical conductivity meter by using two 135 coaxial electrodes, which are the inner electrode and outer electrode. To conduct the measurement, a specific 136 amount of sample was injected between the two electrodes. When the voltage (V) was applied to the 137 electrodes, there would be a current (I) flowing through the sample. Then, the electrical conductivity of the 138 sample is measured by Eq (1) ³³.

$$\sigma = \frac{I}{V} * \frac{L}{S} \tag{1}$$

Where, σ, *L* and S are the electrical conductivity, spacing between the electrodes and the effective area of the
electrodes respectively.

141 2.4. Data Processing

142 In order to investigate the influence of MWNT-HA on the thermal properties of TO in a transformer, natural &

143 forced heat transfer coefficient (h), Nusselt number (Nu), Breakdown voltage, flash point, pour point, density,

electrical and thermal conductivities and viscosity should be studied as the key parameters.

145 Parameters (h & Nu) were obtained from equations (2) to (4):

146 First, the rate of input power was calculated by Eq (2).

147

- 148 Here, it is obvious that thermal energy transfer between the hot wall and the cold walls. Thus, the average
- heat transfer coefficient (h) is determined by the equation (3).

$$h = Q/A(T_h - T_c)$$
(3)

- 150 Where, Q, T_c and T_h were heat flux, wall temperature and fluid bulk temperature respectively. Meanwhile, A is
- $\label{eq:transfer} 151 \qquad heat \ transfer \ area \ which \ was \ considered \ as \ 0.13 \ m^2. \ T_c \ and \ T_h \ were \ considered \ as \ the \ average \ temperatures$
- 152 obtained from the thermocouples placed on the inner body of the chamber.

(2)

(4)

RSC Advances Accepted Manuscript

153 The amount of Nu can be calculated from equation (4).

$$Nu = h.L/k$$

154 Where, L (0.05 m) is the distance between the cold and hot walls. Also, k is the thermal conductivity of

155 MWNT-HA/TO coolants at the specific temperature and concentration.

156 Meanwhile, the Breakdown voltage, flash point, pours point, density, electrical conductivity, thermal

157 conductivity and viscosity were obtained experimentally. Brookfield LVDV-III rheometer was employed to

158 measure the amounts of viscosity. A KD₂ thermal analyzer (Decagon Devices, Inc., USA) was applied to

- determine the thermal conductivity of coolants and TO at various temperatures. Also, the thermal
- 160 conductivity reported in this study is the average of 4 replicated measurements with the error value less than161 0.0016.

162 3. Results and Discussion

163 3.1. Functionality

164 In order to attain one-pot and rapid functionalization method, less defective structure and selecting

165 functional groups without acidity property, the microwave procedure based on a radical diazonium reaction

166 was applied. Based on recent studies by the present authors³⁴, the mentioned radical diazonium ions was a

semi-stable form, which easily reacts with MWNT. Since HA has no acidity property, there was no change in

168 the acidity of TO after addition of MWNT-HA. In addition, functionalization process was confirmed by some

169 characterization instruments such as derivative thermogravimetric (DTG), Raman and FT-IR spectroscopy,

- and transmission electron microscopy (TEM).
- 171 As discussed above, the covalent functionalization has been performed by the formation of a semi-stable
- 172 diazonium ion which initiated a radical reaction between the nanotubes and HA chains. FT-IR spectroscopy

has been employed as one of the best evidences, which is illustrated in Figure 2 panel (a). In contrast to the

- 174 pristine sample, the FT-IR spectrum of the MWNT-HA demonstrates a couple of peaks at the ranges of 2850–
- 175 3000 cm⁻¹, indicating the presence of C-H stretching vibrations³⁵. Also, the peaks at 1396 cm⁻¹ and 1460 cm⁻¹,

arise from the bending vibration of the CH₂ group ³⁵. Formation of abovementioned peaks after

177 functionalization along with the lack of amine peaks can depict the diazonium reaction between MWNT and

- 178 HA^{29, 34}. More importantly, the peak at 1492 cm⁻¹ was associated with the stretching vibrations of C=C, which
- 179 is due to disruption of aromatic π -electrons on the MWNT surface.

Raman characterization is a strong measurement for analyzing structure, sp² and sp³ hybridized carbon
 atoms in carbon-based materials and functionalization by following alterations in hole ³⁶⁻³⁹. The Raman
 spectra of the pristine MWNT, and MWNT-HA are presented in Figure 2 panel (b). While the pristine MWNT

is weak in terms of D intensity, the fairly strong D band in the MWNT-HA sample can be seen at 1343 cm⁻¹.

184 The ratio of the intensities of the D-band to that of the G-band (I_D/I_G) was considered to be the amount of 185 disordered carbon (sp³-hybridized carbon) relative to graphitic carbon (sp²-hybridized carbon)³⁹. In 186 functionalization studies of MWNT, the higher intensity ratio of I_D/I_G indicates the higher disruption of 187 aromatic π - π electrons, implying partial damage of the graphitic carbon produced by covalent 188 functionalization ^{39, 40}. The I_D/I_G ratio of MWNT-HA (0.91) is relatively higher than that of pristine MWNT 189 (0.49), which confirmed the successful functionalization via a diazonium reaction under microwave 190 irradiation. A significant increase in I_D/I_G can also confirm that the present method is completely successful 191 for functionalization of MWNT without acid-treatment phase.

- As a further evidence, the thermogravimetric analysis (TGA) was applied to investigate functionalization of
- 193 MWNT with HA. TGA is a technique of thermal analysis in which alterations in structure of materials are
- 194 measured as a function of temperature. Also, TGA obviously present results about chemical functionalization
- 195 of MWNT with different groups^{41, 42}.
- 196 Figure 2 panel (c) presents the TGA and derivative thermogravimetric (DTG) curves of the pristine MWNT
- and MWNT-HA. It can be seen that the TGA result of pristine sample illustrates no mass loss up to 500 °C.
- 198 However, there is an obvious weight loss in the temperature range of 50–150°C in the HA-MWNT curve. This
- 199 mass loss was attributed to the functionality of HA as an unstable organic part on the surface of MWNT. Also,
- 200 it is obvious that DTG curve of the pristine MWNT shows no phase of degradation up to 500 °C and a
- 201 noticeable step of mass loss in the temperature range of 500–730 °C is attributed to the bulk degradation
- temperatures of the main graphitic structures. In addition to the first step of mass loss, the first step of
- 203 degradation with DTG curve of MWNT-HA at the temperature range of 50–150 °C is associated with the bulk
- degradation temperatures of HA as an unstable organic loaded on the surface of MWNT.
- 205 The degree of functionalization of modified MWNT is generally calculated by means of thermogravimetric
- 206 analysis (TGA). Functionalization degree of MWNT-HA was calculated in order to assess the functionalization
- 207 yield of the proposed method. The following formula is used to measure the functionalization degree from
- 208 TGA results⁴³:

 $Degree of Functionalization = \frac{Weight loss of attached function (gr) * \frac{1000 mmol}{Molecular weight of attached function}}{MWNT weight loss}$

- 209 While pristine MWNT lost only 1.01% of mass up to 500 C, TGA curve of the HA-functionalized MWNT display
- a considerable mass loss of 11.1% in the range of 50–200 °C corresponding to the decomposition of the
- 211 attached HA moiety. On the basis of TGA weight loss, we estimated that the amount of functional groups per
- 212 gram (mmol/g) of MWNT-HA is 1.4661.

RSC Advances Accepted Manuscript

RSC Advances

213 Overall, TGA or DTG, FT-IR and Raman results are in good agreement with each other on functionalization of

- 214 MWNT with HA. Utilizing microwave method and semi-stable diazonium ions simultaneously provided a very
- effective route to attack the main graphitic structures of MWNT.

216 3.2. Morphological analysis

217 TEM analysis was carried out to study the morphological structure of MWNT. Figure 2 panels (d, e and f) 218 shows the TEM images of the MWNT-HA. As a first cue of functionalization, there are some MWNT with open 219 tips, which is resulted by radical reaction of diazonium ion with MWNT. In addition, the functionalization 220 procedure alters the graphitic (sp^2) carbon network to sp^3 hybridized states of carbon, which is in a good 221 agreement with more defects on the MWNT surface after treatment. Thus, more surface roughness in the 222 MWNT-HA images is logical. Even though TEM images illustrate no cue of functional groups, the more surface 223 deterioration of treated MWNT with HA can be considered as one of the main evidence¹³. These morphological changes are in agreement with the DTG, FT-IR, and Raman results. 224

225 3.3. Elemental Analysis

226 To confirm the diazonium coupling, elemental analyses were performed by the energy dispersive X-ray 227 spectroscopy (EDS) and combustible elemental analysis (CHNS/O). EDS spectra of pristine MWNT and 228 MWNT-HA (Figure 3) show a trace amount of Ni, O and Cd in their chemical structures. The trace amount of 229 Cd and Ni are mainly due to the trapped catalysts during pure MWNTs' synthesizing. EDS results are 230 presented in Table 1 to ascertain accurately the exact amount of each elemen. EDS analysis shows the 231 increase of oxygen content and the presence of a very little amount of nitrogen in the MWNT-HA. Note that 232 the MWNT-HA showed high purity except a very small amount of nitrogen and oxygen. It is noteworthy that 233 our attached functional group has just C and H elements. To confirm the results obtained by EDS and to obtain 234 information on the hydrogen content, combustible elemental analysis was performed. Combustible elemental 235 analysis (CHNS/O) was performed using a Perkin Elmer 2400 series II and was used to measure carbon, 236 oxygen, nitrogen, and hydrogen elemental content. The instrument was used in CHN operating mode to 237 convert the sample elements to simple gases (CO₂, H₂O and N₂). The PE 2400 analyzer automatically 238 performed combustion, reduction, homogenization of product gases, separation and detection. The results for 239 CHNS/O analyzer are shown in Table 2. The results were in very good agreement with those obtained by the 240 EDS results. As more evidence, CHNS/O results show that H content substantially increase in MWNT-HA, 241 which further confirms that hexane has been successfully grafted onto MWNT. Also, no trace of nitrogen was 242 observed in the MWNT-HA, which confirm a successful diazonium coupling.

243

Table 1. EDS results for pristine MWNT and MWNT-HA.

Element Symbol	Pristine MWNT	MWNT-HA
С	93.1±0.7	90.2±0.9

0	2.9±1.1	3.2±0.5
N	0.0	0.1±0.9

244

245

Table 2. Elemental composition of Pristine MWNT and MWNT-HA.

Sample	Chemical composition (wt. %)			
	С	N	0	Н
Pristine	90.23	0.00	2.54	1.09
MWNT				
MWNT-HA	89.85	0.09	2.41	3.28

246

247 3.4. Stability analysis

248 Figure 4 panel (a) illustrates the UV-vis spectra of the MWNT for weight concentrations of 0.001 and 0.005. 249 UV–Vis spectroscopy is commonly applied for the investigation of the stability of coolant including solid 250 nanoparticles and is able to measure the sedimentation time. According to the Beer-Lambert's law, the 251 absorbance of a solution is directly proportional to the concentration of the absorbing species such as 252 particles in the solution. As a raw spectrum of MWNT-HA/TO coolant, sharp peak at 275 nm is attributed to 253 the presence of MWNT, and intensity of peak increases with weight concentration. Quantitative analysis of 254 the dispersion state and the long-term stability of the MWNT and MWNT-HA/TO coolants were performed in 255 UV–Vis spectroscopy, as shown in Figure 4 panel (b). Thus, the absorbance at the wavelength of 275 nm was 256 measured during 30 days for both weight concentrations. It can be seen that the relative concentration of 257 MWNT-HA decrease insignificantly over time. As a result, the maximum sediment of 26.1% was obtained for 258 highest weight concentration of 0.005, which confirmed the suitable dispersibility of MWNT-HA in TO. 259 To check whether the decrease in signal intensity by time is just due to reversible particle settling or gradual 260 irreversible particle aggregation, Figure 4 panel (c) is plotted. The UV-vis spectrum of the MWNT-HA for 261 weight concentrations of 0.001 and 0.005 obtained by performing UV measurements for 30 days on 262 suspensions mechanically shaken every day. The sonication were performed for 5 min at room temperature 263 with power rating of 390 W. The measurement was again carried out at peak wavelength of each material to 264 trace the alteration in the intensity which can be further used to describe the suspension stability at both 265 weight fraction of 0.001% and 0.005%. It can be seen that both colloidal mixtures show lower than 1%266 decrease in the relative concentration as the time progressed, indicating that the colloidal suspensions have 267 been remained stable for 1 months without irreversible particle aggregation.

Also, the particle size distribution change is analyzed using the dynamic light scattering (DLS) method tocheck the aggregate size with time. To measure DLS, the samples were transferred into the folded capillary

Figure 5 is the graphs of the particle size distributions in the nanofluids measured by the DLS method. These

cell (polycarbonate with gold plated electrodes) for investigation of particle size distribution using Zetasizer

271 Nano (Malvern Instruments Ltd., United Kingdom) at 25 °C.

graphs present the size distribution of the particles. Figure 5 panels (a-f) show the DLS results of MWNT-HA.
Although the difference is insignificant, the overall distribution exhibits that the distribution is found to move
to the a bit larger particle size when the distribution of the final day is compared with those of other days, i.e.,
the particles are insignificantly aggregated. Also, a comparison of particle size distribution of pristine MWNT
(Figure 5g) and MWNT-HA (Figure 5a-f) represented a big difference. While pristine MWNT was completely
degraded after 24 hr to reach particle size distribution of 3033 nm, the MWNT-HA materials have been
showing the particle size distribution around 400 nm for 35 day, indicating stable colloidal system of them in

- 280 TO media. Therefore, the existence of MWNT-HA in TO provides a great benefit, MWNT-HA provides a stable
- colloidal system, which can enhance the heat transfer properties.
- 282 Table 3 demonstrates the particle size distributions and zeta potential for pristine MWNT/TO and MWNT-
- 283 HA/TO colloids over a period of 35 days. First, MWNT-HA/TO shows no big aggregation and coagulation at
- 284 both concentrations. It can be seen that the particle size distribution for MWNT-HA/TO nanofluids shows a
- 285 gradual increase in the overall hydrodynamic size, which substantiates the formation of small aggregation,
- which is in agreement with UV-vis results. On the other hand, pristine MWNT was mostly settled after 24 hr.
- 287 The above results confirm the critical role of HA molecules which act as covalent stabilizer to prevent rapid
- colloidal instability associated with the increase in graphitic domain within the carbon-based structure.
- According to the stabilization theory, the electrostatic repulsions between the particles increase if zeta
- 290 potential has a high absolute value which then leads to a good stability of the suspensions. Particles with a
- high surface charge tend not to agglomerate, since contact is opposed. Typically accepted zeta-potential
- 292 values are summarized in Table S_2^{44} .
- 293Table 3 is also shown the zeta-potential and the polydispersity index (PDI) for pristine MWNT and MWNT-
- HA/TO at their natural PH. The zeta-potential and polydispersity index (PDI) are commonly utilized as an
- index of the magnitude of electrostatic interaction between colloidal particles and thus can be considered as a
- 296 measure of the colloidal stability of the solution. According to the Table S₂, zeta potential must be as large as
- possible (positively or negatively) to make a common repulsive force between the particles ⁴⁵. It can be seen
- that after functionalization with HA, MWNT-HA shows a more negatively charged and is around -45 mV over
- a period of 35 days. The zeta potential results of MWNT-HA in TO media suggest an appropriate stability over
- a period of 35 days at 25 ° C. Indeed, the zeta-potential gradually show some fluctuations over a period of 35
- days, in spite of remaining mostly stable with time ⁴⁵.
- 302

Label in	Sample	Time	Average	Polydispersity	Zeta	Mobility(µmcm/Vs)
Figure		(day)	particle size distributions	Index(PDI)	Potential(mV)	
			(nm)			
а	MWNT- HA	1	367.4	0.297	-52.3	-4.097
b	MWNT- HA	7	407.3	0.222	-49.4	-3.870
С	MWNT- HA	14	401.5	0.259	-46.9	-3.678
d	MWNT- HA	21	411.0	0.239	-38.6	-3.024
e	MWNT- HA	28	400.9	0.245	-46.6	-3.655
f	MWNT- HA	35	389.3	0.251	-50.4	-3.951

0.655

-23.6

-1.853

303 Table 3. Zeta potential, average particle size distribution, mobility and polydispersity Index (PDI) of pristine 304 MWNT and MWNT-HA in TO media.

305

306

307

308

319

3.5.1. Electrical properties

Pristine

MWNT

g

1

3.5. Electrical and Thermo-physical analysis

3033

309 As a key parameter, the electrical resistivity of MWNT-HA/TO coolants as well as pure TO was investigated in 310 the temperature range of 20–50 °C. Electrical conductivity and resistivity behaviors of samples for different 311 weight concentrations were illustrated in Figure 6 panels (a) and (b), respectively. The results of electrical 312 conductivity and resistivity of the pure TO and synthesized coolants demonstrated different changes by 313 MWNT-HA loading into the pure TO. Alteration of the electrical conductivity and resistivity was in the range 314 of 7-23% with changing concentration. It can be seen that the prepared samples present larger electrical 315 conductivity enhancement at higher weight concentration of MWNT-HA. Thus, the intrinsic electrical transfer 316 capacity of the MWNT should be the main reason for electrical conductivity enhancement or decreasing 317 thermal resistance. Also, the lack of acidic agent retards the corrosion phenomenon and enhance the 318 electrical conductivity of the prepared coolants, which as a result increases the lifetime of the system.

320 3.5.2. Thermal conductivity

321 Obviously, TO can be considered as the oil with a high electrical insulation property and heat transfer agent. It 322 is obvious that TO with higher thermal conductivity can be more useful. Similar to other critical factors, the 323 thermal conductivity and the rate of heat transfer of TO play a key role in the selection of the transformer 324 fluid. By looking at the transformer oil's normal operating temperature (253 K to 363 K), the effect of 325 temperature on the thermal conductivity of TO also plays a key role in the performance of transformers⁴⁶. In 326 contrast to other basefluids, the thermal conductivity of transformer oil decreases with increasing 327 temperature⁴⁶. It is a big disadvantage in applying transformer oil, in particular, at high range of temperature, 328 resulting in lower performance of transformer². Note that the extent of thermal conductivity's reduction with 329 temperature increasing is different for different transformer oils. Decrease of molecular association with 330 temperature increasing makes a considerable difference to TO's thermal conductivity because the molecular 331 chain is so long and the molecular weight is so great. Thus, it is obvious that TO with higher thermal 332 conductivity can be more useful. The previous studies illustrated that various parameters such as thermal 333 conductivity of working fluid and nanostructures, size, concentration, temperature, PH and shape of 334 nanostructure influence the thermal conductivity of coolants^{47, 48}. Also, some of the thermal phenomena such 335 as Brownian motion, thermophoresis, and diffusiophoresis can influence the thermal conductivity of 336 coolants^{2, 49}.

337 Figure 7 the thermal conductivity plot of MWNT-HA/TO coolant as a function of temperature and 338 concentration. Two different weight concentrations of 0.001% and 0.005% are considered and the variation 339 of thermal conductivity with concentration and temperature are studied. To avoid significant increase in 340 effective viscosity and electrical behaviors, MWNT-HA at low concentrations is considered in the present 341 study. Figure 7 obviously demonstrates that the thermal conductivity of MWNT-HA/TO coolant is higher 342 than that of pure TO. Also, it can be seen that the thermal conductivity of the TO decreases as the temperature 343 increases, where the MWNT-HA/TO coolants at both concentrations show the upward trends. In similar 344 study, Zeinali et al.⁹ Showed that the thermal conductivity of MWNT-COOH/TO coolants increased up to 60 °C. 345 and it decreased considerably at higher temperature. This drop may be attributed to the settlement of MWNT, 346 which can be resulted from the disruption of carboxyl groups on the MWNT surface at high temperature. In contrast with previous study¹⁰, the problem of accumulation at 60°C is completely eradicated by the 347 348 functionalization of MWNT with HA. On the other hand, some researchers in the field of heat transfer 349 concluded that the nanoparticles are governed by the continuous irregular reciprocating motion and 350 phenomena such as Brownian motion, thermophoresis and diffusiophoresis which could influence thermal 351 conductivity of coolant ⁴. Above all, it is a big success that the trend of thermal conductivity illustrates a rising 352 trend over the temperature range of 30-80 °C.

On the other hand, the obtained results confirm that the temperature play a key role in increasing the thermalconductivity of MWNT-HA/TO coolant, which cannot be neglected. For coolants loaded with MWNT, the vital

role in heat transfer enhancement is played by the nanoparticles^{50, 51}. Liquid molecules generate layers 355 356 around the MWNT, thereby altering the local ordering of the liquid layer at the interface region. Thus, the 357 liquid layer at the interface would exhibit a higher thermal conductivity compared to the base-fluid. 358 Differences in thermal conductivity enhancement may be attributable to differences of the thermal 359 boundary resistance around the nanoparticles occurring for different base fluids ⁵². The higher slope in 360 thermal conductivity of MWNT-HA/TO coolants with higher concentration is due to higher rate of formation 361 of the surface nanolayers ¹⁰. In addition, the role of Brownian motion of particles in nanofluids may be an 362 important parameter in determining the thermal conductivity enhancement and also an important factor, 363 in particular for cases with significant change in viscosity with temperature, which is certainly the case 364 for TO ⁵². According to the recent studies^{19, 53, 54}, increasing the local ordering of the liquid layers at the 365 interface region is one of the main reason for thermal conductivity enhancement. Thus, the resistance for 366 heat removal is decreased by thinning of the thermal boundary layer via MWNT loading in basefluids and 367 preparing nanolayers with higher thermal conductivity than the bulk liquid.

368 A summary of experimental studies on the thermal conductivity of TO-based nanofluids is listed in Table S₃. It

is worth mentioning that most of the recent studies focused on suspensions with high nanoparticle's

- 370 concentration, which increase the possibility of sediment. As compared with recent studies², the present
- 371 work reaches higher enhancement in thermal conductivity at similar experimental condition. For example,
- Patel et al. ⁵⁵ obtained 10, 11.5, 14 and 17% enhancements in the thermal conductivities of TO-based
- anofluids by the addition of Al_2O_3 at 20, 30, 40 and 50 °C, respectively. Such enhancements are obtained for
- 374 3% Al2O3 loading, while we work at very low weight fractions of 0.001 and 0.005. In fact, the strategy of the
- present study is the utilization of low concentration of highly-soluble MWNT-HA in TO to avoid sediment,
- 376 since the bulk fluid in the transformer is motionless.
- **377 3.5.3. Convective heat transfer coefficient**

In order to investigate the convective heat transfer coefficient, several experiments at different input powers
of 49.76, 60.25, 69.95, 81.1, 90.4, 100.36, 110.42, 120.6, 130.19, 140.16 and 149.83 were applied. Also, the
natural and forced heat transfer coefficients were studied at both the weight concentrations of MWNT-HA at
different powers.

Natural convection heat transfer is occurred by the buoyancy force, which results from the density deviations
formed by temperature variations in the layers of fluid. This type of heat transfer generate in the absence of
an external source for the movement of bulk fluid. According to the previous study ⁵⁶, when a fluid contacts
with a surface with higher temperature, the molecules of the fluid separate and form a layer of lower density.
As a result, the layers of fluid with lower density are displaced by the cooler layers of fluid, thus the cooler
layers of fluid sink. Noteworthy, the nanostructures concentrations and thermal conductivity can also
influence natural convection in coolants ².

- The natural convection heat transfer coefficient and Nusselt number of pure TO and MWNT-HA/TO coolants 389
- versus input power are illustrated in Figure 8 panels (a) and (b), respectively. It can be seen that similar 390
- 391 upward trends are obvious in the presence of the pure TO and MWNT-HA altered coolants in both figures. It
- 392 is obvious that the heat transfer coefficient is a function of temperature. According to the results, the input
- 393 power increases with the increase of the average temperature of bulk fluid in transformer, which is implying
- 394 higher heat transfer coefficient. As the thermal conductivity of the coolants at different temperatures is
- 395 applied for calculation, the evaluated Nusselt number results show some weak fluctuations.
- 396 Forced convection is a mechanism of heat transfer in which fluid motion is created via an external source 397
- such as fan and pump. The amount of forced convection heat transfer coefficient and Nusselt number versus
- 398 input power are respectively shown in Figure 8 panels (c) and (d) for pure oil and MWNT-HA/TO coolants.
- 399 Natural convection heat transfer coefficient and Nusselt number increases with the increase of input power
- 400 and concentration, the forced convection heat transfer also shows similar results of enhancement with the
- 401 increase of power and concentration. Surprisingly, the amount of thermal conductivity, heat transfer
- 402 coefficient and/or Nusselt number show significant enhancements in the presence of MWNT-HA, which is
- 403 attributed to the good dispersibility of MWNT in TO as one of the reasons.
- 404 The enhancement of convective heat transfer can be attributed to the reduction of thermal boundary layer 405 thickness. Arvand et al. ^{50, 57} showed that carbon nanomaterials such as MWNT has a tendency to decrease the 406 thermal boundary layer thickness, which lowers the difference between temperatures of bulk fluid and wall 407 in transformer and subsequently enhances the convective heat transfer coefficient. To clarify it, heat transfer 408 coefficient can be approximately modeled as k/δ_t , where δ_t represents the thermal boundary layer thickness. 409 So for increasing the heat transfer coefficient, either k should be increased or δ_t should be decreased or both. 410 As a future comparison, Table S₄ also shows a comparison of the natural convection and forced convection 411 heat transfer coefficients of nanofluids with different nanoparticles loading. The convective heat transfer 412 coefficient of MWNT-HA/TO nanofluid was compared with those of other nanoparticles-based TO nanofluids 413 reported in the literature. Obviously, the present samples had a relatively high natural convection and forced 414 convection heat transfer coefficients in comparison to other nanoparticles loading in TO at similar weight 415 fraction, in particular, as compared with MWNT-COOH/TO nanofluids ² at similar experimental conditions. 416 Our results showed the natural convection and forced convection heat transfer coefficient enhancements of 417 23 and 28% at weight fraction of 0.005, which demonstrate a significant increase at a very low concentration.
- 418

3.5.4. **Breakdown voltage**

419 Breakdown voltage is a dielectric strength of TO and plays an essential role in the electrical performance of 420 transformers. Breakdown voltage is obtained via detecting the voltage required for generation of spark 421 between two electrodes with a precise gap in the oil. Small extent of breakdown voltage demonstrates the 422 presence of moisture content in the TO. According to the previous studies ^{2, 58}, different impurity and

423 percentage of moisture content can easily disturb the breakdown voltage results. On the other hand, 424 functionalization of MWNT is the only route for increasing the colloidal stability of MWNT in TO media. Thus, 425 it is essential to apply functional groups with hydrophobic properties for functionalization of MWNT. HA as a 426 functional group can meet both criteria's of good dispersion and hydrophobic property. In addition, to

427 prevent acidity, one-pot and novel method without acid-treatment is employed.

428 Breakdown voltage of pure TO with and without sonication, MWNT-HA/TO at both weight concentration of 429 0.001 and 0,005 are plotted in Figure 9. Also, the mean breakdown voltage with standard deviation are listed 430 in Table 4. In order to measure the dielectric breakdown voltage with different weight fractions of MWNT-HA 431 in the colloidal suspension, the experiment is repeated 60 times for each of the weight concentration 432 according to ASTM D-92 standard using the dielectric breakdown measurement device. Mugger's automatic 433 laboratory oil tester. All experiments were performed using mushroom electrodes set at 1mm gap and at 434 room temperature. The dielectric breakdown voltage of all samples measured 1 day after preparing. The most 435 influential factor affecting the performance of the dielectric strength of transformer oil is the degradation 436 caused by water and other contaminants ⁵⁹, which sonication process could also introduce moisture in oil. 437 Figure 9 panels (a) and (b) show the dielectric breakdown voltage of pure oil with and without 30 min 438 sonication (time for performing diazonium reaction) to investigate the effect of sonication process on TO 439 performance. Results suggest that the sonication has an insignificant effect on the dielectric breakdown 440 voltage (~ 0.4 kV), which is obtained by doing just 30 min sonication with the Bioruptor (4 sec "ON", 4 sec. 441 "OFF").

442 Figure 9 panels (c) and (d) show the experimental results with the various weight concentrations of MWNT-443 HA. Generally, increasing the MWNT-HA concentration leads to a mild decrease of the dielectric breakdown 444 voltage. Again, the mean breakdown voltages and standard deviations for above-mentioned samples are 445 given in Table 4. It was found that breakdown voltages level-off with the rising test number, no upward or 446 downward trend was obtained in experiments, which owes to the effective energy control of the test 447 equipment. With the increase of weight concentration of MWNT-HA in TO from 0.001 to 0.005%, the 448 dielectric strength decreases from 54.098KV to 52.066KV. The standard deviations of both samples are larger 449 than that of transformer oil, indicating the breakdown voltage of samples is less predictable. The MWNT-HA 450 loading in TO media leads to a small drop in breakdown voltage, which mainly caused by MWNT.

451

452

Table 4. Breakdown voltage (kV) of the pure TO and MWNT-HA/TO at different concentrations

Samples	Mean Breakdown voltage	S.D.	
	(KV)	(KV)	
Pure TO	58.03166667	1.137174	

	Sonicated Pure TO	57.65333333	1.311039
	MWNT-HA/TO (0.001%)	54.09833333	1.60521
	MWNT-HA/TO (0.005%)	52.06666667	2.47283
453			
454			
455	3.5.5. Density of fluids		
456	The density of MWNT-HA/TO coolants as we	ll as pure TO at various temperat	ures is illustrated in Figure 10.
457	Density plays a key role in evaluating the nat	ural convection heat transfer. As	mentioned above, natural
458	convection is a function of buoyancy force or	density variation. As shown in Fi	gure 10, there is a diverse
459	connection between temperature and densit	y of fluids. Also, the density of coc	lants increases with the
460	increase of MWNT-HA concentrations.		
461	3.5.6. Flash point		
462	Flash point is considered as the temperature	at which TO produces sufficient	vapors for creating a flammable
463	mixture with air. Flash point is a very essent	al temperature for defining the p	robability of fire hazard in
464	transformer in the presence of TO. Therefore	e, higher flash point can be consid	ered as a desirable property for
465	TO ⁶⁰ .		
466	A seta semi-automatic cleveland open cup fla	sh point tester was used to meas	ure flash point. Flash point of
467	the pure TO with and without sonication and	also MWNT-HA/TO at two differ	ent weight fractions were
468	measured on the basis of American Society for	or Testing and Materials (ASTM) I	D-92 ⁶¹ . The trend of changes of
469	flash point as a function of MWNT-HA conce	ntration is shown in Figure 11. Fir	st, flash point was tested for
470	the pure oil with and without sonication to in	nvestigate the effect of sonication.	Variation of flash point in the
471	presence of sonication and lack of sonication	are given in Figure 11, which sho	w around one degree increase
472	in the volatility of the TO with performing so	nication for 30 min. Also, the vari	ation of flash point as a function
473	of MWNT-HA concentration is indicated an in	ncrease in the volatility of the TO	with the MWNT addition. It is
474	obvious that higher flash point temperatures	is required for safer handling of	TO. The rate of increase in flash
475	point of the MWNT-HA/TO coolant at 0.001	weight fraction with respect to the	e TO is 4.69%, and the highest
476	amount of increase is related to the 0.005 we	eigh fraction of sample, which is 7	.86%.
477	3.5.7. Viscosity		
478	Viscosity is known as the resistance of fluid t	o flow. High-resistance transform	er oil produces an obstacle for
479	the convection circulation in the transformer	rs. Obviously, low viscosity is esse	ential property for an excellent
480	TO. Another critical property for TO is the de	crease of viscosity with the increa	ase of temperature at a lower

rate. The viscosity of pure TO and MWNT-HA/TO coolant at different concentrations and high shear rate of
235 s⁻¹ are investigated experimentally, as shown in Figure 12.

483 Similar to other oil-based nanofluids, the rheological behavior of MWNT-HA/TO (Figure 12a) shows two 484 typical characteristics: (i) an enhancement of viscosity with increasing weight fraction of MWNT-HA, and (ii) 485 a decrease in viscosity with increasing temperature, which is due to weakening of the intermolecular forces of 486 the fluid itself. To illustrate the amount of enhancement in viscosity with MWNT-HA loading, Figure 12b is 487 plotted. It shows the enhancement in the MWNT-HA/oil viscosity, which is less than 10 % for both weight 488 fractions and all temperatures. It can be concluded that the enhancement in the MWNT-HA/oil viscosity is 489 insignificant with increase in weight concentration, which can be attributed to the low weight fraction of 490 MWNT-HA in oil. In addition, in agreement with Ko et al. ⁶², viscosity decreases with the increase in 491 temperature.

492 Also, the viscosity of pure TO and MWNT-HA/TO coolant as a function of the shear rate for different

493 concentrations are represented in Figure S₁ (supplementary information). The effective viscosities of pure

494 transformer oil and treated coolants were measured for the shear rate range of 35-235 S⁻¹. First, MWNT-

- 495 HA/TO and pure TO have a linear shear stress/shear rate relationship, which can be categorized as a
- 496 Newtonian fluid ^{2, 63}. It may be seen for all temperatures, viscosity of the TO is independent of the shear strain
- 497 rate, indicating Newtonian behavior. Also, after the addition of MWNT-HA, samples show the Newtonian
- 498 behavior.

We believe that since TO exhibits Newtonian behavior, it dominates the rheological property and the whole
mixture behaves like a Newtonian fluid with low concentrations of MWNT-HA. Due to some fluctuations and
the significant error in measurement, we were not able to identify the exact amount of viscosity for shear rate
around zero. Based on some recent researches^{2, 63, 64}, TO categorizes as the Newtonian fluids.

503

504 Conclusion

505 MWNT is functionalized via hexylamine (HA) along with diazonium reaction under microwave radiation in a 506 rapid and one-pot technique to obtain highly dispersed MWNT in TO media without acidic property. The 507 procedure was fast and simple and resulted in a suitable degree of hydrophobic functionalization as well as 508 solubility in TO media. Based on the results of FT-IR, TGA-DTG, Raman, EDS, CHNS/O and TEM confirmed the 509 functionalization of MWNT with HA. The results of natural and forced convection heat transfer coefficients, 510 breakdown voltage, flash point, density, electrical and thermal conductivities and viscosity verified the 511 synthesized MWNT-HA based transformer oil is a promising alternative oil for use in transformers. Also, the 512 promising achievements in the thermal and rheological properties support this claim. We obtained 10% 513 enhancement in the thermal conductivity of TO-based nanofluids at a very low weight concentration of 0.005. Also, results showed the natural convection and forced convection heat transfer coefficient enhancements of 514

- 515 23 and 28% at weight fraction of 0.005, which demonstrate a significant increase at a very low concentration.
- 516 Observation of enhancement in natural- and forced-convection heat transfer coefficients and thermal
- 517 conductivity of working fluid with MWNT-HA loading in TO, a feeble decrease in breakdown voltage and lack
- 518 of remarkable change in rheological properties can be resulted in higher performance transformer.

519 Acknowledgment

- 520 The authors gratefully acknowledge Bright Sparks Unit of the University of Malaya, UMRG Grant RP012B-
- 521 13AET and High Impact Research Grant UM.C/625/1/HIR/MOHE/ENG/45, Faculty of Engineering, University
- 522 of Malaya, Malaysia for support to conduct this research work.

N	lomenclature
Nu	Nusselt number
T _c	Average Temperature of walls, °C
h	Heat transfer coefficient, W/m ² K
k	Thermal conductivity, W/m K
L	Length, m
T _h	Average Temperature of oil, °C
Q	Input power, W
Α	Heat transfer area
v	Voltage, V
I	Current, A

523

524 References

525	1.	A. Amiri, M. Shanbedi, H. Yarmand, H. K. Arzani, S. Gharehkhani, E. Montazer, R. Sadri, W.
526		Sarsam, B. Chew and S. Kazi, Energy Conversion and Management, 2015, 105, 355-367.
527	2.	A. Beheshti, M. Shanbedi and S. Z. Heris, J Therm Anal Calorim, 2014, 118, 1451-1460.
528	3.	B. X. Du and X. L. Li, 2014.
529	4.	C. Choi, H. S. Yoo and J. M. Oh, Current Applied Physics, 2008, 8, 710-712.
530	5.	J. Davidson and D. Bradshaw, Journal, 2003.
531	6.	S. Chol, ASME-Publications-Fed, 1995, 231 , 99-106.
532	7.	J. G. Hwang, M. Zahn, F. M. O'Sullivan, L. A. Pettersson, O. Hjortstam and R. Liu, Journal of
533		applied physics, 2010, 107 , 014310.
534	8.	V. Segal, A. Rabinovich, D. Nattrass, K. Raj and A. Nunes, Journal of magnetism and magnetic
535		materials, 2000, 215 , 513-515.
536	9.	T. Cader, S. Bernstein and C. Crowe, Journal, 1999.
537	10.	A. Amiri, R. Sadri, M. Shanbedi, G. Ahmadi, B. Chew, S. Kazi and M. Dahari, Energy Conversion

- 538 and Management, 2015, **92**, 322-330.
- 53911.A. Amiri, M. Shanbedi, H. Amiri, S. Z. Heris, S. Kazi, B. Chew and H. Eshghi, Applied Thermal540Engineering, 2014, **71**, 450-459.

541 542	12.	M. Shanbedi, S. Z. Heris, A. Amiri and M. Baniadam, <i>Journal of Dispersion Science and</i>
542	13	A Amiri R Sadri G Ahmadi R Chew S Kazi M Shanhedi and M S Alehashem RSC Advances
544	15.	2015. 5 35425-35434
545	14.	M. Shanbedi, D. Jafari, A. Amiri, S. Z. Heris and M. Baniadam. <i>Heat and Mass Transfer</i> . 2013. 49 .
546		65-73.
547	15.	M. N. M. Zubir, A. Badarudin, S. Kazi, M. Misran, A. Amiri, R. Sadri and S. Khalid, Journal of
548		Colloid and Interface Science, 2015.
549	16.	J. Saien, H. Bamdadi and S. Daliri, Journal of Industrial and Engineering Chemistry, 2015, 21,
550		1152-1159.
551	17.	B. Ghiadi, M. Baniadam, M. Maghrebi and A. Amiri, Russian Journal of Physical Chemistry A,
552		2013, 87 , 649-653.
553	18.	A. Amiri, R. Sadri, M. Shanbedi, G. Ahmadi, S. Kazi, B. Chew and M. N. M. Zubir, <i>Energy</i>
554	10	Conversion and Management, 2015, 101 , 767-777.
555 556	19.	S. J. Aravind, P. Baskar, T. T. Baby, K. K. Sabareesn, S. Das and S. Ramaprabhu, The Journal of Physical Chemistry C 2011 115 16737-16744
557	20	H 7 Zardini M Davarnanah M Shanbedi A Amiri M Maghrehi and L Ehrahimi <i>Journal of</i>
558	20.	Biomedical Materials Research Part A. 2014. 102 . 1774-1781.
559	21.	H. Zare-Zardini, A. Amiri, M. Shanbedi, M. Memarpoor-Yazdi and A. Asoodeh, <i>Surface and</i>
560		Interface Analysis, 2013, 45 , 751-755.
561	22.	K. Miners, Power Apparatus and Systems, IEEE Transactions on, 1982, 751-756.
562	23.	T. V. Oommen and E. M. Petrie, Power Apparatus and Systems, IEEE Transactions on, 1984, PAS-
563		103 , 1923-1931.
564	24.	A. Amiri, M. Shanbedi, H. Eshghi, S. Z. Heris and M. Baniadam, The Journal of Physical Chemistry
565		<i>C</i> , 2012, 116 , 3369-3375.
566	25.	C. Choi, H. Yoo and J. Oh, <i>Current Applied Physics</i> , 2008, 8 , 710-712.
567	26.	L. Chen, H. Xie, W. Yu and Y. Li, <i>Journal of Dispersion Science and Technology</i> , 2011, 32 , 550-554.
568	27.	H. Ahmadi, A. Rashidi, A. Nouralishahi and S. S. Mohtasebi, International Communications in
569	20	Heat and Mass Transfer, 2013, 46 , 142-147.
570	28.	A. Amiri, M. Magnrebi, M. Baniadam and S. Zeinali Heris, <i>Applied Surface Science</i> , 2011, 257 ,
571	20	10201-10200. M. D. Ellison and P. I. Gasda. The Journal of Physical Chemistry C. 2008. 112 , 738-740.
573	2 <i>5</i> . 30	L Bahr and L M Tour Chemistry of Materials 2001 13 3823-3824
574	31.	B. K. Price and J. M. Tour. <i>Journal of the American Chemical Society</i> . 2006. 128 . 12899-12904.
575	32.	J. P. Holman, 1966.
576	33.	M. Dong, L. Shen, H. Wang, H. Wang and J. Miao, <i>Journal of Nanomaterials</i> , 2013, 2013 , 164.
577	34.	A. Amiri, M. Maghrebi, M. Baniadam and S. Z. Heris, Applied Surface Science, 2011, 257, 10261-
578		10266.
579	35.	I. Kalinina, K. Worsley, C. Lugo, S. Mandal, E. Bekyarova and R. C. Haddon, Chemistry of
580		Materials, 2011, 23 , 1246-1253.
581	36.	DasA, PisanaS, ChakrabortyB, PiscanecS, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R.
582		Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, <i>Nat Nano</i> , 2008, 3 , 210-215.
583	37.	B. Das, R. Voggu, C. S. Rout and C. N. R. Rao, <i>Chemical Communications</i> , 2008, DOI:
584 585	20	10.1039/B&U&955H, 5155-515/.
202 202	58. 20	L. FEIIg, L. FAIIg, Z. HUANG, J. LUO, IVI. LI, D. WANG AND Y. CHEN, SCIENTIFIC REPORTS, 2013, 3 . P. Tian, Y. Wang, M. Li, H. Hu, P. Chen, E. Liu, H. Zhang and L. Wan, Applied Surface Science
500 587	59.	п. нап, л. vvang, ivi. ц, п. пи, п. спен, г. ци, п. Zheng anu L. wan, Applieu Surjuce Science, 2008. 255 . 2204-2200
701		2000, 233 , 3274°3237.

500	40	
588	40.	W. LV, DM. Tang, YB. He, CH. You, ZQ. Sni, XC. Chen, CM. Chen, PX. Hou, C. Liu and Q
569	11	H. Yalig, ACS Hullo, 2009, 3 , 3730-3730. V. Viel O. Huang, M. Liu, K. Wang, O. Wan, F. Dong, L. Lu, X. Zhang and Y. Wei, RSC Advances
590	41.	2015 E 68420-68428
591	12	2013, 3 , $00430-00430$.
593	72.	36012-36016
594	43	E. Moaseri, M. Maghrebi and M. Banjadam, <i>Materials & Design</i> , 2014, 55 , 644-652
595	44.	L. Vandsberger, McGill University, 2009.
596	45.	B. White, S. Baneriee, S. O'Brien, N. J. Turro and I. P. Herman. <i>The Journal of Physical Chemistry</i>
597		<i>C</i> . 2007. 111 . 13684-13690.
598	46.	H. Wang, S. J. Ma, H. Yu, Q. Zhang, C. M. Guo and P. Wang, <i>Petroleum Science and Technology</i> ,
599		2014, 32 , 2143-2150.
600	47.	S. S. Park and N. J. Kim, <i>Journal of Industrial and Engineering Chemistry</i> , 2014, 20 , 1911-1915.
601	48.	B. Pal, S. S. Mallick and B. Pal, Journal of Industrial and Engineering Chemistry, 2015, 25, 99-104.
602	49.	S. F. Seyed Shirazi, S. Gharehkhani, H. Yarmand, A. Badarudin, H. S. Cornelis Metselaar and S. N.
603		Kazi, <i>Materials Letters,</i> 2015, 152 , 192-195.
604	50.	S. S. J. Aravind, P. Baskar, T. T. Baby, R. K. Sabareesh, S. Das and S. Ramaprabhu, The Journal of
605		Physical Chemistry C, 2011, 115 , 16737-16744.
606	51.	N. Jha and S. Ramaprabhu, The Journal of Physical Chemistry C, 2008, 112, 9315-9319.
607	52.	L. S. Sundar, M. K. Singh, E. V. Ramana, B. Singh, J. Grácio and A. C. Sousa, Scientific reports,
608		2014, 4 .
609	53.	S. Murshed, K. Leong and C. Yang, <i>Applied Thermal Engineering</i> , 2008, 28 , 2109-2125.
610	54.	CJ. Yu, A. Richter, A. Datta, M. Durbin and P. Dutta, <i>Physica B: Condensed Matter</i> , 2000, 283 ,
611		27-31.
612	55.	H. E. Patel, T. Sundararajan and S. K. Das, <i>Journal of Nanoparticle Research</i> , 2010, 12 , 1015-
613	50	1031. C. M. China in a Computing for the state of the
614	56.	S. M. Ghlaasiaan, <i>Convective neat and mass transfer</i> , Cambridge University Press, 2011.
615	57. F0	S. S. J. Aravino and S. Ramaprabhu, RSC Advances, 2013, 3 , 4199-4206.
610	58.	NI. IKeua, T. Teranishi, NI. Honua anu T. Yanan, Power Apparatus and Systems, IEEE Transactions
619	50	UII, 1901, 921-920. V Iv V Zhou C Li O Wang and B Oi Electrical Insulation Magazine IEEE 2014 20 22-22
610	59. 60	M. A. Wahah M. Hamada, A. Zeitoun and G. Ismail. Electric Dower Systems Research, 1999, 51
620	00.	61-70
621	61	D. Kong, D. L. am Ende, S. L. Brenek and N. P. Weston, <i>Journal of Hazardous Materials</i> , 2003, 102
622	01.	155-165.
623	62.	G. H. Ko, K. Heo, K. Lee, D. S. Kim, C. Kim, Y. Sohn and M. Choi, International Journal of Heat and
624	-	Mass Transfer, 2007, 50 , 4749-4753.
625	63.	D. H. Fontes, G. Ribatski and E. P. Bandarra Filho, <i>Diamond and Related Materials</i> , 2015, 58 , 115-
626		121.
627	64.	M. Singh and L. Kundan, <i>Journal</i> , 2013.
628		
629		
630		

- 632 Figure Caption:
- **633 Figure 1.** Schematic of experimental transformer.
- 634 Figure 2. (a) FT-IR spectra, (b) Raman spectra, (c) thermogravimetric analysis (TGA) and Derivative
- thermogravimetric (DTG) curves of the pristine and MWNT-HA, (d-f) TEM images of MWNT-HA.
- **Figure 3.** EDS spectra of Pristine MWNT and MWNT-HA.
- 637 **Figure 4.** (a) UV–Vis spectrum of MWNT-HA/TO coolant at different concentrations, (b) the colloidal stability
- of MWNT-HA in TO as a function of time and weight concentration and (c) the UV–Vis spectrum of the
- 639 MWNT-HA for weight concentrations of 0.001 and 0.005 mechanically shaken 5 min every day.
- **Figure 5.** Average particle size distribution after (a) 1 day, (b) 7 days, (c) 14 days, (d) 21 days, (e) 28 days, (f)
- 641 35 days and (g) 1 day.
- **Figure 6.** (a) Electrical conductivity and (b) electrical resistivity of MWNT-HA/TO coolant at different weight
- 643 concentration and temperatures.
- **Figure 7.** Thermal conductivity plot of pure TO and MWNT-HA/TO coolant at different weight
- 645 concentrations.
- **Figure 8.** (a) Natural convection heat transfer coefficient, (b) Nusselt number (Natural), (c) forced convection
- heat transfer coefficient and (d) Nusselt number (forced) of pure TO and MWNT-HA/TO coolant.
- 648 Figure 9. The dielectric breakdown voltage of pure oil (a) with and (b) without 30 min sonication (c) MWNT-
- 649 HA/TO at (c) 0.001 and (d) 0.005.
- **Figure 10.** Density of the MWNT-HA/TO coolants at different concentrations and temperatures.
- 651 **Figure 11.** Flash point of pure TO and MWNT-HA/TO coolants
- **Figure 12. (a)** The viscosity of pure TO and MWNT-HA/TO coolants at different weight concentrations and
- 653 temperatures at shear rate of 235 S⁻¹, (b) viscosity enhancement MWNT-HA/TO coolants at different weight
- 654 concentrations in comparison with pure TO.
- 655

Figure 1

Figure 2.

Figure 3.

Figure 4

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 10.

Figure 11.

Figure 12

1105x1005mm (96 x 96 DPI)