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ABSTRACT 

 

Conventional (Fowler-Guggenheim) and Ben-Naim’s formulations of solvation 

thermodynamics are analyzed in parallel, emphasizing their differences and 

stressing their interconnections. The pivotal equations relating the thermodynamic 

functions in both theories are derived. Connections with Pierotti-Abraham’s 

cavity-interaction partition model are also contemplated in detail. Evidence is 

presented that misinterpretations of some of the derived equations lead to wrong 

estimates of solvation thermodynamic quantities that have been detected in the 

output of some of the most popular quantum chemistry software packages 

(Gaussian 09). 

 

 

Keywords: solvation thermodynamics, free solvation energies, solvation 

enthalpies, solvation internal energies, conventional chemical potential, 

pseudochemical potential.  
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1. Introduction. 

 

Prediction of solvation free energies, ∆Gsol, is a subject of great interest in 

different fields like chemistry (thermodynamics1 and kinetics2), biophysics and 

biochemistry3, or drug design4, among others. Particularly relevant and fruitful 

has been the use of solvation models in the study of systems of paramount 

importance in molecular biology by means of molecular simulations.5 

In their classical text,6 first published in 1939, Fowler and Guggenheim presented 

the theory of liquids and solutions of non-electrolytes. In particular, these authors 

derived the properties of ideal dilute solutions by regarding them as special class 

of regular solutions. 

On the other hand, Ben-Naim published in 1978 a groundbreaking contribution,7 

where solvation thermodynamics was developed at the molecular level in a 

nonconventional manner by redefining the concept of solvation and by 

introducing an auxiliary quantity, the pseudochemical potential (PCP, µ*), which 

in the case of a two-component solution represents the change in the Gibbs energy 

caused  by the addition, at a fixed position, of one solute molecule to the solution 

while keeping T, P and the number of solvent molecules unchanged. The 

conventional definition of the chemical potential (CP, µ), did not include any 

restriction to the location of the additional solute molecule. Ben-Naim has 

emphasized that this apparently subtle difference allowed for a much more 

genuine definition of the solvation Gibbs energy and its derived thermodynamic 

quantities. 

Indeed, Ben-Naim has shown1,7 that classical statistical thermodynamics leads to a 

very powerful relationship between both chemical potentials CP and PCP, 

namely, }·log{ 3Λ+= ∗ ρµµ kT (see next sections), which is the pivotal expression 

of his novel formulation of solvation thermodynamics. 

Ben-Naim has also stressed that while the conventional expressions for CP, like 

those found in the Fowler-Guggenheim text,6 only apply to very dilute solutions 

of solutes, the above mentioned equation is valid for any kind of molecule in any 

fluid mixture, and for any concentration. It is this general character that has 

contributed greatly to the present popularity of Ben-Naim’s formulation which is 

being widely used in the recent literature. 
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While both formulations lead to correct results, they must be handled and 

interpreted within their own context because, as shown in this paper, both the 

meaning and the numerical values of conventional (Fowler-Guggenheim’s) and 

Ben-Naim’s thermodynamic magnitudes are different from each other. 

Unfortunately, as usually happens, the coexistence of different formulations 

brings along the possibility of some degree of confusion related to the fact that 

different magnitudes can receive the same denomination, thus causing 

misunderstandings and misinterpretations. Indeed, as will be shown in this article, 

it is not uncommon to find wrong values of solvation thermodynamic quantities in 

the outputs of some of the most popular quantum chemical software packages. We 

do believe that a substantial part of the existing confusion can be avoided by 

carrying out an elemental parallel analysis of the conventional (Fowler-

Guggenheim) and Ben-Naim’s formulations, making clear their differences and 

emphasizing their interconnections. 

The lack in the literature of any in-depth study where the equations connecting 

both formulations are derived in a systematic manner, prompted us to tackle the 

present research. As will be shown in this paper, our analysis helps to prevent 

potential confusions arising from the simultaneous references in the literature to 

both formulations. In particular, we will focus on the solvation thermodynamic 

functions of a solute in solution as computed by means of continuum solvation 

medium models. We will present evidence that some packages of software, which 

are employed as a reference software in quantum calculations by a large number 

of researchers, do not employ the correct expression for computing neither the 

partial enthalpies (
sol

sH ) nor the partial entropies (
sol

sS ) of a solute in solution. 

Our aim is to highlight, with the help of a chosen specific example, the fact that a 

parallel analysis of the conventional and Ben-Naim’s theories of solvation can be 

very helpful in computing and interpreting, in a proper manner, the solvation 

thermodynamic functions. 

The article is organized as follows: We start in section 2 from Fowler-

Guggenheim’s formulas for the Helmholtz free energies of an ideal gas and an 

ideal dilute solution, and we derive mathematical expressions for the rest of 

thermodynamic functions. In section 3, we start from Ben-Naim’s equation for the 

chemical potential of a molecule in gas-phase and in solution, and we obtain 

mathematical expressions to compute the thermodynamic functions in this 
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alternative formulation. Appropriate formulas to compute conventional and Ben-

Naim’s solvation thermodynamic functions are deduced in section 4. Their 

relations to Ben-Naim’s solvation ρ-process and x-process as well as to Pierotti-

Abraham’s solvation functions (widely employed in experimental studies for the 

prediction of thermodynamic solution parameters) are analyzed in some detail, 

thus allowing for a much deeper understanding about the meaning of solvation 

magnitudes in both formulations. The pivotal equations connecting the 

conventional and Ben-Naim’s solvation thermodynamic functions are also 

obtained. Finally, in section 5 we present a numerical application of the equations 

derived in previous sections, showing how the analysis carried out throughout this 

paper, helps to uncover errors detected in the output of some of the most popular 

quantum chemistry software. 

 

2. Thermodynamic functions in Fowler-Guggenheim’s 

formulation. 

Throughout this article, both molecular and molar units will be employed, as 

indicated. The notation used is the traditional one found in the literature. A 

slightly more elaborated notation is chosen for denoting the different standard 

states in order to stress their meaning.   

 

2.1 Ideal gases. 

 

The Helmholtz free energy of an ideal gas can be written as6 

 

( )
)(log

2
log

3

2/3

0 TjNkTNkT
N

V

h

mkT
NkTNEF g

g
gg −−








−=

π
                         (1) 

 

where N is the number of gas molecules of mass m occupying the volume Vg at 

temperature T, k is Boltzmann’s constant, h Planck’s constant, and )(Tj g  denotes 

the partition function for all the internal degrees of freedom of the solute in gas-

phase. E0
g represents the solute electronic energy. This term shifts the origin of 

energies to allow for a direct comparison with the quantum packages’ outputs (see 
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Tables 2 and 3). It is not included in Fowler-Guggenheim’s original formulation. 

Superscripts “g” and “sol” indicate gas-phase and solution, respectively. The 

symbol “log” stands for natural logarithm. 

From eq (1), one gets 
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On the other hand, from eq (3) 

 

TEkTjk
T

S ggg

P

g
g

/
2

5
)}(/log{ int

3 ++Λ−=








∂
∂

−= ρ
µ

                                       (4) 

 

where 2/1)2/( mkTh π=Λ , ρg = N/Vg is the number density and

TETTjkTTTjkT gg

P

g /)/)(log()/)(log( int=∂∂=∂∂ . In classical systems the 

momentum partition function 3Λ  is independent of the environment, whether it is 

a gas or a liquid phase.1 

Eq (3) can be written as 

 

PkTTjkTkTkTE ggg log)}(/log{log 3
0 +Λ+−=µ                                           (5) 

 

It should be recalled at this point that the adoption of a specific standard state 

represents the choice of a given value for the molar volume (or number density) 

appearing in the equations for the calculations of chemical potential and partial 

molecular (molar) entropies (their translational part). We can define the standard 

partial Gibbs free energy and entropy of solute as 

 

[ ]})(·/log{ 3
0

, TjkTkTE gggo Λ+=µ                                                                       (6) 

 

and 
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[ ] TEkTjkTkS gg
go

/
2

5
})(·/log{ int

3,
++Λ−=                                                        (7) 

 

where the standard state “o,g” corresponds to an hypothetical ideal gas at P = 1 

bar (1 atm). Thus, using molar units and standard conditions (T = 298.15 K), we 

have RT/1 bar = Vg
m = 24.5 L·mol-1.8,9 Let us symbolize such an standard state 

by: {g-ideal, P = 1 bar; Vm = 24.5 L·mol-1}. In some occasions (see section 5), a 

concentration scale standard state is considered. Under such circumstances eqs (6) 

and (7) become 

 

)}(/·log{ 3
0

, TjkTE ggg Λ+= ⊕⊕ ρµ                                                                        (8) 

 

TEkTjkS gg
g

/
2

5
)}//·log{ int

3,
++Λ−= ⊕⊕

ρ                                                       (9) 

 

where g,⊕ρ  is the number density defining the standard state “ g,⊕ ”. For an ideal 

gas at P = 1 bar and 298.15 K we have 

MLmolRTbarg 041.0·5.24/1/1 1, === −⊕ρ . Let us symbolize such an standard 

state by {g-ideal, Mg 041.0=ρ ; Vm = 24.5 L·mol-1} or in general {g-ideal, gρ ; 

Vm}, when the value of gρ  is different from 0.041M (P ≠ 1bar). 

It should be noted that standard states “o,g” and “ g,⊕ ”are fully equivalent when 

Mgg 041.0, ==⊕ ρρ  [i.e. g,⊕µ = go,µ and 
g

S
,⊕

= 
go

S
,

; see eqs (6)-(9)]. 

It is straightforward to show that eqs (3) and (2) lead, respectively, to 
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where, for an ideal gas, the thermal expansion coefficient

TVTV g

P

gg

p /1/)/( =∂∂=α . 

 

 

2.2 Ideal dilute solutions. 

 

According to Fowler and Guggenheim,6 the Helmholtz free energy of an ideal 

dilute solution of a solute, “s”, in a solvent, “l”, (solute-solvent assembly) can be 

given by 

 

 [ ])(loglog}/log{),,( 3
,0 TjkTNkTkTVkTENNVNVTFF sol

ss

sol

sls

sol

ssl

sol

ss

sol

l

sol −+−Λ+−+−= χ     (12) 

                                                                                                                    

where Ns solute molecules, having a constant potential energy -χls (representing 

the solute-solvent interaction), move freely in a region of volume Vsol. The Nl 

solvent molecules are occupying the sol

ss

solsol

l VNVV −= volume available and make a 

contribution ),,( l

sol

ss

sol

l NVNVTF −  to the total Helmholtz free energy. )(Tj sols
 

represents the contribution of the internal motions of the solute molecules and sol

sE ,0
 

the solute electronic energy, the latter not included in Fowler-Guggenheim’s 

original formulation. 

From eq (12), one obtains for the solute CP 

 

)(loglog}/log{ 3
,0

,,,,

TjkTNkTVkTE
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N
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ss

sol

sls

sol

s

NlVTs

l
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sol
sol
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∂
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∂
∂
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It is easy to show (see Appendix A) that 
sol

sNlVTsl VPNF ≈∂∂ ,,)/( , and then 

 

)(loglog}/log{ 3
,0 TjkTNkTVkTVPE sol

ss

sol

s

sol

sls

sol

s

sol

s −+Λ++−= χµ        (14) 

 

According to Pierotti,8 -χls is the molar potential energy of the solute in the 

solution relative to infinite separation, P the hydrostatic pressure, and 
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sol

sls VP+− χ represents the reversible work required to introduce one solute 

molecule into a solution of concentration Ns/V
sol (see in the next section its 

relation to Ben-Naim’s W(s|l) coupling work of solute to the system).1,7 As 

remarked by Fowler and Guggenheim,6 
sol

sVP is usually negligible at ordinary 

pressures (see below) and it is not considered when calculating the derivative with 

respect to T. On the other hand, Fowler and Guggenheim also mention6 that the 

term -χls may depend on T, but in this work (see section 5), -χls [or W(s|l); see eqs 

(29) and (30) in the next section] has been estimated through the Gaussian 09 

(G09) package of programs,10 by adopting the generalized Born approximation 

and the formalism of atomic surface tensions and the solvent-accesible surface 

areas as a model for the solvent (including cavity, dispersion and solvent 

reorganization energy contributions), where no dependence on T is considered 

(the T dependence inherent to the dielectric constant6 is not taken into account). 

From the operational viewpoint, the above implies that the term 

NsNlP

sol

sls TVP ,,]/)([ ∂+−∂ χ , which contributes to 
sol

sH  through 

NsNlP

sol

s

T

T
T

,,

2 /









∂

∂
−

µ
and to 

sol

sS through  
NsNlP

sol

s

T
,,










∂

∂
−
µ

, becomes zero. It is 

straightforward to confirm that the terms NsNlP

sol

sls TVP ,,]/)([ ∂+−∂ χ  appearing in 

the expressions for 
sol

sH  and 
sol

sS when the T dependence of 
lsχ− and 

sol

sVP terms 

is taken into consideration, cancel each other out when the corresponding sol

sµ

magnitude is computed from 
sol

s

sol

s STH − . In other words, the expression found 

for sol

sµ  [i.e. eq (14)] does not depend on whether or not the T dependence of  

sol

sls VP+− χ has been assumed. As will be remarked in section 4, the assumption 

that 
sol

sls VP+− χ  does not exhibit T dependence is not, in general, a very accurate 

approach. 

Consequently, from eq (14) we find  
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where l

p

l

P

lsol

NlNsP

solsol

p VTVVTV αα =∂∂≈∂∂= /)/(/)/( ,,  is the thermal 

expansion coefficient of the solvent and 

TETTjkTTTjkT sol

s

sol

sNlNsP

sol

s /)/)(log()/)(log( int,,, =∂∂=∂∂ . 

 

On the other hand, eq (14) can be written as 

 

)/log(/log)}(/log{ 3
,0 T

sol

Ts

sol

ss

sol

sls

sol

s

sol

s NVkTNNkTTjkTVPE −+Λ++−= χµ      (16) 

 

where NT = Ns + Nl is the total number of molecules in solution (solute plus 

solvent).  

Now, for a ideal dilute solution where Nl/ NT → 1 and Vsol → Vl  (V
sol/NT → Vl/Nl 

= Vl,Nl) one gets  

 

sNll

sol

ss

sol

sls

sol

s

sol

s xkTVTjkTVPE log]})·(/[log{ ,
3

,0 +Λ++−= χµ                           (17) 

 

where Vl,Nl represents the pure solvent molecular volume (inverse of the pure 

solvent number density). We can now define the standard partial Gibbs free 

energy of the solute (conventional standard CP) as   

 

]})·(/[log{ ,
3

,0
,

Nll

sol

ss

sol

sls

sol

s

solo

s VTjkTVPE Λ++−= χµ                                          (18) 

 

Similar arguments applied to eq (13) lead to the following equation for the 

standard partial entropy of the solute 

 

 TEkTkVTjkS sol

s

l

pNll

sol

ss

solo

s /
2

3
]})·(/[log{ int,,

3,
+++Λ−= α                                    (19) 

 

The standard state “o,sol” (mole fraction scale) corresponds to an hypothetical 

ideal solution (fulfilling Henry’s law) at T and P of the solution, where the solute 

mole fraction is the unity (xs = 1). Thus, using molar units and standard conditions 
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for Vl,Nl, we have Vl,m = 0.018 L·mol-1.8,9 Let us symbolize such an standard state 

by:  {sol-Henry, xs → 1; Vm = 0.018 L·mol-1}. Figure 1 collects, in a psolute-xsolute 

graphic, the different standard states adopted for the solute throughout the present 

work. 

In order to emphasize that eqs (14) and (15) correspond to a concentration scale 

standard state, they can be rewritten as 

 

)}(/·log{ 3,
,0

, TjkTVPE sol

ss

sol

s

sol

sls

sol

s

sol

s Λ++−= ⊕⊕ ρχµ                                         (20) 

 

TEkTkTjkS sol

s

l

p

sol

ss

sol

s

sol

s /
2

3
)}(/·log{ int,

3,,
+++Λ−= ⊕⊕

αρ                                    (21) 

 

where sol

s

,⊕ρ  is the number density defining the standard state “ sol,⊕ ”. It 

corresponds to an hypothetical ideal solution (fulfilling Henry’s law) at T and P of 

the solution, where the solute concentration is sol

s

,⊕ρ . Let us symbolize such an 

standard state: {sol-Henry, sol

sρ ; Vm}, for a solution of concentration sol

s

sol

s ρρ =⊕,

As mentioned in section 2.1, we need to introduce this additional standard state 

here to analyze the G09 output in section 5. 

On the other hand, from eq (14) 

 

sol

s

l

p

sol

sls

sol

s

NlNsP

sol

s
sol

s EkTkTVPE
T

T
TH int,

2
,0

,,

2

2

3/
++++−=









∂

∂
−= αχ

µ
         (22) 

 

It is important to stress at this point that while 
sol

sVP arises from the first term 

contribution (Fl) to the solution Helmholtz free energy (Fsol) in eq (12), l

pkT α2  

comes from the term sol

s VkTN log− . Both contributions are in most cases 

negligible (for instance, using molar units and standard conditions, in the case of 

solute water in water solution: 12,2 ·10·5.4 −−= molkcalRT waterl

pα and 

14 ·10·4.4 −−= molkcalVP
sol

water ), but according to Fowler and Guggenheim,6 they 

should not be omitted until the final stage to avoid apparent inconsistencies. 

On the other hand, from eq (22) we obtain 
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sol

s

l

pls

sol

s

sol

s

sol

s

sol

s EkTkTEVPHU int,
2

,0 2

3
+++−=−= αχ                                     (23) 

3. Thermodynamic functions in Ben-Naim’s formulation. 

Ben-Naim starts from the relation between the CP of a molecule s, ϕµ s , in gas-

phase (ϕ=g) or in solution (ϕ=sol), and the corresponding PCP, ϕµ ,∗
s

1,11 

 

}log{ 3,
ssss kT Λ+= ∗ ϕϕϕ ρµµ                                                                                  (24) 

 

Both sµ and ∗
sµ  represent the change in Gibbs energy caused by the addition of 

one molecule s to the system keeping T, P, and the number of other type of 

molecules present in the system (if any) unchanged. While for ∗
sµ  the center of 

mass of the added molecule is placed at a fixed position, in the case of sµ the new 

molecule is released to wander in the entire volume.  

According to Ben-Naim1 

 

)(log)(log)|( 00
, TjkTETjkTgsWE ggggg −=−+=∗µ                                  (25) 

 

)(log)|(,0
, TjkTlsWE sol

s

sol

s

sol

s −+=∗µ                                                                 (26) 

 

where the contribution of the electronic energy of solute, ϕ
sE ,0 , has been included. 

W(s|x), Ben-Naim’s coupling work, is the average Gibbs energy of interaction of 

s with its entire surroundings (other gas molecules, x = g, or solvent molecules, x 

= l). Of course, for an ideal gas, the coupling work, W(s|g), is zero. Note that in 

the gas phase, where only one type of molecules is present, the subscript “s” 

becomes unnecessary and has been eliminated, as we also did in the case of 

Fowler-Guggenheim’s formulation (see section 2).  

Equations (24), (25) and (26) lead to 
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)}(/log{ 3
0 TjkTE gggg Λ+= ρµ                                                 (27) 

 

which, of course, matches eq (5) (ρg = Ns/V
g = P/kT), and  

 

)}(/log{)|( 3
,0 TjkTlsWE sol

ss

sol

s

sol

s

sol

s Λ++= ρµ                                                  (28) 

 

Comparison of eq (28) with eq (14) in Fowler-Guggenheim’s formulation (ρs
sol = 

Ns/V
sol) allows one to conclude that 

 

sol

sls VPlsW +−= χ)|(                                                                                         (29) 

 

Thus, Ben-Naim’s coupling work of the solute s to the system, corresponds to 

Fowler-Guggenheim’s reversible work required to introduce one solute molecule 

into the solution (at one fixed position).12,13 Indeed, Ben-Naim describes in detail 

how the solvation of any solute in any solvent can always be decomposed into two 

parts: creation of a suitable cavity (
sol

sVP ) and then turning on the other parts of 

the solute-solvent interaction (-χls).
12,13  As 

sol

sVP is usually negligible (see section 

2.2), we have 

 

lslsW χ−≈)|(                                                                                                      (30) 

 

Ben-Naim’s definition of ∗
sµ  can be generalized to any partial molecular 

thermodynamic function, 
∗
sX : it will represent the change in the particular 

function considered due to the addition of one molecule of solute at a fixed 

position in the system. Let us obtain explicit expressions for Ben-Naim’s partial 

molecular entropies, enthalpies and internal energies. 

Bearing in mind that Pss TS )/( ∂∂−= µ , one gets from eqs (25)-(28) 
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g

p

ggg

kTkkSS αρ ++Λ−=
∗

2

3
}log{ 3,

                                          (31) 

sol

ps

sol

s

sol

s

sol

s kTkkSS αρ ++Λ−=
∗

2

3
}log{ 3,

                                      (32) 

where, as already mentioned above, for an ideal gas, Tg

p /1=α , and for an ideal 

dilute solution, l

p

sol

p αα ≈ (thermal expansion coefficient of the solvent). 

Combination of eqs (31) and (4), and eqs (32) and (15) leads to the following 

explicit expression for Ben-Naim’s partial molecular entropies of the solute in 

gas-phase and in solution 

 

TETjkS sss /)(log int,

, ϕϕϕ
+=

∗
    (ϕ = g, sol)                                                         (33) 

 

The solute partial molecular enthalpies 
g

H and 
sol

sH are obtained from

ϕϕϕ
µ sss STH += , using equations (24), (31) and (32) 

 

kTHkTkTSTH
gg

p

ggg

2

5

2

3 ,2,, +=+++=
∗∗∗ αµ                                             (34) 

 

l

p

sol

s
l

p

sol

s
sol

s

sol

s kTkTHkTkTSTH ααµ 2,2,,

2

3

2

3
++=+++=

∗∗∗                         (35) 

 

Although rather obvious, it is important to stress at this point that l

p

g

p kTkT αα 22 ≠ . 

Indeed, in the case of water, for instance, using molar units and standard 

conditions, 1,2 ·59.0 −= molkcalRT waterg

pα and 12,2 ·10·5.4 −−= molkcalRT waterl

pα . While the 

latter can be neglected without appreciable lost of accuracy for most of 

applications, the former becomes of the order of standard state corrections and 

should be taken into consideration. 

A second important remark is that for an ideal gas, the term kT that must be added 

to 
g

sU to get 
g

sH  (see eqs 10-11), arises from the contributing term g

pkT α2 . Since 

g

VPkT = , one can write 
ggg

VPUH += . In other words, for an ideal gas 

g

s
g

p VPkT =α2 . In sharp contrast, for the case of a solute in solution, the terms 
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l

pkT α2  and 
sol

sVP  are different contributions to 
sol

sH  [see eq (22)], as stressed in 

the previous section. 

The above points, although trivial, should be taken into account in order to avoid 

misunderstandings leading to some serious mistakes detected in the literature. In 

particular, we will show in section 5 that some rather popular packages of 

software (for instance, the G09 package of programs),10 with a huge number of 

users, do contribute to create confusion in this regard. 

It is easy to show that eqs (25) and (34) with NsNlP

gg

TS ,,
,,

)/( ∂∂−= ∗∗
µ  , within 

Ben-Naim’s formulation, lead to eq (10) in Fowler-Guggenheim’s formulation. 

Similarly, eqs (26), (29) and (35) with NsNlP

sol

s

sol

s TS ,,
,,

)/( ∂∂−= ∗∗
µ , result in eq 

(22). Consistency between both formulations is thus, once again, confirmed. 

Combination of eqs (34) and (10) on one hand, and eqs (35), (29) and (22) on the 

other hand, leads to explicit expressions for Ben-Naim’s partial molecular 

enthalpies of the solute in gas-phase and in solution, 

 

gg
g

EEH int0

,
+=

∗
                                                                                                  (36) 

 

sol

s

sol

sls

sol

s

sol

s EVPEH int,,0

,
++−=

∗
χ                                                                        (37) 

 

In order to get the expressions for Ben-Naim’s partial molecular internal energies, 

we start from Ben-Naim’s expression for the partial molecular volume1 

 

ϕϕϕ
βTss kTVV +=

∗,
       (ϕ = g, sol)                                                                       (38) 

 

where ϕϕϕβ VPV TT /)/( ∂∂=  is the isothermal compressibility coefficient, that for 

an ideal gas reduces to 1/P and for a liquid phase becomes so small that can be 

safely neglected.1 

Bearing in mind that
ϕϕϕ ,,, ∗∗∗

+= VPUH (ϕ = g, sol), equations (36)-(38) lead to 
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gg
g

EEU int0

,
+=

∗
                                                                                                  (39) 

 

sol

sls

sol

s

sol

s EEU int,,0

,
+−=

∗
χ                                                                                      (40) 

 

4. Solvation thermodynamic functions. 

 

In the previous section we have derived explicit expressions for Ben-Naim’s 

solute partial molecular properties
ϕ,∗

sX . The relevance of such magnitudes lies in 

the fact that the solvation thermodynamic functions can be defined in a very 

convenient way in terms of Ben-Naim’s 
ϕ,∗

sX (see below). 

In Fowler-Guggenheim’s formulation, the solvation Gibbs free energy is obtained 

from eqs (6) and (18) 

 

)/log( ,0,0
,,,

ml

g

m

sol

sls

gsol

s

go

s

solo

s

solo VVkTVPEEG ++−−=−=∆ χµµ                   (41) 

 

where we have used the fact that ml

g

mmlNll VVVbarRTVbarkT ,,, /)·1/()·1/( == . As 

stressed in section 2, according to the standard states employed in this formulation 

(see section 2),8 Vg
m = RT/1bar is the molar volume of an ideal gas at P = 1 bar 

and T = 298.15 K (Vg
m = 24.5 L·mol-1), and Vl,m is the pure solvent molar volume 

(Vwater,m = 0.018 L·mol-1 for water solutions under standard conditions). As usual, 

we assume throughout this work that the thermal contributions from internal 

motions of the system (i.e. rotation and vibration) are very similar in gas-phase 

and in solution, thus cancelling each other out [jg(T) = js
sol(T) and Eg

int = Esol
int,s].  

Equation (41) is fully consistent with the works by Pierotti8 and Abraham and 

Nasehzadeh14 where solvation molar Gibbs free energies are computed as 

   

)/log( ,
,

ml

g

mINTCAV
solo VVRTGGG ++=∆                                                        (42) 

 

with CAVG and INTG  being the partial molar Gibbs energies associated with the 

creation of a cavity (
g

sVP ) and with the solute-solvent interactions when the 
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solute is in the cavity (-χls), respectively. Solute electronic contribution gsol

s EE 0,0 −

must be added to eq (42) to make it compatible with eq (41). 

Equation (41) represents, within the conventional formulation of  thermodynamics 

of solution, the energy involved in the transference of a solute between gas-phase 

in the standard state: (hypothetical gas ideal with P = 1 bar) whose chemical 

potential is go

s

,µ  [see eq (6)], and solution in the standard state: (hypothetical ideal 

dilute solution fulfilling Henry law with xsolute → 1) whose chemical potential is 

solo

s

,µ  [see eq (18)].14 It is the so-called “solvation x-process” in Ben-Naim’s 

formulation. That is to say, solo
GprocessxG

,)( ∆=−∆ . In other words, Ben-

Naim’s x-process corresponds to Fowler-Guggenheim’s solvation process. 

Ben-Naim also defines what he denotes as the “solvation ρ-process”, in which one 

molecule of solute is transferred from an ideal gas phase into an ideal solution 

(Henry’s law) at fixed temperature and pressure and such that  gsol

s ρρ = . 

Application of eqs (5) and (14) leads to 

 

=







++−−=−=−∆

=
=

gsol
s

gl
s g

sol

s
sol

sls

gsol

s

gsol

s kTVPEEprocessG

ρρ
ρρ ρ

ρ
χµµρ log)()( 0,0

 

                                                           
sol

sls

gsol

s VPEE +−−= χ0,0                          (43) 

 

Combination of eqs (25), (26), (29) and (43) leads to 

 

)(,,, processGG g

s

sol

s

sol −∆=−=∆ ∗∗∗ ρµµ                                                           (44) 

 

where solG ,∗∆  represents Ben-Naim’s solvation Gibbs free energy.  

It is important to stress, as Ben-Naim does,1 that while solG ,∗∆  and 

)( processG −∆ ρ are equal in magnitude, they correspond to two different 

processes. The process involved in the definition of solG ,∗∆  represents the change 

in Gibbs free energy when moving one solute molecule of solute from a fixed 

position in an ideal gas phase into a fixed position in an ideal dilute solution at 

constant temperature and pressure, which obviously differs from the ρ-process as 

defined above.  
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The claimed superiority of Ben-Naim’s solvation magnitudes solX ,∗∆  when 

compared with their related Fowler-Guggenheim’s soloX ,∆  values have been 

summarized by that author as follows:15 (a) while the conventional standard state 

free energy is not a bona fide measure of the average free energy of interaction of 

a solute with its surroundings,  solG ,∗∆  is a direct measure of it. Indeed, it can be 

shown that >−<−=∆ ∗ ]/exp[,
kTBkTG s

sol ,where Bs is the total interaction 

energy of a solute s at a fixed position, (b) while gsol

s

solG ,,, ∗∗∗ −=∆ µµ applies to 

solutions of any concentration, the conventional standard free energies 

gosolo

s

solo
G

,,, µµ −=∆  are only valid for very dilute solutions, (c) while the 

magnitudes solX ,∗∆  pertain to the same process of solvation, when using the 

conventional standard magnitudes of solution, one usually applies different 

processes to different thermodynamic magnitudes, and (d) while the specification 

of a standard state is mandatory when using conventional standard free energies, 

no standard state definition is required in Ben-Naim’s formulation. 

Combination of eqs (41), (43) and (44) leads finally to the pivotal equation which 

establishes the relationship between solvation Gibbs free energies in Fowler-

Guggenheim’s and Ben-Naim’s formulations11 

 

)/log()( ,
,,

ml

g

m

solosol VVkTGGprocessG −∆=∆=−∆ ∗ρ                                     (45) 

 

On the other hand, eqs (43) and (44) lead to 

 

sol

sls

gsol

s

sol VPEEG +−−=∆ ∗ χ0,0
,                                                                         (46) 

 

which is the explicit expression for Ben-Naim’s Gibbs free energy of solution. 

The solvation molecular enthalpy is obtained from eqs (10) and (22) 

 

l

p

sol

sls

gsol

s

gsol

s
solo kTkTVPEEHHH αχ 2

0,0
, +−+−−=−=∆                            (47) 

 

Equation (47) is fully consistent with the results of Pierotti8 and Abraham and 

Nasehzadeh14 who compute the solvation molar enthalpies according to 
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RTRTHHH l

pINTCAV
solo −++=∆ 2, α                                                               (48) 

 

with CAVH and INTH  being the partial molar enthalpies associated with the 

creation of a cavity and to the solute-solvent interactions when the solute is in the 

cavity, respectively. Solute electronic contribution gsol

s EE 0,0 − must be added to eq 

(48) to make it compatible with eq (47). 

It should be recalled that Pierotti8 and Abraham and Nasehzadeh14 assume that 

INTINT HG =  but CAVCAVCAV STHG −=  [with ])/( ,, NsNlP

sol

sCAV TVPS ∂∂−= , thus 

implying that while -χls (interaction term) is independent of T, 
g

sVP (cavity term) 

is allowed to depend on T. As mentioned in section 2.2, in the present work, 

neither -χls nor 
g

sVP are considered to be T dependent and therefore, not only 

lsINTINT HG χ−== but also 
sol

sCAVCAV VPHG ==  [see eq (42)]. In this regard, it 

is easy to show from eqs (7) and (19) that 

 

)/log( ,
2,,,

ml

g

m

l

p

go

s

solo

s
solo VVkTkTkTSTSTST −+−=−=∆ α                             (49) 

 

and also from eqs (7), (19) and (33) we find 

 

)/log( ,
2,,

ml

g

m

l

p

solsolo VVkTkTkTSTST −+−∆=∆
∗

α                                          (50) 

 

which represents the pivotal equation connecting the solvation entropies in 

Fowler-Guggenheim’s and Ben-Naim’s formulations. 

From eqs (41), (47) and (49) it is seen that, as expected, 

solosolosolo STHG ,,, ∆−∆=∆ . Of course, eq (47) could also be derived from this 

latter equation, using NsNlP

solosolo TGS ,,
,, )/( ∂∆∂−=∆  together with eq (41), and 

assuming that 
sol

sls VP+− χ is independent of T ( gsol

s EE 0,0 − , involving the 

electronic energies of the molecule in solution and gas-phase, does not depend on 

T). 

It is clear either from eq (33) or from (49)-(50) that ∆S*,sol = 0. Of course, this is 

again a direct consequence of the simplification adopted in this work that W(s|l) 
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(or equivalently 
g

sls VP+− χ ) is independent of T. As stressed in section 2.2, such 

a restriction has been imposed for consistency with G09,10 for we will analyze the 

thermodynamic solvation G09 output in the last section of this article. However, 

we must insist that it is a rather crude approximation. Indeed, in the case of water 

solute in water solution at 298.15 K, ∆G*,sol = -6.324 kcal·mol-1, ∆H*,sol = -9.974 

kcal·mol-1, and ∆S*,sol = -12.24 cal·K-1·mol-1.11 

It is easy to show1 that, unlike solvation Gibbs free energies, solvation enthalpies 

for Ben-Naim’s ρ- and x-processes are identical to each other. Bearing in mind 

that Fowler-Guggenheim’s solvation enthalpy, soloH ,∆ , does correspond to the 

change in enthalpy of Ben-Naim’s x-process (i.e. the change in enthalpy involved 

in the x-process is 
gsol

s HH − ) , we can finally write 

 

)()(,
processxHprocessHH

solo −∆=−∆=∆ ρ                                                 (51) 

 

From eqs (34) and (35) we obtain 

 

l

p

soll

p

gsol

s

gsol

s
solo kTkTHkTkTHHHHH αα 2,2,,, +−∆=+−−=−=∆ ∗∗∗

     (52) 

 

which represents the pivotal equation connecting the solvation enthalpies in 

Fowler-Guggenheim’s and Ben-Naim’s formulations.11 

On the other hand, comparison of eqs (47) and (52) leads to 

 

sol

sls

gsol

s

sol VPEEH +−−=∆ ∗ χ0,0
,                                                                         (53) 

 

which is the explicit expression for Ben-Naim’s enthalpy of solution. 

It is important to emphasize that unlike solvation Gibbs free energy [see eq (45)], 

Ben-Naim’s solvation enthalpy, solH ,∗∆ , differs from the change in enthalpy for 

the ρ-process, )( processH −∆ ρ . Equations (47) and (53) imply that, likewise for 

Gibbs energies, when computing solvation enthalpies, two different estimates can 

be done, namely, Fowler-Guggenheim’s soloH ,∆ , or Ben-Naim’s solH ,∗∆ . Thus, 

while authors like Wilhelm et al. 16,17 or Abraham et al.14 report soloH ,∆  (as well 

as soloG ,∆ ) values, Ben-Naim1,10 reports solH ,∗∆  (as well as solG ,∗∆ ) values. In 
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this context, it is interesting to note that in Cabani et al’s compilation,9 one finds 

Fowler-Guggenheim’s soloH ,∆  enthalpies and Ben-Naim’s solG ,∗∆  Gibbs free 

energies. 

Regarding solvation internal energies, eqs (11) and (23) lead to 

 

l

pls

gsol

s

gsol

s
solo kTEEUUU αχ 2

0,0
, +−−=−=∆                                                  (54) 

 

and from eqs (39) and (40) we get 

 

ls

gsol

s

gsol

s
sol EEUUU χ−−=−=∆

∗∗∗
0,0

,,,                                                              (55) 

 

Combination of eqs (54) and (55) gives 

 

l

p

solosol kTUU α2,, −∆=∆ ∗                                                                                   (56) 

 

which represents the pivotal relationship between solvation internal energies in 

Fowler-Guggenheim’s and Ben-Naim’s formulations. 

Before ending this brief parallel analysis on Fowler-Guggenheim’s and Ben-

Naim’s formulations of solvation thermodynamics, we would like to mention that 

Jorgensen’s group18 computed solvation enthalpies by using the expression (in 

molar units) 

 

RTVPEH
ooo −∆+∆=∆                                                                                   (57) 

 

where18 ∆Eo is the energy change on transferring the solute from the gas-phase to 

solution [ soloU ,∆ in our notation: see eq (54)], ∆Vo is the partial molar volume of 

the solute (
sol

sV in our notation). Eqs (47) and (54) lead to 

 

solosologsol

s
solosol

s
solosolo

VPUVVPURTVPUH
,,,,, )( ∆+∆=−+∆=−+∆=∆          (58) 
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with the solvation volume 
gsol

s
solo VVV −=∆ , . Eq (58) is equivalent to eq (57) 

(note that P∆Vo in Jorgensen’s notation is 
sol

sVP ), thus showing that the equations 

derived in this work are consistent with Jorgensen’s formula. 

In the next section, we will show that a certain confusion has been detected in the 

literature regarding the correct application of the equations derived in this article. 

In particular, we will present evidence that the G09 package of programs,10 which 

is employed as a reference software in quantum calculations by a large number of 

researchers, does not employ the correct expression for computing neither the 

partial enthalpies (
sol

sH ) nor the partial entropies (
sol

sS ) of a solute in solution.      

 

5. Practical application. 

 

Table 1 gathers the most important equations derived in the previous sections. 

Tables 2 and 3 collect the computed values of the thermodynamic magnitudes 

considered in the present work for the particular case of water solute in water 

solution, which has been chosen as a representative system where we focus our 

analysis. 

Calculations were carried out by means of the G09 package of programs.10 The 

equations implemented in G09 for computing thermochemical data have been 

described in detail in a technical report available at the official Gaussian 

Website.19 Tables 2 and 3 compile the values appearing in the G09 output file 

together with the results obtained from the application of the equations derived in 

this work (see Table 1). Since the conclusions of the present work do not depend 

at all on the level of theory employed in the calculations, we have chosen a rather 

standard low-level (see Table 2 for details) to avoid diverting attention of the 

reader from the nuclear point analyzed in this work, namely, the correct use of 

solvation thermodynamic formulas in practical cases.  

The values in Table 2 corresponding to the gas-phase magnitudes (row 2) in 

columns 1-6 have been taken from the G09 output and match those computed 

from the equations derived in this work and collected in Table 1. However, in the 

case of solution calculations (row 4), we detected discrepancies between the 
sol

sH , 
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solo

sST
,

 and solo

s

,µ  values in the G09 output (columns 4-6, row 5; values in 

parentheses) and the ones computed with the formulae in Table 1 (columns 4-6, 

row 4). Thermodynamic magnitudes corresponding to Ben-Naim’s formulation     

(
ϕ,∗

X with ϕ = g, sol; columns 7-10) have been computed using formulas in Table 

1 and the appropriate data from the G09 output (Ben-Naim’s magnitudes are not 

provided explicitly in the G09 output). Let us analyze the origin of such 

discrepancies. 

The expression employed in G09 to compute the translational component of the 

partial molar entropy of the solute in both gas-phase and solution calculations is19 

 

 }
2

5
)/log({)09( 3

, +Λ−= ϕϕ

mstranss VRGS        (ϕ = g, sol)                                       (59) 

 

with Vϕm = 24.5 L·mol-1. That is to say, G09 uses the same value for Vϕm in gas-

phase and solution calculations. It is straightforward to show that it is equivalent 

to state that G09 employs concentration scale standard states for gas-phase and 

solution with identical concentrations, namely, 

MLmolRTbar
sol

s

g 041.0·5.24/1/1 1 ==== −ρρ , in molar units [i.e. {g-ideal, 

Mg 041.0=ρ ; Vm = 24.5 L·mol-1} standard state for gas-phase and {sol-Henry, 

Msol

s 041.0=ρ ; Vm = 24.5 L·mol-1} standard state for solution].  After adding the 

contributions from the internal degrees of freedom, the resulting equation for the 

partial molar entropy, 
ϕ,⊕

sS , agrees with eqs (7) and (9), namely, the ones derived 

in this work for the gas-phase calculations. Then, the G09 value for 
sol

sST
,⊕

is 

computed in molar units as 

 

sol

s

sol

ss

sol

s ERTTjRTRTGST int,
3,

2

5
)]}(·/[log{)09( ++Λ−=

⊕
                        (60) 

 

As a consequence, the G09 values for 
g

ST
,⊕

 (0.021436 hartree) and 
sol

sST
,⊕

 

(0.021441 hartree) are virtually identical (the negligible discrepancy observed, 

less than 2·10-3 kcal·mol-1, arises from the difference in the contributions from the 

internal degrees of freedom after geometry optimizations in each phase). It should 
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be noted that the difference between the two mentioned entropy contributions as 

computed with eqs (19) (the equation derived in this work: 
solo

sST
,

) and (60) [the 

equation employed by G09: 
sol

sST
,⊕

), respectively, is (molar units), 

)/log( ,mlVRTRTRT + . The first term is associated with the error involved in the 

G09 incorrect use of the gas-phase equations (59) and (60) for calculations in 

solution. The proper equation to be used in solution calculations is eq (19) that 

involves (molar units) l

pRTRT α2
2

3
+  (with 02 ≈l

pRT α ) instead of RT
2

5
. The 

second term arises from the use of different standard states and consequently 

different values for the volume in eqs (19) [standard state: {sol-Henry, xs → 1; Vm 

= 0.018 L·mol-1}] and (60) [concentration scale standard state: {sol-Henry, 

M
sol

s 041.0=ρ  ; Vm = 24.5 L·mol-1}]. 

Thus we can conclude that the )09(
,

GST
sol

s

⊕
value overestimates by RT the 

correct magnitude. When properly computed with eq (19), which is referred to the 

{sol-Henry, xs → 1; Vm = 0.018 L·mol-1} standard state, 
solo

sST
,

becomes 

0.013689 (see Table 2). If the {sol-Henry, M
sol

s 041.0=ρ ; Vm = 24.5 L·mol-1} 

standard state is chosen for the solution calculations (as G09 does), the correct 

)09(
,

GST
sol

s

⊕
value [as computed with eq (21)] would be: 0.021441 – RT = 

0.020497 hartree. It must be emphasized that while the overestimation by RT is a 

mistake, the choice of any of the two mentioned standard states is free. 

Consequently, both values (0.013689 and 0.020497 hartree) are correct, provided 

the appropriate standard state is specified. 

It is notheworthy that the )09(, GST sol⊕∆  solvation magnitude is computed as [see 

eqs (60) and (7)] 

 

=−=∆
⊕⊕⊕ )09()09()09(

,,, GSTGSTGST
gsol

s
sol  

                          −++Λ−= sol

s

sol

ss ERTTjRTRT int,
3

2

5
)]}(·/[log{  

                          0]
2

5
)]}(·/[log{[ int

3 =++Λ−− gg ERTTjRTRT                  (61) 
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which agrees with 0, =∆ ∗ solST  [see eqs (49)-(50)]. Consequently, the G09 output 

provides gas-phase and solution partial molar entropies that, although do not 

correspond to 
ϕ,∗

S  (ϕ = g, sol) Ben-Naim’s magnitudes (i.e. the values in column 

9, rows 2 and 4, in Table 2 do not match the G09 output: column 5, rows 2 and 5), 

their difference, by a lucky fluke, leads to Ben-Naim’s solvation entropies (i.e.

solsol STGST ,, )09( ∗⊕ ∆=∆ ; see Table 3). 

Regarding partial molar enthalpies, results collected in Table 2 show that G09 

computes 
sol

sH  as  

 

sol

sls

sol

s

sol

s ERTEGH int,,0 2

5
)09( ++−= χ                                                                  (62) 

 

However, according to the equations derived in this work, 
sol

sH should be 

computed from eq (22) that, after neglecting the 
sol

s
l

p VPkT +α2 contribution (see 

section 2), differs from eq (62) in (molar units) RT (0.000944 hartree; see column 

4, rows 4 and 5, in Table 2). That is, G09 overestimates 
sol

sH in this amount. The 

mistake arises from the wrong tacit assumption in G09 that (molar units) 

RTVPkT
sol

s
l

p =+α2 . As mentioned, in sections 2 and 3, 

12,2 ·10·5.4 −−= molkcalRT waterl

pα , 14 ·10·4.4 −−= molkcalVP
sol

water  and RT = 0.59 

kcal·mol-1, and hence 
sol

s
l

p VPkT +α2  cannot be identified with RT. 

Thus, the G09 solvation enthalpy is computed as 

 

−++−=−=∆ sol

sls

sol

s

gsol

s
sol

s ERTEGHGHGH int,,0 2

5
)09()09()09( χ  

                                                              ls

gsol

s

gg EEERTE χ−−=++− 0,0int0 ]
2

5
[   (63) 

 

which agrees with  solH ,∗∆ , once the 
sol

sVP term (4.4·10-4 kcal·mol-1) is neglected 

[see eq (53)]. Therefore, like in the case of entropy, the G09 output provides 

partial molar enthalpies for gas-phase and solution calculations such that, 

although they are not 
ϕ,∗

H (ϕ = g, sol)  Ben-Naim’s partial molar enthalpies (i.e. 
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the values in column 8, rows 2 and 4 in Table 2 do not match the G09 output: 

column 4, rows 2 and 5), their difference leads to Ben-Naim’s solvation enthalpies 

(i.e. solsol HGH ,)09( ∗∆=∆ ; see Table 3). 

Let us now comment on G09 chemical potentials. The )09(, Gsol

s

⊕µ value provided 

by G09 is “correct”, but it is again a fluke. Indeed, )09(,
G

sol

s

⊕µ  is computed as 

)09()09(
,

GSTGH
sol

s

sol

s

⊕
− . According to the previous paragraphs, the RT 

incorrect contributions to )09(GH
sol

s and )09(GST
sol

s  values, will cancel each 

other out, thus leading to a correct )09(,
G

sol

s

⊕µ value in the G09 output                 

(-76.423076 hartree) that, according to what has been mentioned above, will 

correspond to the {sol-Henry, M
sol

s 041.0=ρ ; Vm = 24.5 L·mol-1} concentration 

scale standard state. The value solo

s

,µ = -76.416267 hartree (see Table 2) computed 

from eq (18), neglecting the 
sol

sVP term,  is indeed also a correct value for the 

solute (water) chemical potential in solution (water), but this time, it corresponds 

to the  {sol-Henry, xs → 1; Vm = 0.018 L·mol-1} standard state. 

It has been stressed in section 4 that Ben-Naim’s solvation Gibbs free energy 

solG ,∗∆  is identical in magnitude (although conceptually different!) to the ∆G(ρ-

process) value. As noted there, this latter, is the energy involved in the 

transference of a solute from the gas-phase {g-ideal, gρ ; Vm} standard state to the 

solution {sol-Henry, sol

sρ ; Vm} standard state under the condition that number 

densities in both phases are identical ( sol

s

g ρρ = ). This is exactly the situation 

considered in G09 where the number densities employed in both phases are 

0.041M (molar units). Thus, according to what has been established in section 4, 

∆G(ρ-process) coincides in magnitude with solG ,∗∆ , Ben-Naim’s solvation Gibbs 

free energy. Consequently, the solvation Gibbs free energy computed in G09, 

)09()09()09( ,,,
GGGG

gsol

s

sol ⊕⊕⊕ −=∆ µµ = -76.423076 + 76.416029 = -0.007047 

hartree = -4.4 kcal·mol-1, coincides with Ben-Naim’s solvation Gibbs free energy 

gsol

s

solG ,,, ∗∗∗ −=∆ µµ = -76.408996 + 76.401950 = -0.007046 hartree. We have 

used the fact, mentioned in section 2.1, that since in G09, ρg = 0.041M, then 

gog G ,, )09( µµ =⊕ . Thus, likewise for entropies and enthalpies, the G09 output 

provides chemical potentials for gas-phase and solution calculations such that, 
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although they are not ϕµ ,∗  (ϕ = g, sol) Ben-Naim’s pseudochemical potentials1 

(i.e. the values in column 10, rows 2 and 4 in Table 2 do not match the G09 

output: column 6, rows 2 and 5), their difference leads to Ben-Naim’s solvation 

Gibbs free energies (i.e. solsol GGG ,, )09( ∗⊕ ∆=∆ ; see Table 3). 

It is very instructive and conceptually clarifying to emphasize that the soloG ,∆

solvation Gibss free energy computed within Fowler-Guggenheim’s formalism 

(transference of a solute from the gas-phase   {g-ideal, P = 1 bar; Vm = 24.5 

L·mol-1} standard state to the solution     {sol-Henry, xs → 1; Vm = 0.018 L·mol-1} 

standard state (see Table 3), i.e. (see Table 2) gosolo

s

solo
G

,,, µµ −=∆ = -76.416267 

+ 76.416029 = -0.000238 hartree = -0.1 kcal·mol-1, differs , in 4.3 kcal·mol-1 from 

the corresponding value in Ben-Naim’s formulation, i.e. (see Table 2) 

gsol

s

sol
G

,,, ∗∗∗ −=∆ µµ = -76.408996 + 76.401950 = -0.007046 hartree = -4.4 

kcal·mol-1. These 4.3 kcal·mol-1, that according to the previous paragraph 

correspond to the difference )(, processGG solo −∆−∆ ρ , must be ascribed to the 

difference in Gibbs free energy between the two following transferences: (a) 

solo
G

,∆ : {g-ideal, P = 1 bar; Vm = 24.5 L·mol-1} → {sol-Henry, xs → 1; Vm = 

0.018 L·mol-1} and (b) )( processG −∆ ρ : {g-ideal, gρ ; Vm} → {sol-Henry, sol

sρ ; 

Vm}, with sol

s

g ρρ = . Indeed, Cabani et al. mention in their compilation9 that the 

above difference (4.3 kcal·mol-1) holds for the particular case where both number 

densities (gas-phase and solution) become 1M in the ρ-process (as stressed above, 

in the case of G09, both number densities are also identical, but this time their 

respective values are 0.041M). 

Before ending, we think it is important to remark that G09 does not compute any 

Ben-Naim’s thermodynamic quantity 
∗

X  (the values in the columns 7-10 in 

Table 2 have been computed by us from data in the G09 output, but they are not 

found explicitly in it). Furthermore, as concluded in this article, G09 provides 

wrong values for the partial molar enthalpies and entropies of a solute in solution. 

It is hoped that the present contribution can be helpful in order to reorganize the 

solvation thermodynamics section of the Gaussian packages of programs as well 

as of any other software where the solvation code may call for corrections. 

Despite the apparent present superiority of Ben-Naim’s formulation over the 
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conventional approach, we do suggest that an optimum output should provide 

detailed information regarding the two formulations considered in this article. 

 

6. Conclusion 

A parallel derivation of conventional (Fowler-Guggenheim) and Ben-Naim’s 

formulations of solvation thermodynamics, emphasizing their differences and 

stressing their interconnections, is presented. Explicit equations for conventional  

(
gsol

s
solo

XXX −=∆ , ) and Ben-Naim’s (
gsol

s
sol

XXX
,,, ∗∗∗ −=∆ ) solvation 

magnitudes, with X being internal energies, enthalpies, entropies, and Gibbs free 

energies, have been obtained. Pivotal equations connecting both formulations 

have also been inferred. 

Both theoretical frameworks were used to compute the solvation thermodynamic 

magnitudes for a standard system: water solute in water solution. Comparison 

with the Gaussian 09 output shows that this software does not estimate properly 

neither the partial molar entropies nor the partial molar enthalpies of a solute in 

solution. 

The present article intends to be of help to researchers who need to apply 

solvation models in order to tackle the study of chemical, biophysical or 

biochemical systems which they may be interested in, as well as to software 

developers who implement the solvation thermodynamic equations in the 

available codes.  
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Appendix 

The first term contribution to the Helmholtz free energy of solution (Fsol) in eq 

(12)6 is 

 

]),,,(,[),,( l

sol

ss

solsol

lll

sol

ss

sol

ll NVNVVTFNVNVTFF =−=                            (A1) 

 

where )(
sol

ll

sol

l VNV =  is the volume available for the Nl solvent molecules 

 

sol

ss

solsol

l VNVV −=                                                                                            (A2) 

 

Let us use in the following V , lV and sV , instead of solV , sol

lV  and 
sol

sV , for the 

sake of simplicity. 

From (A1) and (A2) we get 
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But 

 

0
,,
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∂
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∂
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           (A5) 

On the other hand, for an ideal dilute solution Ns → 0 and Vl → V. Then, 
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where, in order to write the last equality of (A6), we have taken into account that 

NlTlNlTll VFVF ,, )/()/( ∂∂−≈∂∂−  is the pressure at which the pure solvent has the 

volume ssVNV − . As stressed by Fowler and Guggenheim,6 such a pressure will 

be quite close to the pressure P on the actual solute-solvent assembly. 

Consequently, bearing in mind that according to (A2), s
VVsl VNV
s
−=∂∂

,
)/( ,    

(A4) leads to 

 

ss

NlTl

l

NlVTs

l VPV
V

F

N

F
≈−









∂

∂
=









∂

∂
)(

,,,

                                                                (A7) 

 

in agreement with Fowler and Guggenheim [see eq (823,3 in p. 373 of Ref. 6]. 
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Table 1. Thermodynamic functions for a solute in gas-phase, (
g

X ,
g

X
,∗

), in solution, (
sol

sX ,
sol

sX
,∗

), and solvation thermodynamic functions                                  

( solsolo XX ,, , ∗∆∆ ).Contribution 
sol

sls VP+− χ has been assumed to be independent of T (see the text for more details). Molar units are employed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solute in gas-phase  

ggg

ERTEU int0 2
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gggo

ERTTjRTRTST int
3,

2

5
)](·/[log ++Λ−=  

ggg

ETjRTST int

,
)(log +=

∗
 

[ ])(·/log 3
0

,,
TjRTRTEG gggogo

Λ+== µ  )(log0
,,

TjRTEG gggg

−== ∗∗
µ  

Solute in ideal dilute solution  

sol

s

l

pls

sol

s

sol

s ERTRTEU int,
2

,0 2

3
+++−= αχ  

sol

sls

sol

s

sol

s EEU int,,0

,
+−=

∗
χ  

sol

s

l

p

sol

sls

sol

s

sol

s EkTkTVPEH int,
2

,0 2

3
++++−= αχ  

sol

s

sol

sls

sol

s

sol

s EVPEH int,,0

,
++−=

∗
χ  

sol

s

l

pml

sol

ss

solo

s ERTRTVTjRTST int,
2

,
3,

2

3
])·(/[log +++Λ−= α  

sol

s

sol

s

sol

s ETjRTST int,

,
)(log +=

∗
 

])·(/[log ,
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sls
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s

solo VRTRTVPEEG ++−−=∆ χ  
sol

sls

gsol

s

sol VPEEG +−−=∆ ∗⋅ χ0,0
,  

Page 32 of 38RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



33 

 
 
Table 2.a Solute electronic energies (Schrödinger equation) (

oE ) , energy contributions of the internal molecular degrees of freedom ( intE ), molar potential 

energy of the solute in the solution (
lsχ− ), partial molar internal energies (U ), partial molar enthalpies     (H ) and partial molar Gibbs free energies ( µ=G ) 

for water in gas phase (g) and water in solution (sol). All numbers in hartree (T=298.15 K). 
 

g

oE  gEint  g

U  
g

H  
go

TS
,

 gogo

G ,,
µ=  

g

U
,∗

 
g

H
,∗

 
g

ST
,∗

 gg

G ,, ∗∗
= µ  

-76.419737 0.022784 -76.395537 -76.394593 0.021436 -76.416029 -76.396953 -76.396953 0.004997 -76.401950 

ls

sol

soE χ−,
b sol

sEint,  sol

sU  
sol

sH  
solo

sTS
,

 solo

s

solo

sG
,,

µ=  
sol

sU
,∗

 
sol

sH
,∗

 
sol

sST
,∗

 sol

s

sol

sG
,, ∗∗

= µ  

-76.426730 0.022736 -76.402578 -76.402578c    0.013689d -76.416267e -76.403994 -76.403994 0.005002 -76.408996 

   (-76.401634)f   (0.021441)g (-76.423076)h     

 
aThe Gaussian 09 (G09) calculations leading to the output energies collected in this table were obtained by running the G09 route cards: #b3lyp/6-31G(d,p) 
opt(calchffc) freq and #b3lyp/6-31G(d,p) opt(calchffc) scrf=(solvent=water) freq for the gas-phase and solution calculations, respectively. When single values 
appear in the table, they correspond to the magnitude as computed with the formulae in Table 1. Values in parentheses, are the ones in the G09 output that 
differ from the values computed with formulas in Table 1. 
bAssuming 0≈

sol

sVP . 
cComputed from sol

sls

sol

s

sol

s EkTEH int,,0 2

3
++−= χ , as proposed in this work (see eq 22 with 0≈

sol

sVP and 02 ≈l

pRT α ). 

dComputed from sol

sml

sol

ss

solo

s ERTVTjRTST int,,
3,

2

3
]})·(/[log{ ++Λ−= ,with Vl,m = 0.018 L·mol-1, as proposed in this work [see eq (19) with 02 ≈l

pRT α ]. 

eComputed from ]})·(/[log{ ,
3

,0
,

ml

sol

ssls

sol

s

solo

s VTjRTE Λ+−= χµ , with Vl,m = 0.018 L·mol-1, as proposed in this work [see eq (18) with 0≈
sol

sVP ]. 

fComputed from sol

sls

sol

s

sol

s ERTEGH int,,0 2

5
)09( ++−= χ , as proposed in Gaussian 09 package of programs [see eq (62)]. 

gComputed from sol

s

g

m

sol

ss

sol

s

sol

ss

sol

s ERTVTjRTERTTjRTRTGST int,
3

int,
3,

2

5
]})·(/[log{

2

5
)]}(·/[log{)09( ++Λ−=++Λ−=

⊕
, with Vg

m = 24.5 L·mol-1, as proposed in 

Gaussian 09 package of programs [see eq (60)]. 
hComputed from ]})·(/[log{)09()09()09( 3

,0

,, g

m

sol

ssls

sol

s

sol

s

sol

s
sol

s VTjRTEGSTGHG Λ+−=−=
⊕⊕ χµ , with Vg

m = 24.5 L·mol-1, as proposed in Gaussian 09 package 

of programs. 
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Table 3. Solvation thermodynamic functions for water solute in water solution, as computed by means of the conventional (Fowler-Guggenheim) and Ben-
Naim’s formulations together with the corresponding values as estimated from the Gaussian 09 outputs for gas-phase and solution runs. The approximations 

0≈
sol

sVP  and 02 ≈l

pRT α have been adopted in all cases. All numbers in kcal·mol-1. 

 

 solU∆  solH∆  solST∆  solG∆  .)(expsolG∆ d Gas-phase standard statee Solute in solution standard statef 

Fowler-Guggenheima -4.4 -5.0 -4.9 -0.1 -2.05 {g-ideal; Vm = 24.5 L·mol-1} {sol-Henry; Vm = 0.018 L·mol-1} 

Ben-Naimb -4.4 -4.4  0.0 -4.4 -6.32 −g −g 

Gaussian 09c -4.4 -4.4  0.0 -4.4  {g-ideal; Mg 041.0=ρ }h {sol-Henry; Msol

s 041.0=ρ }h 

 
aAs computed from 

gsol

s
solo XXX −=∆ ,  (X = U, H, So, Go), using the values collected in Table 2. 

bAs computed from 
gsol

s
sol XXX

,,, ∗∗∗ −=∆  (X = U, H, S, G), using the values collected in Table 2. 
cAs computed from )09()09(, GXGXX

gsol

s
solo −=∆  (X = U, H, S⊕, G⊕)   with )09(GX

sol

s and )09(GX
g

taken from the Gaussian 09 outputs for the gas-phase 
and solution calculations, respectively. 
dFrom Ref 20. 
eThe adopted gas-phase standard state corresponds to an ideal gas at standard conditions (P = 1 bar, T = 298.15 K), occupying the molar volume Vm. 
fThe adopted standard state for the solute in solution corresponds to an hypothetic ideal solution (fulfilling Henry’s law) at P and T of the solution (we assume 
in this work standard conditions), where: (i) the solute mole fraction tends to unity (xs → 1) or (ii) RT/1bar = 24.5 L·mol-1 substitutes Vl,m in eq (19) (i.e. 
concentration scale is employed to define the standard state, with Msol

s

sol

s 041.0, ==⊕ ρρ ; see eq (21) and the text for details). 
gBen-Naim’s solvation magnitudes, solX ,∗∆ , do not involve the definition of any standard state. The values in the table were computed from data in columns 7-
10 in Table 2. 
hG09 uses the same value of Vϕm [see eq (59)] for the calculations in both phases (24.5 L·mol-1). As discussed in the text, it means using concentration scale 
standard states with identical concentration for gas-phase and solution ( Msol

s

g 041.0===⊕ ρρρ , in molar units). 
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Figure 1. The red point represents an ideally dilute solution fulfilling Henry’s law. The orange: {sol-Henry, 

Msol

s 041.0=ρ ; Vm = 24.5 L·mol-1}, green: {sol-Henry, Msol

s 1=ρ ; Vm = 1 L·mol-1}and blue: {sol-Henry, 

xs → 1; Vm = 0.018 L·mol-1}  points represent fictitious states of the solute in which each solute molecule 

experiences the same intermolecular forces it experiences in the ideally dilute solution, where it is 

surrounded by solvent molecules. They are the hypothetical states arising from an extrapolation of the 

properties of solute in the very dilute solution to the limit of 0.041M, 1M and xsolute = 1 concentrations, 

corresponding to the different standard states mentioned throughout the present work. The orange point 

corresponds to the standard state adopted by the Gaussian 09 software in solvation calculations. 

 

 

 

 

                 Psolute 

                                                                                                            (xsolute→1sol-Henry) 

                             Psolute = Xsolute·KH  (Henry’s law) 

 

                                                                                    (1Msol-Henry) 

                                                                                                                           Solution’s real behavior 

                                                         (0.041Msol-Henry) 

 

 

                       

                     (∞sol-Henry) 

                                       Xsolute = 0              0.041M      1M            Xsolute = 1 

 

               

 

 

Page 35 of 38 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



36 

 

For Table of Contents use only 
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One sentence text highlighting the novelty of the work: 

The relations between conventional and Ben-Naim’s formulations 

of solvation thermodynamics are derived and analyzed in detail. 
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One sentence text 

 

 

 

The relations between conventional and Ben-Naim’s 

formulations of solvation thermodynamics are derived and 

analyzed in detail. 
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