

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Ultra-thin V₂O₅ Nanosheets Based Humidity Sensor

Photodetector and Its Enhanced Field Emission Properties

Mahendra S. Pawar^a, Prashant K. Bankar^b, Mahendra A. More^{b*} and Dattatray J. Late^{a,*}

We report synthesis of V₂O₅ nanosheets by simple hydrothermal method. The as synthesized V₂O₅ nanosheets we characterized by using Raman Spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM) and UV-Vis Spectroscopy. The humidity sensing behaviors were investigated in the range of 11-97% of relative humidity (RH) at room temperature. The maximum sensitivity of 45.3%, response time of ~ 4 min. and recovery time of ~ 5 min. were observed for the V₂O₅ nanosheets based sensor. We also demonstrated the V₂O₅ nanosheets as Ultra-Violet photodetector with sensing response time of ~ 65 s and recovery time of ~ 75 s with maximum photoresponsivity of ~ 6.2% were observed. Further, We have also carried out field emission (FE) investigations of V₂O₅ nanosheets under planer "Diode" assembly in ultrahigh vacuum (UHV) chamber at a base pressure of ~1 x 10⁻⁸ mbar. The turn on field required to draw field emission current density of 1 μ A/cm² and 10 μ A/cm² is found to be 1.15 V/µm and 1.72 V/µm respectively. We achieved maximum field emission current density of 1.532 mA/cm² at an applied electric field ~ 3.2 V/µm. The field and high field region respectively. Our results open up several avenues and key success towards the utilization of V₂O₅ nanosheets and other metal oxide nanosheets for various nanoelectronics device applications including sensors, photodetector and flat panel displays.

Introduction

Since the invention of graphene, atomically thin two dimensional (2D) materials have attracted enormous attention due to their potential applications in next generation nano-electronics and optoelectronics device^{1,2}. The first 2D layered materials isolated were graphene followed by several inorganic layered such as MoS₂, WS₂, MoSe₂, WSe₂, Black Phosphorous⁵⁸ etc. and metal oxides materials such as MoO₃, WO₃, MnO₂ were invented for various applications including humidity sensor³⁻⁸, photodetector⁹⁻²³,

transistor²⁴, gas sensor^{25,26}, solar cell⁴³⁻⁴⁶, supercapacitor⁴⁷⁻⁵⁰, catalyst for water splitting^{51,52}etc. Humidity sensors have been developed to measure and monitor the environmental humidity that plays an important role in the agriculture, food as well as medical industry along with human activities²⁷. The layered V_2O_5 . most stable oxide as compared with other oxides of vanadium. The 2D form of V_2O_5 has high surface to volume ratio and high oxidation state at nanoscale geometry. Recently nanostructure V_2O_5 has bein used in various application including field emission^{29-30, 59-6²},

ARTICLE

supercapacitor³¹⁻³⁴, Li ion battery³⁵, transistor³⁶, Photodetector³⁷ etc. A variety of methods of synthesis of V₂O₅ nanostructures have been reported till date including hydrothermal^{28, 53,54}, electrospinning^{55,56}, polycondensation method⁵⁷. Among them, hydrothermal method is widely used for the synthesis of V₂O₅nanostructures due to low cost, fast reaction time, well controlled morphology and highly pure product. In hydrothermal method, the morphology of the materials can be tuned by the hydrothermal temperatures which can be kept slightly below the melting point of the reactants and also by varying the concentration of solvents used. The nanostructure V₂O₅ possesses direct bandgap of 2.2 eV to 2.7 eV in the visible light region which inspires to investigate the optoelectronic properties such as photodetection³⁷, optical waveguide³⁹ and high speed photoelectric switchs³⁸.

In this paper, we report V_2O_5 nanosheets based humidity sensor with superior performance with fast response and recovery time along with the high sensitivity. We also demonstrated the photodetector based on V_2O_5 nanosheet with fast response time ~65 sec and recovery time of ~75 sec to UV light. We have also done the field emission measurement for V_2O_5 nanosheets. We achieved turn on field to be 1.15 V/µm and maximum current density of ~1.532 mA/cm² at an applied field of 3.2 V/µm with high field enhancement factor of ~8580 shows applications in flat panel displays, electron emitter etc.

Experimental

Materials

Commercially available Vanadium (V) Oxide (Sigma-Aldrich, 99.99%) and Dodecylamine (Sigma-Aldrich, \geq 99%) were used for the synthesis of V₂O₅ nanosheets. The required salts for humidity sensing were purchased from the Thomas Baker chemicals Pvt. Ltd. Mumbai (India).

Synthesis Method

The V_2O_5 nanosheets were synthesized using simple hydrothermal method for that V_2O_5 (15 mM) and Dodecylamine (7.5 mM) were mixed with 5 ml of ethanol stirred for 2hr. To this mixture 15 ml of DI water was added and stirring was continued for further 48 hrs, then the mixture was transferred into the 50 ml Teflon lined stainless steel autoclave and placed in muffle furnace at 180°C for 7 days. T obtained black precipitate was finally washed with ethanol 1 several times followed by centrifugation and the precipitate was th dried in a vacuum furnace at 80°C for 12 hrs.

Material Characterizations

The samples were characterized by using Raman Spectroscopy with Horiba JY Lab HR 800 instrument using Ar laser with wavelength of 632.5nm operated in the back scattering geometry with synapse CCD detector. The surface morphology were investigated by using FESEM with HITACHI S-4800 instrument and the TEM images were captured using FEI TECNAI G2-20 (TWIN, The Netherlands) instrument operating at 200 KV. A UV-Vis spectrum was recorded using Shimadzu (UV-3600) Plus UV-Vis-NIR Spectrophotometer in the wavelength range 200-1300 nm.

Sensor Device Fabrication

The humidity sensor as well as photodetector devices were fabricated on an ITO (Tin doped Indium Oxide) substrate by making scratch at the centre on the conducting surface with the help of glass cutter with separation between source and drain was ~ 1 0 μ m. The contacts were then made using silver paint. For device preparation the as synthesized V₂O₅ nanosheets powder were

ARTICLE

dispersed into the ethanol and then ultrasonicated for 10 min, and subsequently drop casted between the source and drain. The devices were subsequently annealed in vacuum furnace at 200° C to

improve the contact resistance.

Humidity Sensing

Journal Name

All the electrical measurements were carried out using Keithley 2612A system source meter which was attached to a computer through GPIB 488A interface. The response of the device as a function of RH was performed by introducing the device inside the closed RH levels. The relative humidity levels were obtained by keeping the saturated salts of LiCl, MgCl₂, K₂CO₃, NaBr, KI, NaCl, KCl and K₂SO₄ in a closed vessel.

Photodetector

To investigate the photo detection property we used HAMAMATSU (Model name: L9566-01A-02) UV light source. All the measurements were carried out at room temperature and in identical conditions.

Field Emission

All the field emission (FE) measurements were carried out at room temperature in the planer "Diode" assembly in an all metal ultrahigh vacuum (UHV) chamber at a base pressure of ~1 x 10^{-8} mbar. A typical 'diode' configuration consists of a phosphor coated semitransparent screen as an anode. In order to investigate the FE properties, V₂O₅ nanosheets were sprinkled onto a piece of carbon tape (0.3 cm × 0.3 cm). Such V₂O₅ sprinkled carbon tape was pasted onto a copper rod holder (diameter ~ 50 mm), which acted as a cathode. The FE measurements were carried out at fixed cathode– anode separation of ~ 2 mm. The emission current density - applied field and current – time measurements were carried out using Keithley (6514) electrometer by sweeping DC voltage applied to cathode with a step of 40V (0 - 40 KV, Spellman, U.S.). The field emission current stability was recorded at preset current value of 1 μ A using computer controlled data acquisition system.

Results and Discussion

Characterization analysis

Figure 1 (a) shows the typical side view of the single-layer V_2O_5 nanosheet and figure 1(b) shows the top view. In figure 1(c) $\sqrt{}$ show the typical experimental set-up used for the UV photo detection. The Raman Spectrum for V₂O₅ nanosheets as well as for the bulk V₂O₅material were shown in Figure 2.The observed Raman spectra for V₂O₅ nanosheets matches well with that reported previously in the literature^{28,41-42}. The Raman shift corresponds to different modes of vibrations are 143, 194, 286, 408, 525, 693 and 993 cm⁻¹.The Raman spectra are found to be slightly down shifted for V₂O₅ nanosheets as compared to the V₂O₅bulk material due to decrease in interlayer bonding. The Raman mode 993 and 693 cn corresponds to the stretching modes of V=O terminal oxygen and V₂-O i.e. doubly coordinated oxygen bonds respectively which is triply coordinated oxygen bonds. The Raman mode observed at 525 cm^{-1} corresponds to the stretching mode of V₃-O i.e. triply coordinated oxygen bonds. The bending vibration of the V=O bonds arises for the 408 and 286 cm⁻¹ modes. The Raman mode frequency 143 and 194 cm⁻¹ corresponds to the external VO₅ – VO₅ modes. Figure 3(a-d) shows the typical FESEM images of the as synthesized V₂O₅ nanosheets which indicates that the high yield of nanosheet. synthesized by using hydrothermal method. Typical FESEM images show V_2O_5 nanosheets with lateral dimensions in few tens of micrometers. Figure 4(a-d) shows the TEM images of V2 nanosheets and figure 4(e) shows the HRTEM image taken from t e

ARTICLE

Journal Name

 V_2O_5 nanosheet which depicts the interplanar distance between the two plane is ~ 0.35 nm, which corresponds to (202) plane of the V_2O_5 . Figure 4(f) shows the corresponding selected area electron diffraction pattern which shows crystalline nature of the V_2O_5 nanosheets.

Optical Properties

To investigate the optical properties of the V₂O₅ nanosheets, we recorded the UV-Vis Spectrum as shown in figure 5. The spectrum represents the major absorption bands for V₂O₅ nanosheets ~ 410 nm. Our UV-Vis spectrum matches well with the reported spectrum of V₂O₅ nanosheets in the literature⁶⁴.

Humidity Sensor

The V₂O₅ nanosheets synthesized by using hydrothermal method were used to further investigate the humidity sensing performance. The humidity sensing properties were investigated by fabricating the two probe device and then introducing to different relative humidity (RH) conditions, which were attained by using saturated salt solutions. It is noted that all the humidity measurements were carried out at room temperature. Figure 6(a) shows the current voltage (I-V) characteristics of V_2O_5 sensor device in different RH levels. It is clear from the (I-V) that the current decreases with the increase in relative humidity value. Figure 6(b) shows the resistance Vs relative humidity plot for the V_2O_5 nanosheets based sensor device. The obtained (I-V) curve represents that the resistance increases with the increasing relative humidity (RH) levels. The sensitivity as a function of relative humidity plot was also shown in figure 6(c). The sensitivity of the device depends on the number of H_2O molecules adsorbed on the V_2O_5 nanosheets. We observed the positive sensitivity for the presented V_2O_5 nanosheets based sensor

with increased RH levels. The sensitivity for V₂O₅ nanosheets sensor is defined as $S = \frac{R_H}{R_A} - 1$, where R_H and R_A is the resistances of the device to the humidity and in air respectively. The positi e sensitivity implies that the H₂O molecules present in the saturated salts acts as an electron acceptor which results in the p-type doping. The water molecules present in the saturated salts adsorbed on the surface of V₂O₅ nanosheets which shifts the Fermi level closer to the valence band edge. The maximum sensitivity for the presented V_2O_5 nanosheets sensor device was calculated to be 45.3%. The response and recovery time for the V2O5 nanosheets based senso device were shown in figure 6(d). The cycles of 11.3% and 97.3% RH were used to record the response and recovery time. The current time (I-t) measurements were carried out for several cycles to check the reproducibility in the response and recovery time. The response and recovery time for the V₂O₅ nanosheets sensor were found to be 4 min. and 5 min. respectively. The long recovery time may be due to slow desorption process of H₂O molecules from the V₂O₅ nanosheets and the faster response is due to hydrophilic surface of the V₂O₅ nanosheets results into immediate adsorption of H₂O molecules on the surface of nanosheets⁶⁵. Another reason is due to the thickness of V₂O₅ nanosheets layer, thicker the sheet recovery will be more because desorption of H₂O molecules is difficult in the thick sheets so recovery time will be less in case of thin sheets. The response of the sensors device is based on strong adsorption desorption of analyte molecules at room temperature along with traps or impurities at V₂O₅ and underlying substrate interface. The slow response is related to the activation energy of binding gas molecules to the V₂O₅ nanosheets. The response can be faster with light irradiation, manifested by the slope change during response The response rate can be improved by applying light irradiation, increasing operating temperature. The traps at V2O5/ substrate

Journal Name

interface are also possibly responsible for the slow recovery. However, we suspect that if this is the dominate factor, we should see recovery / response much slower in thick layer sample as compared with thin layer sample, since our device requires longer time for the gas molecules to diffuse into interface.

UV Photodetector

The V₂O₅ nanosheets synthesized by using hydrothermal method were also used for UV light photo detection. Figure 7(a) shows the (I-V) characteristics of the V_2O_5 nanosheets sensor device with power density of UV light used upto 200 mW/cm². We observed that the current increases with the increasing power density of UV light. Photocurrent as a function of power density plot was shown in Figure 7(b) which indicates that the Photocurrent increases with the increasing power density. Photocurrent is the difference in the current recorded in the light illumination condition and the current recorded in the dark condition. Figure 7(c) shows the photoresponsivity Vs power density plot. The photoresponsivity is defined as the ratio of photocurrent to power density. We observed that the photoresponsivity increases with the increasing power density. We observed the maximum photoresponsivity of ~ 6.2 μ Acm²/W for 200 mW/cm² power density. The photocurrent response of the V₂O₅ nanosheets photodetector is shown in Figure 7(d), which is measured under the 365 nm light illumination with on and off cycles at applied bias voltage of 1V. The Response and recovery time with the V₂O₅ nanosheets based sensor is found to be ~ 65 sec and ~ 75 sec respectively.

Field Emission

As synthesized V_2O_5 nanosheets were further used to investigate the field emission properties. Figure 8(a) depicts the field emission

current density versus an applied electric field (J-E) characteristics of V₂O₅ nanosheets. It is noted that the current density exponentially increases with an elevated applied electric field, indicating that the emission is as per the Fowler-Nordheim (F-N) theory⁶³. It demonstrate a turn-on and threshold field defined as, field require to draw an emission current density of $\sim 1 \,\mu\text{A/cm}^2$ and \sim 10 μ A/cm², respectively is found to be 1.15 and 1.72 V/ μ m Interestingly, an emission current density of 1.532 mA/cm² is achieved at an applied field of 3.2 V/µm. The results suggest that the observed value of turn-on and threshold field is much lower than the earlier reported values for different V₂O₅ nanostructures. The comparison of FE properties between the as-synthesized product and various V₂O₅ nanostructures is shown in table 1. As noticed from the SEM image, most of the V₂O₅ nanosheets are randomly oriented, it could be expected that some of them will protrude outside the substrate surface, which act as potential emitting sites. The dependence of field electron emission current density over applied field (J-E) is further characterized by modified Fowler-Nordheim (F-N) theory⁶³ using the following equation,

Where, J is the emission current density, E is the applied average electric field, a and b are constants, typically 1.54×10^{-6} A eV V⁻² and 6.83 eV^{-3/2} Vnm⁻¹, respectively, ϕ is the work function of the emitter material, λ_{M} be the macroscopic pre-exponential correction factor, vF is value of the principal Schottky–Nordheim barrier function (a correction factor), and β is the field enhancement factor. In the present investigations, the applied electric field (E) is defined as E=V/d, where V is the applied voltage, and d is the separation between anode and cathode (~ 2 mm). Furthermore, the emission current density (J) is estimated as J = I/A, where, I is the separation between anode and cathode (~ 2 mm).

ARTICLE

emission current and A is the total area of the emitter. The J-E characteristic is further analyzed by plotting a graph of ln (J/E^2) versus (1/E), known as a Fowler-Nordheim (F-N) plot. The corresponding F-N plot is shown in Figure 8(b). In the present study, the F-N plot is found to be nonlinear and such F-N plots have been reported for many semiconducting nanomaterials. The nonlinearity in the F-N plot can be resolved into two linear sections with distinct slopes in the high-field and low-field regions (See Fig.8(b)). The field enhancement factors (β) are calculated from the slope of the low-field and the high-field regions of the F-N plot, using the following equation (2),

The field enhancement factor for low field and high field regions are found to be 8580 and 3538 respectively. These calculated values of may be overestimates due to the limitation of the F-N equation. For the application purpose in field emission based devices, emission current stability deceives an important parameter. The emission current and time (I-t) plot recorded at a base pressure of ~1 X 10⁻⁸ mbar is shown in Figure 8(c). The average emission current is seen to remain stable at pre-set value of $\sim 1 \mu A$ over three and half hour. The emission current is seen to be stable over the duration of measurement and characterized by fluctuation in the form of "spike". The appearance of the "spikes" in the emission current is attributed to the adsorption, desorption, and migration of the residual gas molecules on the emitter surface. The striking feature of the observed field emission behavior is that the average emission current remains nearly constant over the entire duration and shows no signs of degradation. This is very important feature particularly from the practical application of the emitter material as an electron source. Typical FE image, captured at emission current of

these spots are observed to be commensurate with the emission

current fluctuation, depicted in the I-t plot.

Conclusion

In conclusion, we report the simple synthesis of V₂O₅ nanosheets by one step hydrothermal method. The as synthesized V2O2 nanosheets were characterized using Raman Spectroscopy, FESE™ TEM and UV-Vis Spectroscopy. The humidity sensing performances were carried out over a range of 11-97% relative humidity at room temperature. The maximum sensitivity of ~ 45.3% and response time of ~ 4 min. and recovery time ~ 5 min. were observed for the V₂O₅ nanosheets sensor. Further, the as synthesized V₂O₅ nanosheets also shows good performance towards UV photodetector with response time of ~ 65 sec and recovery time of ~75 sec with maximum photoresponsivity of ~ 6.2 %. The field emission properties were studied in planer "Diode" assembly at base pressure of ~ 1×10^{-8} mbar. The turn on field required to draw an emission current density of 1 μ A/cm² and 10 μ A/cm² is found tc be 1.15 and 1.72 V/µm respectively which is very less as compared to previous reports for different V₂O₅ nanostructures. We achieved emission current density of 1.532 mA/cm² at an applied field of 3.2 V/µm and also high field enhancement factor 8580 and 3538 for low field and high field region. Our results open up several avenues and key success towards the utilization of other oxide nanosheet materials with layered structure for various energy harvesting, optoelectronics and nanoelectronics device applications includi g sensors, photodetector, flat panel displays, electron source ar transistor.

Acknowledgements

Dr. D. J. Late would like to thank Prof. C. N. R. Rao (FRS), JNCASR and ICMS Bangalore (India) for encouragement, support and the experimental facilities. The research work was supported by Department of Science and Technology (Government of India) under Ramanujan Fellowship to Dr. D. J. Late (Grant No. SR/S2/RJN-130/2012), NCL-MLP project grant 028626, DST-SERB Fast-track Young scientist project Grant No. SB/FT/CS-116/2013, Broad of Research in Nuclear Sciences (BRNS) Grant No. 34/14/20/2015 (Government of India) and the partial support by INUP IITB project sponsored by DeitY, MCIT, Government of India.

Notes and References

- Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, *Nat. Nanotechnol.*, 2012, **7**, 699–712.
- [2] (a) M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant and A. Castellanos-Gomez, *Chem. Soc. Rev.*, 2015, 44, 3691–3718. (b) D. J. Late, Advanced Device Materials 2015, 1, 52-58.
- Z. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A.
 G. MacDiarmid and Y. Wei, *J. Am. Chem. Soc.*, 2008, **130**, 5036–5037.
- [4] H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones and
 M. S. Dresselhaus, *Sci. Rep.*, 2013, **3**, 2714-2720.
- [5] J. Chu, X. Peng, P. Feng, Y. Sheng and J. Zhang, Sensors Actuators, B Chem., 2013, **178**, 508–513.
- [6] M. V. Kulkarni, S. K. Apte, S. D. Naik, J. D. Ambekar and B.
 B. Kale, *Sensors Actuators, B Chem.*, 2013, **178**, 140–143.

- [7] P. G. Su and Z.-M. Lu, Sensors Actuators B Chem., 2015, 211, 157–163.
- [8] Q. Y. Tang, Y. C. Chan and K. Zhang, Sensors Actuators, B Chem., 2011, 152, 99–106.
- [9] F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia and Avouris, Nat. Nanotechnol., 2009, 4, 839–843.
- [10] S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee,
 H. Kim, E. Hwang, S. Lee and J. H. Cho, ACS Nano, 2014,8,
 8285–8291.
- [11] Y. Chang, O. W. Zhang, O. Y. Zhu, Y. Han, J. Pu, J. Chang and W. Hsu, ACS Nano, 2014,8, 8582–8590.
- [12] N. Huo, S. Yang, Z. Wei, S.-S. Li, J.-B. Xia and J. Li, Sci. Rep., 2014, 4, 5209-5217.
- (a) D. J. Late, P. A. Shaikh, R. Khare, R. V. Kashid, M [13] Chaudhary, M. A. More and S. B. Ogale, ACSAppl. Mater. Interfaces, 2014, 6, 15881-15888. (b) D. J. Late, B. Liu, H. S. S. R. Matte, V. P. Dravid, C. N. R. Rao, ACS Nano 2012, 6, 5635-5641 (c) D. J. Late, B. Liu, H. S. S. Matte, C. N. R. Rao, V.P. Dravid, Adv. Funct. Mater. 2012, 22, 1894-1905. (d) M Thripuranthaka, D. J. Late, ACS Applied Materials Interfaces 2014, 6, 1158-1163; (e) D. J. Late, S. N. Shirodkar, U. V. Waghmare, V. P. Dravid, C. N. R. Rao, ChemPhysChem 2014, 15, 1592–1598; (f) M Thripuranthaka, R.V. Kashid, C. S. Rout, D.J. Late, Appl. Phys. Lett. 2014, 104, 081911. (g) D. Chakravarty, D. J. Late, European Journal of Inorganic Chemistry 2015 (11) 1973-1980.
- [14] S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R.
 Vajtai and P. M. Ajayan, *Nano Lett.*, 2013, **13**, 2777–2781
- S. Lei, A. Sobhani, F. Wen, A. George, Q. Wang, Y. Huang
 P. Dong, B. Li, S. Najmaei, J. Bellah, G. Gupta, A. D

Mohite, L. Ge, J. Lou, N. J. Halas, R. Vajtai and P. Ajayan, Adv. Mater., 2014, **26**, 7666–7672.

[16] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic andA. Kis, *Nat. Nanotechnol.*, 2013, 8, 497–501.

ARTICLE

- [17] J. Wang, M. S. Gudiksen, X. Duan, Y. Cui and C. M. Lieber, *Science*, 2001, **293**, 1455–1457.
- J. Xia, X. Huang, L.-Z. Liu, M. Wang, L. Wang, B. Huang, D. D. Zhu, J.-J. Li, C.-Z. Gu and X.-M. Meng, *Nanoscale*, 2014,
 6, 8949–8955.
- [19] C. Zhang, S. Wang, L. Yang, Y. Liu, T. Xu, Z. Ning, A. Zak, Z.
 Zhang, R. Tenne and Q. Chen, *Appl. Phys. Lett.*, 2012, **100**, 243101-243105.
- [20] K. Liu, M. Sakurai and M. Aono, Sensors, 2010, 10, 8604– 8634.
- [21] L. Hu, J. Yan, M. Liao, L. Wu and X. Fang, Small, 2011, 7, 1012–1017.
- [22] D.-Y. Guo, C.-X. Shan, S.-N. Qu and D.-Z. Shen, *Sci. Rep.*, 2014, 4, 7469-7474.
- [23] K. Deng, H. Lu, Z. Shi, Q. Liu and L. Li, ACS Appl. Mater. Interfaces, 2013, 5, 7845–7851.
- [24] D. J. Late, B. Liu, J. Luo, A. Yan, H. S. S. R. Matte, M. Grayson, C. N. R. Rao and V. P. Dravid, *Adv. Mater.*, 2012, 24, 3549–3554.
- [25] V. Galstyan, E. Comini, G. Faglia and G. Sberveglieri, Sensors (Basel)., 2013, 13, 14813–38.
- [26] (a) D. J. Late, Y. K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid and C. N. R. Rao, *ACS Nano*, 2013, **7**, 4879–4891.
 (b) DJ Late, T Doneux, M Bougouma, App. Phys. Lett. 2014, **105**, 233103. (c) P. K. Kannan, D. J. Late, H. Morgan, C. S. Rout, Nanoscale 2015, **7**, 13293-13312 (d) D. J. Late,

C. S. Rout, D. Chakravarty, S. Ratha, Canadian Chemical Transactions 2015, 3, 118-157.

- [27] G. Li, S. Pang, L. Jiang, Z. Guo and Z. Zhang, J. Phys. Chem.
 B, 2006, **110**, 9383–9386.
- M. Niederberger, H. J. Muhr, F. Krumeich, F. Bieri, D.
 Günther and R. Nesper, *Chem. Mater.*, 2000, **12**, 1995–2000.
- [29] M. C. Wu and C. S. Lee, J. Solid State Chem., 2009, 182, 2285–2289.
- [30] W. Chen, C. Zhou, L. Mai, Y. Liu, Y. Qi and Y. Dai, J. Phys. Chem. C. 2008,112, 2262–2265.
- [31] L. Cao, J. Zhu, Y. Li, P. Xiao, Y. Zhang, S. Zhang and S. Yang,
 J. Mater. Chem. A, 2014, 2, 13136-13142.
- [32] D. Kim, J. Yun, G. Lee and J. S. Ha, Nanoscale, 2014, 6
 12034–12041.
- [33] S. Myung, M. Lee, G. T. Kim, J. S. Ha and S. Hong, Adv. Mater., 2005, 17, 2361–2364.
- [34] Y. Wang and G. Cao, Chem. Mater., 2006, 18, 2787–2804
- [35] L. Mai, F. Dong, X. Xu, Y. Luo, Q. An, Y. Zhao, J. Pan and J.
 Yang, *Nano lett.*, 2013, 13, 740-745.
- [36] G. T. Kim, J. Muster, V. Krstic, J. G. Park, Y. W. Park, S.
 Roth and M. Burghard, *Appl. Phys. Lett.*, 2000, **76**, 1875-1877.
- [37] R. S. Chen, W.-C. Wang, C.-H. Chan, H.-P. Hsu, L.-C. Tien and Y.-J. Chen, *Nanoscale Res. Lett.*, 2013, 8, 443-450.
- [38] J. Lu, M. Hu, Y. Tian, C. Guo, C. Wang, S. Guo and Q. Li Opt. Express, 2012, 20, 6974-6979.
- [39] B. Yan, L. Liao, Y. You, X. Xu, Z. Zheng, Z. Shen, J. Ma, L
 Jong and T. Yu, *Adv. Mater.*, 2009, **21**, 2436–2440.

Journal Name

- [40] M. R. Parida, C. Vijayan, C. S. Rout, C. S. S. Sandeep, R.
 Philip and P. C. Deshmukh, J. Phys. Chem. C, 2011,115, 112–117.
- [41] E. Das, H. Eckert, H. Hu, I. E. Wachs, J. F. Walzer and F. J.
 Feher, *J. Phys. Chem.*, 1993, **97**, 8240–8243.
- [42] R. Baddour-Hadjean, J. P. Pereira-Ramos, C. Navone and
 M. Smirnov, *Chem. Mater.*, 2008, **20**, 1916–1923.
- [43] X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler,
 B. R. Appleton and A. F. Hebard, *Nano Lett.*, 2012, 12, 2745–2750.
- [44] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J.
 Salbeck, H. Spreitzer and M. Grätzel, *Nature*, 1998, **395**, 583–585.
- [45] J. Hu and R. G. Gordon, Sol. Cells, 1991, **30**, 437–450.
- [46] S.-Y. Tai, C.-J. Liu, S.-W. Chou, F. S.-S. Chien, J.-Y. Lin and T.-W. Lin, J. Mater. Chem., 2012,22, 24753–24759.
- [47] S. Chen, J. Zhu, X. Wu, Q. Han and X. Wang, ACS Nano, 2010, 4, 2822–2830.
- [48] L. Cao, S. Yang, W. Gao, Z. Liu, Y. Gong, L. Ma, G. Shi, S.
 Lei, Y. Zhang, S. Zhang, R. Vajtai and P. M. Ajayan, *Small*, 2013, 9, 2905–2910.
- [49] S. Yoon, E. Kang, J. K. Kim, C. W. Lee and J. Lee, *Chem. Commun. (Camb).*, 2011, 47, 1021–1023.
- [50] C. Liu, Z. Yu, D. Neff, A. Zhamu and B. Z. Jang, *Nano Lett.*, 2010, **10**, 4863–4868.
- [51] K. Maeda and K. Domen, *Chem. Mater.*, 2010, **22**, 612–623.
- [52] Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K.
 Sunkara and T. F. Jaramillo, *Nano Lett.*, 2011, **11**, 4168–4175.
- [53] J. Livage, *Materials (Basel).*, 2010, **3**, 4175–4195.

- [54] J. Liu, X. Wang, Q. Peng and Y. Li, Adv. Mater., 2005, 17, 764–767.
- [55] D. Yu, C. Chen, S. Xie, Y. Liu, K. Park, X. Zhou, Q. Zhang, J Li and G. Cao, *Energy Environ. Sci.*, 2011, **4**, 858-861.
- [56] L. Mai, L. Xu, C. Han, X. Xu, Y. Luo, S. Zhao and Y. Zhao, Nano Lett., 2010, 10, 4750–4755.
- [57] H. Y. Yu, B. H. Kang, U. H. Pi, C. W. Park, S. Y. Choi and G.
 T. Kim, *Appl. Phys. Lett.*, 2005, **86**, 253102–253104.
- [58] D. J. Late, ACS Appl. Mater. Interfaces, 2015, 7, 5857-5862.
- [59] (a) C. S. Rout, P. D. Joshi, R. V. Kashid, D. S. Joag, M. A.
 More, A. J. Simbeck, M. Washington, S. K. Nayak, D. J.
 Late, Sci. Rep. 2013, 3, 3282. (b) R.V. Kashid, D.J. Late, S.S.
 Chou, Y.K. Huang, M. De, D.S. Joag, M.A. More, V. P.
 Dravid, Small 2013, 9, 2730–2734 (c) S. R. Suryawanshi, P.
 S. Kolhe, C. S. Rout, D. J. Late and M. A. More, Ultramicroscopy, 2015, 149, 51–57.
- [60] K. Dewangan, N. N. Sinha, P. G. Chavan, P. K. Sharma, A. C.
 Pandey, M. A. More, D. S. Joag, N. Munichandraiah and N.
 S. Gajbhiye, *Nanoscale*, 2012, 4, 645-651.
- [61] T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li, H. Zhou, Y.
 Koide, Y. Bando and D. Golberg, *Adv. Mater.*, 2010, 22, 2547–2552.
- [62] C. Zhou, L. Mai, Y. Liu, Y. Qi, Y. Dai and W. Chen, J. Phys. Chem. C, 2007, 111, 8202–8205.
- [63] R. G. Forbes, Elev. Int. Vac. Microelectron. Conf. IVMC' (Cat. No.98TH8382), 1998, 534.
- [64] M. B. Shreedhara, K. Vasu, C. N. R. Rao, Zeitschrift für anorganische und allgemeine Chemie, 2014, **640**, 2737.
- [65] Z. Zhang, C. Hu, Y. Xiong, R. Yang and Z. L. Wang Nanotechnology, 2007, 18, 465504-465508.

Figure 1:

Figure 1: schematics for V_2O_5 nanosheets (a) Side view, (b) Top view and (c) Photo detection experimental set up.

Figure 2:

ARTICLE

Figure 2: Raman spectrum for as obtained V₂O₅ nanosheets and V₂O₅ bulk powder.

Figure 3

Figure 3: (a-d) FESEM images of as synthesized V₂O₅ nanosheets by using hydrothermal method.

ARTICLE

Figure 4:

Figure 4: Typical low magnification TEM images (a) 200 nm, (b) 100 nm, (c) 50 nm, (d) 20 nm and high resolution TEM (HRTEM) image (e) 5 nm. Figure 4(f) shows the corresponding selected area electron diffraction pattern showing crystalline nature of as synthesized V₂O₅ nanosheets.

Figure 5

Figure 5: UV-Vis spectra of V₂O₅ nanosheets.

Figure 6:

Figure 6: (a) Current-Voltage (I-V) characteristics, (b) Resistance Vs Relative Humidity, (c) Sensitivity Vs Relative Humidity and (d) Current Vs time for as obtained V_2O_5 nanosheets based sensor device.

Figure 7:

Figure 7: (a) Current-Voltage (I-V) characteristics, (b) Photocurrent Vs Power Density, (c) Photocresponsivity Vs Power Density and (d) Current Vs time under the illumination of light from 0 mW/cm² to 200 mW/cm².

Figure 8:

Figure 8: Field emission properties of V_2O_5 nanosheets, (a) Emission current Density Vs applied electric field (J-E plot), (b) Fowler-Nordheim plot showing nonlinear behavior indicating field electron emission from semiconducting material, (c) Field emission long term current stability (I-t plot), (d) Field emissic pattern recorded at current density of 50 μ A/cm².

ARTICLE

Table 1

Sr. No.	Morphology	Turn-on Field	Max. Current density at applied	References
		(at 10µA/cm²)	field	
1	Nanofiber-Bundles	~ 1.84 V/μm	213 μA/cm ² at 3.3 V/μm	60
2	Centimeter long nanowires	~ 2.82 V/μm	14 mA/cm ² at 4.42 V/μm	61
3	Vertically aligned nanowires	~ 8.30 V/µm	1.8 mA/cm ² at 18 V/μm	29
4	Nanotubes array	~ 6.35 V/μm	2.1 mA/cm ² at 9.20 V/μm	62
5	Nanorod array	~ 6.3 V/μm	2.31 mA/cm ² at 10 V/μm	30
6	Nanosheets	~ 1.72 V/μm	1.53 mA/cm ² at 3.2 V/μm	Present

Table 1: Comparison of field emission properties of various nanomaterials.