RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Direct Access to Pyrimidines through Organocatalytic Inverse-Electron-Demand Diels-Alder Reaction of Ketones with 1,3,5-Triazine

Gongming Yang, Qianfa Jia, Lei Chen, Zhiyun Du, and Jian Wang Ab

Received (in XXX, XXX) 1st January 200X, Accepted 1st January 200X First published on the web 1st January 200X

DOI: 10.1039/b000000x

5 An organocatalytic inverse-electron-demand Diels-Alder reaction of ketones with 1,3,5-triazine through enamine catalysis has been developed. This method could furnish 4,5-disubstituted pyrimidines in good yields and high levels of regioselectivities.

Pyrimidines are ubiquitous heterocyclic moieties present in natural products, drugs and functional materials. A number of pyrimidines exhibit biologically important activities. As shown in Figure 1, sulfadiazine is a sulfonamide antibiotic that contains a 5-aminopyrimidine. Trimethoprim is a bacteriostatic antibiotic known as dihydrofolate reductase inhibitor, mainly used in the prevention and treatment of urinary tract infections. Bosentan is a drug for treating cardiovascular pathology.

Although a number of approaches for the preparation of pyrimidine frameworks have been developed, 6-7 a general and highly selective method for the synthesis of 4,5-disubstituted 20 pyrimidine skeleton has rarely been investigated. One of the most efficient strategies for making such a structure is mainly focused on the basis of N-C-N condensations. For examples, condensation of an amidine with a 1,3-diketone or derivative is one of major methods for the direct preparation of the six-25 membered-ring pyrimidine (Scheme 1a).8 Notably, easily preparation of the prerequisite diketones or dicarbonyl derivatives makes this a more attractive strategy for synthesis of substituted pyrimidines. Condensation of an amidine with a nitrile derivative, a common N-C source, is another versatile approach. Despite 30 these advances, due to the significance of pyrimidines in drug discovery, preparations of diversely substituted pyrimidines are still in high demand. Therefore, developing new efficient method for the constructuion of various substituted pyrimidines would be of high interest.

Traditional Method

$$\begin{array}{c} R^1 \\ R^2 \\ O \\ \end{array} + \begin{array}{c} NH \\ H_2N \\ \end{array} \\ \begin{array}{c} NH \\ R^3 \\ \end{array} \\ \begin{array}{c} Condensation \\ R^1 \\ \end{array} \\ \begin{array}{c} R^2 \\ N \\ R^3 \\ \end{array} \\ \begin{array}{c} 2,4,6\text{-trisubstituted} \\ pyrimidine \\ \end{array} \\ \begin{array}{c} R^3 \\ \end{array} \\ \begin{array}{c} R^3 \\ \end{array} \\ \begin{array}{c} R^3 \\ R^1 \\ \end{array} \\ \begin{array}{c} N \\ R^2 \\ \end{array} \\ \begin{array}{c} N \\ R^1 \\ \end{array} \\ \begin{array}{c} N \\ R^2 \\ \end{array} \\ \begin{array}{c} N \\ R^1 \\ \end{array} \\ \begin{array}{c} N \\ R^2 \\ \end{array} \\ \begin{array}{c} N \\ R^1 \\ \end{array} \\ \begin{array}{c} N \\ R^2 \\ \end{array} \\ \begin{array}{c} N \\ R^1 \\ \end{array} \\ \begin{array}{c} N \\ R^2 \\ \end{array} \\ \begin{array}{c} N \\ R^2 \\ \end{array} \\ \begin{array}{c} N \\ R^2 \\ \end{array} \\ \begin{array}{c} N \\ R^3 \\ \end{array} \\$$

Scheme 1. Strategies in preparation of pyrimidines.

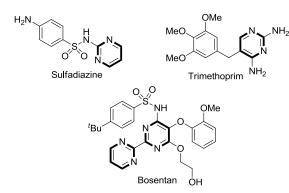


Fig 1: Examples of important pyrimidines.

In 1975, Neunhoeffer and Bachmann demonstrated that 1,3,5triazine could undergo a rapidly regiospecific cycloaddition
reaction with ynamines, followed with a subsequent loss of
hydrogen cyanide, to efficiently form pyrimidines. In 1982, the
Boger group reported a regiospecific pyrimidine synthesis via a
thermal cycloaddition of 1,3,5-triazine with enamines. In
Surprisingly, to the best of our knowledge, such a catalytic
example of 1,3,5-triazine reacted with in situ generated enamines
to assemble pyrimidines has not yet been reported. As a part of
our continuing interests in this area, 2 especially in expanding
enamine chemistry to generate heterocycles, herein, we report
our new progress regarding an enamine-catalyzed inverseelectron-demand Diels-Alder of ketones with 1,3,5-triazine,
which provided an efficient and complementary route for
pyrimidine synthesis (Scheme 1b).

Initial experiments were conducted by using cyclohexanone 1a 55 and 1,3,5-triazine 2 in the presence of 10 mol% loading of amine catalysts, such as secondary amines (I-VII) and tertiary amines (VIII and IX). Among the catalysts tested (Table 1), we found that secondary amines are generally more effective than tertiary amines (Table 1-9). Tertiary amines exhibited low catalytic 60 activities (entries 8 and 9, <5% and 18%, respectively). Pleasingly, secondary amine prolinamide I showed higher reactivity than other catalysts (entry 1, 81%). Surprisingly, the similar derivative proline VI only provided a moderate chemical yield (entry 6, 28%). Finally, prolinamide I was cidentified as the 65 most effective catalyst. Further optimization of other reaction parameters revealed that solvent was another crucial factor. When reaction carried out in DMSO, reactivity was positively influenced, leading to the desired product 3a in 81% yield. Other solvents, such as toluene, MeCN, CHCl₃, THF, MeOH, DMA, 70 and DMF, caused a significant decreas in chemical yields (Table

1, 18-65%, entries 10-16). Lowering the reaction temperature to 60 °C resulted in a poor chemical yield (entry 17, 41%, 32 h). Changing the catalyst loading of **I** from 20 mol% to 10 mol% caused a decrease in chemical yield (Table 1, entry 18, 71%). Solve Notably, addition of 10 mol% TEA further promoted the reaction (entry 19, 91%). Finally, the best combination was achieved when the reaction was performed in the presence of 10 mol% of prolinamide **I** as catalyst and 10 mol% of TEA as additive.

Table 1: Optimization of the reaction conditions.^a

	0 1a	+	N 1	_	Cat. I-IX (20 Solvent,	 ∫	N N 3a		
-	X (A H	$\langle N \rangle$	√NH NH	O N H	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		₩.	.N.
	I : X = CONH ₂ VI : X = COOH	II	Ш	IV	v	VII	VIII	IX	
	Entry	Entry Cat.		Solvent		Yield/%	Yield/% ^b Entry		
_	1]	[D	MSO	81		1	
	2 3	I	Ι	D	MSO	54		2 3	
	3	I	П	D	MSO	36		3	
	4	Γ	V	D	MSO	61		4	
	5	1	V	D	MSO	32		5	
		6 VI		D	MSO	28		6	
	7	\mathbf{V}	II	D	MSO	24		7	
	8	V	Ш	D	MSO	<5		8	
	9	Γ	X	D	MSO	18		9	
	10]	I	Ι	OMF	65		10	
	11]	I	Γ	DΜA	53		11	
	12]	I	To	luene	41		12	
	13]	I	M	IeOH	35		13	
	14]	I	7	ΓHF	62		14	
	15]	I	Cl	H_3CN	42		15	
	16]	I		HCl ₃	43		16	
	17^{c}		I		MSO	41		17^{c}	
	18^d	-	[MSO	71		18^{d}	
	19 ^e		[MSO	91		19 ^e	
	20^{f}]	I	D	MSO	63		20^{f}	

^a Reaction conditions: A mixture of **1a** (0.20 mmol), **2** (0.10 mmol) and catalyst (20 mol%) in the solvent (0.25 mL) was stirred at 90 °C for 24h. ^b Isolated yield. ^c The reaction was conducted at 60 °C for 32h. ^d 10 mol% catalyst **I** used. ^e 10 mol% catalyst **I** and 10 mol% Et₃N as additive. ^f 10 mol% catalyst **I** and 10 mol% AcOH as additive.

15

With the optimized reaction conditions in hand, we then investigated a variety of ketones 1 with 2. The results are summarized in Table 2. Interestingly, among the various examined ketones, cyclic ketones (e.g. five-, six-, seven-, eight-20 and twelve-membered rings), all gave high to excellent yields under standard conditions (Table 2, 3a-3p, 80-95%). The best yield was obtained with cyclooctanone, which afforded the corresponding pyrimidine 3d in 95% isolated yield (Table 2, 3d). It is worth noting that phenyl ring fused cyclohexanone 10 also 25 worked with 1,3,5-triazine 2 and afforded the corresponding product 30 in 83%. To further indicate the generality and potential of our approach, we turned our attention to examine other types of ketones (e.g. acylic ketones). Acetophenone 4a was employed to react with triazine 2 in the presence of catalyst 30 prolinamide I. However, only 54% yield was achieved after 72h. In order to improve reaction efficiency, a further reaction optimization was conducted (see Supporting Information).

Finally, amine V was found to be the most efficient catalyst for this type of ketones (Table 2, 87%, 72h). As indicated in Table 2, aryl methyl ketones **4b-i** gave good to excellent yields (**5b-i**, 84-92%). Pleasingly, heteroaryl methyl ketones **4j-l** also afforded the corresponding pyrimidine products in high yields (**5j-l**). Propiophenones and butanophenone were also well tolerated (**5n-p**). Other alkyl ketones (e.g. symmetric and dissymmetric alkyl ketones) were also investigated and the desired products was obtained in moderate chemical yields (**5q** and **5r**, 56% and 62%, respectively). Notably, all above reactions provided excellent levels of regioselectivity. This phenomenon can be explained by the Diels-alder reaction occurring with most stabilized enamine.

Table 2: Scope of cyclic ketones.^a

Our postulated reaction pathway is summarized in Scheme 2. While the reaction mechanism is unclear at this stage, it is still believed that the sequence is triggered by the generation of iminium 6 via the condensation of 4a and catalyst V. Iminium 6 rapidly converts to intermediate enamine 7 via a tautomerization.

55 Enamine 7 continuously reacts with 1,3,5-triazine 2 via an inverse-electron-demand Diels-Alder reaction to access the intermediate 8. Notably, this cycloaddition process demonstrates a high regioselectivity, which leading to directly introduce a diverse set of substituents to pyrimidine scaffold. Intermediate 8 then transfers to intermediate 9 after an elimination of HCN. Last, a liberation of catalyst V leads to the formation of final product 5a.

Table 3: Scope of acyclic ketones.^a

^a Conditions see Table 1.

55

60

70

 a Reaction conditions: A mixture of 4 (0.20 mmol), 2 (0.10 mmol) and catalyst V (20 mol%), TEA (10 mol%) in MeOH (0.50 mL) was stirred at 90 $^{\circ}{\rm C}$ for 72h.

Scheme 2. Proposed mechanism.

In summary, an organocatalytic inverse-electron-demand Diels-Alder reaction between various ketones and 1,3,5-triazine has been developed. The reaction is catalyzed by second amines to generate 4,5-disubstituted- or 5-monosubstituted pyrimidines with high levels of regioselectivity. It is noteworthy that this Diels-Alder reaction proceeds efficiently with a simple and inexpensive amine catalyst. Considering the large variety and ready availability of the starting materials and the operational simplicity, a convenient, practical and highly modular pyrimidine

synthesis has been developed. We believe that this work will arouse more research interest in organocatalytic synthesis of other biologically active heterocycles. Such studies are actively under way in this laboratory, and more results will be reported in due

Notes and references

a. Allan H. Conney Laboratory for Anticancer Research, Guangdong University of Technology, Guang Dong, 510006, China.

25 b. Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, E-mail: wangjian1999@hotmail.com.

Acknowledgment. The authors acknowledge the financial support from National Natural Science Foundation of China (NSFC 21272043), the ³⁰ Science and Technology Planning Project of Guangdong Province (2007A020300007-10, 2011B090400573) and Guangdong Natural Science Foundation (S2011010004967)

† Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

- For selected examples, see: (a) Brown, D. J. In Comprehensive Heterocyclic Chemistry, Vol. 3; Katritzky, A. R.; Rees, C. W.; Scrieven, E. F. V., Eds.; Pergamon: Oxford, 1984, Chap 2.13, 142-155. (b) Callery, P.; Gannett, P. In Foye's Principles of Medicinal 40 Chemistry; Williams, D. A.; Lemke, T. L., Eds.; Lippincott Williams and Wilkins: Philadelphia, 2002, 934-935. (c) Jain, K. S.; Chitre, T. S.; Miniyar, P. B.; Kathiravan, M. K.; Bendre, V. S.; Veer, V. S.; Shahane, S. R.; Shishoo, C. J. Curr. Sci. 2006, 90, 793. (d) von Angerer, S. Science of Synthesis; Yamamoto, Y., Ed.; Thieme: 45 Stuttgart, 2003; Vol. 16, pp 379-572. (e) Karpov, A. S.; Müller, T. J. J. Synthesis 2003, 2815. (f) Atwal, K. S.; O'Neil, S. V.; Ahmad, S.; Doweyko, L.; Kirby, M.; Dorso, C. R.; Chandrasena, G.; Chen, B.-C.; Zhao, R.; Zahler, R. Bioorg. Med. Chem. Lett. 2006, 16, 4796. (g) Alvarado, M.; Barcelo, M.; Carro, L.; Masaguer, C. F.; Ravina, E. Chem. BiodiVersity 2006, 3, 106. (h) Buurman, E. T.; Blodgett, A. E.; Hull, K. G.; Carcanague, D. Antimicrob. Agents Chemother. 2004, 48, 313.
 - For selected examples, see: (a) Puar, M. S., Ganguly, A. K., Afonso, A., Brambilla, R., Mangiaracina, P., Sarre, O., MacFarlane, R. D. J. Am. Chem. Soc. 1981, 103, 5231. (b) Ananthan, Kezzar III, H. S., Carter, R. L.; Saini, S. K., Rice, K. C., Wells, J. L., Davis, P., Xu, H., Dersch, C. M., Bilsky, E. J., Porreca, F., Rothman, R. B. J. Med. Chem, 1999, 42, 3527. (c) Oku, N., Matsunaga, S., Fusetani, N. J. Am. Chem. Soc. 2003, 125, 2044. (d) Raw, S. A., Wilfred, C. D., Taylor, R. J. K. Chem. Commun. 2003, 2286. (e) McManus, J. C., Carey, J. S., Taylor, R. J. K. Synlett, 2003, 365. (f) McManus, J. C., Genski, T., Carey, J. S., Taylor, R. J. K. Synlett. 2003, 369. (g) Botta, M.; Corelli, F.; Maga, G.; Manetti, F.; Renzulli, M.; Spadari, S. Tetrahedron 2001, 57, 8357. (h) Garg, R.; Gupta, S. P.; Gao, H.; Babu, M. S.; Debnath, A. K.; Hansch, C. Chem. Rev. 1999, 99, 3525. (i) Botta, M.; Occhionero, F.; Nicoletti, R.; Mastromarino, P.; Conti, C.; Magrini, M.; Saladino, R. Bioorg. Med. Chem. 1999, 7, 1925. (j) Hurst, D. In An Introduction to Chemistry & Biochemistry of Pyrimidines, Purines & Pteridines; Wiley: Chichester, 1988. (k) Brown, D. J. In *The Pyrimidines*; Interscience Publishers: New York, 1994.
 - 3. Finland, M; Strauss, E.; Peterson, O. L. *JAMA* **1984,**251, 1467.
 - 4. Hess, S.; Dolker, M.; Haferburg, D.; Kertscher, H. P.; Matysik, F.-M.; Ortwein, J.; Teubert, U.; Zimmermann, W.; Eger, K. *Pharmazie* **2001**, *56*, 306.
 - Neidhart, W.; Breu, V.; Burri, K.; Clozel, M.; Hirth, G.; Klinkhammer, U.; Giller, T.; Ramuz, H. *Bioorg. Med. Chem. Lett.* 1997, 7, 2223.
- For selected reviews on the preparation of pyrimidine derivatives, see: (a) Hill, M. D.; Movassaghi, M. Chem.-Eur. J. 2008, 14, 6836.
 (b) D'Souza, D. M.; Mueller, T. J. J. Chem. Soc. ReV. 2007, 36, 1095.
 (c) Lagoja, I. M. Chem. BiodiVersity 2005, 2, 1. (d) von Angerer, S. Sci. Synth. 2004, 16, 379.
- 85 7. For selected recent examples on the preparation of pyrimidine

- derivatives, see: (a) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 14254. (b) Karpov, A. S.; Merkul, E.; Rominger, F.; Mueller, T. J. J. Angew. Chem., Int. Ed. 2005, 44, 6951. (c) Matloobi, M.; Kappe, C. O. J. Comb. Chem. 2007, 9, 275. (d) Blangetti, M.; Deagostino, A.; Prandi, C.; Zavattaro, C.; Venturello, P. Chem. Commun. 2008, 1689. (e) Kakiya, H.; Yagi, K.; Shinokubo, H.; Oshima, K. J. Am. Chem. Soc. 2002, 124, 9032. (f) Heravi, M. M.; Sadjadi, S.; Oskooie, H. A.; Shoar, R. H.; Bamoharram, F. F. Tetrahedron Lett. 2009, 50, 662. (g) Hill, M. D.; Movassaghi, M. Synthesis 2008, 823. (h) Xie, F.; Li, S.; Bai, D.; Lou, L.; Hu, Y. J. Comb. Chem. 2007, 9, 12. (i) Kremsner, J. M.; Stadler, A.; Kappe, C. O. J. Comb. Chem. 2007, 9, 285. (j) Kiselyov, A. S. Tetrahedron Lett. 2005, 46, 1663. (k) Karpov, A. S.; Mueller, T. J. J. Org. Lett. 2003, 5, 3451. (l) Mueller, T. J. J.; Braun, R.; Ansorge, M. Org. Lett. 2000, 2, 1967.
- 8. For reviews, see: (a) Undheim, K.; Benneche, T. In Comprehensive Heterocyclic Chemistry II, Vol. 6; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V.; McKillop, A., Eds.; Pergamon: Oxford (UK), 1996, 93–231. (b) Lagoja, I. M. Chem. Biodiversity 2005, 2, 1. (c) Michael, J. P. Nat. Prod. Rep. 2005, 22, 627. (d) Joule, J. A.; Mills, K. In Heterocyclic Chemistry, 4th ed.; Blackwell Science: Cambridge (MA), 2000, 194–232. (e) Erian, A. W. Chem. Rev. 1993, 93, 1991. (f) Hill, M. D.; Movassaghi, M. Chem. Eur. J. 2008, 14, 6836.
- For selected papers on the functional group transformation to 4,5-disubstituted pyrimidines, see: (a) Sard, H.; Gonzalez, M. D.; Mahadevan, A.; McKew, J. J. Org. Chem. 2000, 65, 9261. (b) Boudet, N.; Dubbaka, S. R.; Knochel, P. Org. Lett. 2008, 10, 1715. (c) Schlosser, M.; Lefebvre, O.; Ondi, L. Eur. J. Org. Chem. 2006, 1593. (d) Togo, H.; Ishigami, S.; Fujii, M.; Ikuma, T.; Yokoyama, M. J. Chem. Soc., Perkin Trans. 1 1994, 2931. (e) Mattson, R. J.; Sloan, C. P. J. Org. Chem. 1990, 55, 3410. (f) Yamanaka, H.; Sakamoto, T.; Nishimura, S.; Sagi, M. Chem. Pharm. Bull. 1987, 35, 3119. (g) Kress, T. J. J. Org. Chem. 1985, 50, 3073. (h) Kress, T. J. J. Org. Chem. 1979, 44, 2081.
 - 10. Neunhoeffer, H.; Bachmann, M. Chem. Ber. 1975, 108, 3877.
 - Boger, D. L.; Schumacher, J.; Mullican, M. D.; Patel, M.; Panek, J. S. J. Org. Chem. 1982, 47, 2673.
- (a) Li, W. J., Jia, Q. F., Du, Z. Y., Wang, J. Chem. Commun. 2013, 49, 10187; (b) Yeung, D. K. J., Gao, T., Huang, J. Y., Sun, S. F., Guo, H. B., Wang, J. Green Chem. 2013, 15, 2384; (c) Wang, L., Huang, J. Y., Gong, X. J., Wang, J. Chem. Eur. J. 2013, 19, 7555; (d) Li W, Wang J. Angew. Chem. Int. Ed. 2014, 53, 14186; (e) Danence, L. J. T., Gao, Y. Li, M., Huang, Y.; Wang, J. Chem.-Eur. J., 2011, 17, 3584; (f) Wang, L., Peng, S. Y., Danence, L. J. T., Gao, Y., Wang, J. Chem.-Eur. J., 2012, 18, 6088.
- For reviews and books: see: (a) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed., 2001, 40, 3726; (b) Benaglia, M.; Puglisi, A.; Cozzi, F. Chem. Rev., 2003, 103, 3401; (c) Berkessel, A.; GrMger, H.
- Metal-Free Organic Catalysts in Asymmetric Synthesis, Wiley-VCH, Weinheim, 2004; (d) "Special Issue: Asymmetric Organocatalysis", Acc. Chem. Res., 2004, 37, 487; (e) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed., 2004, 43, 5138; (f) Mohr, J. T.; Krout, M. R.; Stoltz, B. M. Nature, 2008, 455, 323; (g) MacMillan, D. W. C. Nature, 2008, 455, 304; (h) Berkessel, A.; Groger, H. Asymmetric Organocatalysis, Wiley, Weinheim, 2005; (i) Dalko, P. I. Enantioselective Organocatalysis, Wiley, Weinheim, 2007; (j)
 - Enantioselective Organocatalysis, Wiley, Weinheim, 2007; (j)
 Reetz, M. T.; List, B.; Jaroch, S.; Weinmann, H. Organocatalysis,
 Springer, 2007; (k) List, B. Asymmetric Organocatalysis, Springer,
 2009; (l) List, B. Acc. Chem. Res. 2004, 37, 548.
 14. For selected reviews of inverse-electron-demand Diels-Alder
- reaction, see: (a) Boger, D. L. Tetrahedron 1983, 39, 2869; (b) Boger, D. L. Chem. Rev. 1986, 86, 781; (c) Lee, L.; Snyder, J. K. Adv. Cycloaddit. 1999, 3, 119; (d) Jorgensen, K. A. Angew. Chem. Int. Ed. 2000, 39, 3558; (e) Behforouz, M.; Ahmadian, M. Tetrahedron 2000, 56, 5259; (f) Buonora, P.; Olsen, J. C.; Oh, T. Tetrahedron 2001, 57, 6099; (g) Pellissier, H. Tetrahedron 2009, 65, 2839; (h) Li, J.-L.; Liu, T.-Y.; Chen, Y.-C. Acc. Chem. Res. 2012, 45, 1491.

70

15

$$R^{1} \longrightarrow R^{2} + N \longrightarrow N$$

$$R^{1} \longrightarrow R^{2} + N \longrightarrow N$$

$$R^{2} \longrightarrow R^{2} \longrightarrow R^{2} \longrightarrow R^{2} \longrightarrow N$$

$$R^{1} \longrightarrow R^{2} \longrightarrow R^{2} \longrightarrow N$$

$$R^{1} \longrightarrow R^{2} \longrightarrow N$$

$$R^{2} = \text{aryl or alkyl}$$

$$R^{2} = \text{aryl or alkyl}$$

$$R^{3} = \text{aryl or alkyl}$$

$$R^{2} = \text{aryl or alkyl}$$

An organocatalytic inverse-electron-demand Diels-Alder reaction of ketones with 1,3,5-triazine through enamine catalysis has been developed.