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An organocatalytic inverse-electron-demand Diels-Alder 5 

reaction of ketones with 1,3,5-triazine through enamine catalysis 

has been developed. This method could furnish 4,5-disubstituted 

pyrimidines in good yields and  high levels of regioselectivities. 

Pyrimidines are ubiquitous heterocyclic moieties present in 

natural products, drugs and functional materials.1 A number of 10 

pyrimidines exhibit biologically important activities.2 As shown 

in Figure 1, sulfadiazine is a sulfonamide antibiotic that contains 

a 5-aminopyrimidine.3 Trimethoprim is a bacteriostatic antibiotic 

known as dihydrofolate reductase inhibitor, mainly used in the 

prevention and treatment of urinary tract infections.4 Bosentan is 15 

a drug for treating cardiovascular pathology.5 

Although a number of approaches for the preparation of 

pyrimidine frameworks have been developed,6-7 a general and 

highly selective method for the synthesis of 4,5-disubstituted 

pyrimidine skeleton has rarely been investigated. One of the most 20 

efficient strategies for making such a structure is mainly focused 

on the basis of N−C−N condensations. For examples, 

condensation of an amidine with a 1,3-diketone or derivative is 

one of major methods for the direct preparation of the six-

membered-ring pyrimidine (Scheme 1a).8 Notably, easily 25 

preparation of the prerequisite diketones or dicarbonyl derivatives 

makes this a more attractive strategy for synthesis of substituted 

pyrimidines. Condensation of an amidine with a nitrile derivative, 

a common N-C source, is another versatile approach. Despite 

these advances, due to the significance of pyrimidines in drug 30 

discovery, preparations of diversely substituted pyrimidines are 

still in high demand.9 Therefore, developing new efficient method 

for the constructuion of various substituted pyrimidines would be 

of high interest. 

 35 

Scheme 1.  Strategies in preparation of pyrimidines. 

 
Fig 1: Examples of important pyrimidines. 

In 1975, Neunhoeffer and Bachmann demonstrated that 1,3,5-

triazine could undergo a rapidly regiospecific cycloaddition 40 

reaction with ynamines, followed with a subsequent loss of 

hydrogen cyanide, to efficiently form pyrimidines.10 In 1982, the 

Boger group reported a regiospecific pyrimidine synthesis via a 

thermal cycloaddition of 1,3,5-triazine with enamines.11 

Surprisingly, to the best of our knowledge, such a catalytic 45 

example of 1,3,5-triazine reacted with in situ generated enamines 

to assemble pyrimidines has not yet been reported. As a part of 

our continuing interests in this area,12 especially in expanding 

enamine chemistry13 to generate heterocycles, herein, we report 

our new progress regarding an enamine-catalyzed inverse-50 

electron-demand Diels-Alder of ketones with 1,3,5-triazine, 

which provided an efficient and complementary route for 

pyrimidine synthesis (Scheme 1b). 

Initial experiments were conducted by using cyclohexanone 1a 

and 1,3,5-triazine 2 in the presence of 10 mol% loading of amine 55 

catalysts, such as secondary amines (I-VII) and tertiary amines 

(VIII and IX). Among the catalysts tested (Table 1), we found 

that secondary amines are generally more effective than tertiary 

amines (Table 1-9). Tertiary amines exhibited low catalytic 

activities (entries 8 and 9, <5% and 18%, respectively). 60 

Pleasingly, secondary amine prolinamide I showed higher 

reactivity than other catalysts (entry 1, 81%). Surprisingly, the 

similar derivative proline VI only provided a moderate chemical 

yield (entry 6, 28%). Finally, prolinamide I was cidentified as the 

most effective catalyst. Further optimization of other reaction 65 

parameters revealed that solvent was another crucial factor. When 

reaction carried out in DMSO, reactivity was positively 

influenced, leading to the desired product 3a in 81% yield. Other 

solvents, such as toluene, MeCN, CHCl3, THF, MeOH, DMA, 

and DMF, caused a significant decreas in chemical yields (Table 70 
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1, 18-65%, entries 10-16). Lowering the reaction temperature to 

60 oC resulted in a poor chemical yield (entry 17, 41%, 32 h). 

Changing the catalyst loading of I from 20 mol% to 10 mol% 

caused a decrease in chemical yield (Table 1, entry 18, 71%). 

Notably, addition of 10 mol% TEA further promoted the reaction 5 

(entry 19, 91%). Finally, the best combination was achieved 

when the reaction was performed in the presence of 10 mol% of 

prolinamide I as catalyst and 10 mol% of TEA as additive. 

Table 1: Optimization of the reaction conditions.a  

 
Entry Cat. Solvent Yield/%b Entry 

1 I DMSO 81 1 

2 II DMSO 54 2 
3 III DMSO 36 3 

4 IV DMSO 61 4 

5 V DMSO 32 5 
6 VI DMSO 28 6 

7 VII DMSO 24 7 

8 VIII DMSO <5 8 
9 IX DMSO 18 9 

10 I DMF 65 10 

11 I DMA 53 11 
12 I Toluene 41 12 

13 I MeOH 35 13 

14 I THF 62 14 
15 I CH3CN 42 15 

16 I CHCl3 43 16 
17c I DMSO 41 17c 

18d I DMSO 71 18d 

19e 

20f 
I 

I 
DMSO 

DMSO 
91 

63 
19e 

20f 

a Reaction conditions: A mixture of 1a (0.20 mmol), 2 (0.10 mmol) and 10 

catalyst (20 mol%) in the solvent (0.25 mL) was stirred at 90 oC for 24h. b 
Isolated yield. c The reaction was conducted at 60 oC for 32h. d 10 mol% 

catalyst I used. e 10 mol% catalyst I and 10 mol% Et3N as additive. f 10 

mol% catalyst I and 10 mol% AcOH as additive. 
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With the optimized reaction conditions in hand, we then 

investigated a variety of ketones 1 with 2. The results are 

summarized in Table 2. Interestingly, among the various 

examined ketones, cyclic ketones (e.g. five-, six-, seven-, eight- 

and twelve-membered rings), all gave high to excellent yields 20 

under standard conditions (Table 2, 3a-3p, 80-95%). The best 

yield was obtained with cyclooctanone, which afforded the 

corresponding pyrimidine 3d in 95% isolated yield (Table 2, 3d). 

It is worth noting that phenyl ring fused cyclohexanone 1o also 

worked with 1,3,5-triazine 2 and afforded the corresponding 25 

product 3o in 83%. To further indicate the generality and 

potential of our approach, we turned our attention to examine 

other types of ketones (e.g. acylic ketones). Acetophenone 4a was 

employed to react with triazine 2 in the presence of catalyst 

prolinamide I. However, only 54% yield was achieved after 72h. 30 

In order to improve reaction efficiency, a further reaction 

optimization was conducted (see Supporting Information). 

Finally, amine V was found to be the most efficient catalyst for 

this type of ketones (Table 2, 87%, 72h). As indicated in Table 2, 

aryl methyl ketones 4b-i gave good to excellent yields (5b-i, 84-35 

92%). Pleasingly, heteroaryl methyl ketones 4j-l also afforded the 

corresponding pyrimidine products in high yields (5j-l). 

Propiophenones and butanophenone were also well tolerated (5n-

p). Other alkyl ketones (e.g. symmetric and dissymmetric alkyl 

ketones) were also investigated and the desired products was 40 

obtained in moderate chemical yields (5q and 5r, 56% and 62%, 

respectively). Notably, all above reactions provided excellent 

levels of regioselectivity. This phenomenon can be explained by 

the Diels-alder reaction occurring with most stabilized enamine.  

 45 

Table 2: Scope of cyclic ketones.
a 

 
a Conditions see Table 1. 

 

Our postulated reaction pathway is summarized in Scheme 2. 50 

While the reaction mechanism is unclear at this stage, it is still 

believed that the sequence is triggered by the generation of 

iminium 6 via the condensation of 4a and catalyst V. Iminium 6 

rapidly converts to intermediate enamine 7 via a tautomerization. 

Enamine 7 continuously reacts with 1,3,5-triazine 2 via an 55 

inverse-electron-demand Diels-Alder reaction to access the 

intermediate 8. Notably, this cycloaddition process demonstrates 

a high regioselectivity, which leading to directly introduce a 

diverse set of substituents to pyrimidine scaffold. Intermediate 8 

then transfers to intermediate 9 after an elimination of HCN. Last, 60 

a liberation of catalyst V leads to the formation of final product 

5a. 

Table 3: Scope of acyclic ketones.
a 
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a Reaction conditions: A mixture of 4 (0.20 mmol), 2 (0.10 mmol) and 

catalyst V (20 mol%), TEA (10 mol%) in MeOH (0.50 mL) was stirred at 

90 oC for 72h. 
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Scheme 2. Proposed mechanism. 

 

In summary, an organocatalytic inverse-electron-demand 

Diels-Alder reaction between various ketones and 1,3,5-triazine 

has been developed. The reaction is catalyzed by second amines 10 

to generate 4,5-disubstituted- or 5-monosubstituted pyrimidines 

with high levels of regioselectivity. It is noteworthy that this 

Diels-Alder reaction proceeds efficiently with a simple and 

inexpensive amine catalyst. Considering the large variety and 

ready availability of the starting materials and the operational 15 

simplicity, a convenient, practical and highly modular pyrimidine 

synthesis has been developed. We believe that this work will 

arouse more research interest in organocatalytic synthesis of other 

biologically active heterocycles. Such studies are actively under 

way in this laboratory, and more results will be reported in due 20 

course. 
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