

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

An Integrated Metabonomics and Microbiology 1 Analyses of Host-Microbiota Metabolic Interactions 2 in Rats with Coptis chinensis-Induced Diarrhea 3 Yemeng Li, ^{#a} Qiongfeng Liao, ^{#b} Manna Lin, ^{ab} Danmin Zhong, ^a Lin Wei, ^a Bo Han, ^c Hui Miao, ^a 4 Meicun Yao,^a and Zhiyong Xie *^a 5 6 ^aSchool of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China 7 ^bSchool of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China 8 ^c School of pharmacy, Shihezi University, Shihezi, 832000, P. R. China 9 *Corresponding author: Zhiyong Xie 10 Tel: +86 20 39943047 Fax: +86 20 39943000 11 12 *E-mail* address: xiezy2074@yahoo.com [#] These authors contributed equally to this work. 13 14

RSC Advances Accepted Manuscript

15 Abstract

16 Coptis chinensis Franch., a bererine-containing traditional Chinese medicine (TCM), is often 17 used to treat intestinal infections, diabetes and hyperlipidaemia, and often causes diarrhea. To 18 clarify the potential mechanism of toxicity that induces diarrhea. Sprague-Dawley (SD) rats were 19 treated with Coptis chinensis dosage of 5 g/kg for 14 consecutive days. PCR-denaturing gradient 20 gel electrophoresis (PCR-DGGE) was used to monitor the dynamic changes in the gut microbiota, while ¹H NMR profiles were applied to reveal the metabolism of host and 21 22 microflora. In Coptis chinensis-treated group, decreased short chain fatty acids (SCFAs) and 23 branched chain fatty acids (BCFAs) and increased branched chain amino acids (BCAAs) levels 24 were detected in faeces, whereas increased BCFAs were present in the urine. This finding 25 implied that Coptis chinensis triggered malabsorption and suppressed bacterial fermentation as 26 well as protein degradation. Meanwhile, decreased levels of *Bacteroides* and *Prevotella* and 27 elevated levels of *Enterobacter* and *Veillonella* in treatment group were significantly correlated 28 to the urinary and faecal metabolites. Using metabolite-set enrichment analysis (MSEA) and the 29 correlation analysis between significant bacteria and metabolites, the results demonstrated that 30 Coptis chinensis intervention suppressed glycine and serine metabolism which affected the 31 growth of intestinal bacteria. Moreover, the perturbed microbiome consequently influenced the 32 homeostasis of monosaccharide, amino acid, choline and energy metabolism of gut microbiota 33 and host. These findings help to elucidate Coptis chinensis intervention and toxicity; 34 simultaneously, this integrated strategy may provide an effective method for the systematic 35 assessment of host responses to TCM or any other botanical-based nutraceuticals.

36 Keywords: Coptis chinensis Franch., diarrhea, PCR-DGGE, MSEA, correlation analysis

37 Introduction

Coptis chinensis Franch. (Huanglian in Chinese, CF), which contains rich alkaloids such as 38 39 berberine, is a common herb that has been used in traditional Chinese medicines (TCMs) for millennia to treat intestinal infections, particularly bacterial diarrhea.¹ In addition, its 40 cholesterol-lowering and hypoglycemic activities²⁻⁴ against diabetes and obesity have attracted 41 significant interest in the medical field. Nevertheless, there are only a few reports on the 42 mechanisms of its adverse effects, including diarrhea, cardiac damage, ⁵ and jaundice, 3 resulting 43 44 from higher doses or long-term treatment with CF. In Chinese clinical reports, diarrhea is one of the most common side effects, with a 19% prevalence rate after CF treatment for diabetes.⁶ 45 Diarrhea often occurs in inflammatory and infectious conditions.⁷ Inflammatory diarrhea, which 46 is accompanied by abnormalities in ion transport and mucus secretion, can be found in 47 48 inflammatory bowel disease (IBD); while infectious diarrhea usually results from exposure to pathogenic bacteria (Escherichia coli, Salmonella, Clostridium difficile, etc.) in a tainted 49 50 environment or excessive antibiotic use. The types of diarrheas mentioned above are thought to have a close relationship with the maladjusted microflora. 7^{,8} Interestingly, our previous study 51 showed that CF-induced diarrhea may relate to the altered gut microbiota via metabonomics 52 53 analysis of serum and urine. 5

In recent years, botanical-based nutraceuticals have been used as complementary interventions and have been found to improve metabolic syndromes, such as obesity, diabetes or fatty liver disease, ⁹⁻¹¹ by regulating maladjusted microbial community. Liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) and high-resolution NMR spectroscopy (¹H NMR) analysis were widely employed to investigate metabolites in various biological matrixes, including exploring the endogenous mechanism by which the

RSC Advances Accepted Manuscript

60 microflora is regulated after berberine treatment in HFD-fed rats. 2 Although the rats exhibited 61 altered amino acids, fatty acids, glutamine and glutamate metabolic pathways, as revealed by 62 urinary and liver metabolic profiles, there was no definitive result that explained which intestinal 63 bacteria contribute to these changes in host's metabolic pathways. Hence, GC-MS combined 64 with pyrosequencing or real-time PCR along with monitoring the blood glucose and lipid levels 65 were applied to interpret the functions of significant bacteria in berberine-treated group. CF and 66 berberine significantly reduced the proportions of faecal Firmicutes and Bacteroidetes to the total bacteria in high fat diet (HFD)-fed mice.¹² Additionally. *Blautia* and *Allobaculum*, the 67 68 putative SCFA-producing bacteria, were observed and accompanied with elevated faecal SCFA 69 concentrations. 4 Based on previous studies, we hypothesize that CF-induced diarrhea may be 70 associated with these notable bacteria. Nevertheless, our previous study demonstrated that 71 metabolic profiles of rats with diarrhea were different from the reported profiles. Unfortunately, 72 there is little awareness of whether other bacteria caused this difference and the other side effects 73 of CF that are present when the maladjusted gut microbiota interacts with host.

Metabolite-Set Enrichment Analysis (MSEA¹³), an extended approach of gene set enrichment 74 analysis (GSEA¹⁴), applies univariate and multivariate statistical methods to better interpret 75 76 complex hypothesis-free metabolic signatures based on MS or NMR spectra of the biological 77 samples. This knowledge-based over-representation approach highlights significant pathways 78 that are influenced by xenobiotics or affected by diseases, and shrinkages numerous potential 79 target metabolites. Thus, the elucidation of the pathophysiology or pharmacodynamics mechanism seems to be clearer and more profound. Therefore, Pontoizeau et al.¹⁵ revealed 80 81 homeostasis and physiological plasticity of several inbred strain rats via MSEA, despite their 82 widespread divergences in metabolites and gut microbiota. Because the gut microbiota closely

RSC Advances Accepted Manuscript

interacts with ingested food in the intestine via fermentation, putrefaction, hydrolysis, and 83 84 dehydroxylation, changes in different biological matrixes particularly faeces together with the 85 corresponding alternation in the gut microbiota should provide information that can be used to 86 interpret mammalian-microbial interactions. Firstly, antibiotic-treated (AB) animal is indispensible for the study of dysbacteriosis.¹⁶ Swann *et al.*¹⁷ performed fluorescence *in situ* 87 hybridization (FISH) analysis and ¹H NMR spectroscopy in different antibiotic-induced rats that 88 89 has proven to be feasible methods for ascertaining the influence of the gut microbiota on host's metabolism. In addition, multivariate statistical analyses¹⁶ were applied to reveal the correlation 90 91 between the perturbed gut microbial community and the changes in faecal metabolites following 92 treatment with different antibiotic, which also explained the function of gut microbiota.

93 Here, we reported a profiling study of urinary and faecal metabolites in SD rats which exposed to an excessive and long-term dose of CF using ¹H NMR, and monitored the fluctuations in gut 94 95 microbiota via 16S rRNA V3 gene PCR-DGGE. In addition, urine and faecal samples were 96 collected at different time points to characterize the dynamic metabolic profiles resulting from 97 CF administration. Finally, metabolic biomarkers derived from metabonomics analysis were 98 associated with significant bacteria to help clarify diarrhea-associated bacteria in CF-treated rats 99 and to improve our understanding of molecular mechanisms underlying host-microbe 100 interactions at multiple levels.

101 Materials and methods

102 Rat intervention study and sample collection

Fourteen male Sprague-Dawley (SD) rats (8 weeks old, 180-200 g) from the Laboratory
Animal Center of Sun Yat-sen University (Guangzhou, P.R. China) were housed at a 12/12 h

105 light-dark cycle with 24 °C and 50-70% humidity. They had free access to water and commercial 106 rodent food unless otherwise specified. After acclimatization for one week, 14 rats were divided 107 equally and randomly into CF-treated and control groups. We implemented animal experiments 108 based on the Institutional Animal Care and Use Committee (IACUC) of Sun Yat-sen University 109 and the Coptis chinensis decoction was prepared according to a previously reported standardized protocol.⁵ Rats in control group were subjected to gavage with distilled water, while CF-treated 110 111 rats were orally administered at a dose of 5 g/kg weight decoction of Coptis chinensis for 14 112 consecutive days, respectly. The dosage was determined based on the reference to the Chinese 113 Pharmacopoeia (10 g per human per day, version 2010) and our pre-study results, and at this 114 dosage we observed the main side effect is diarrhea. Urine and faeces Samples were collected in 115 Eppendorf tubes on ice from 8:00 to 16:00 on pre-dose day 1 and post-dose day 7, 14, 21. The 116 fresh samples from each group were stored at -80 °C for NMR and microbiological analyses.

117 Sample preparation for NMR spectroscopy

118 Urine samples were thawed on ice and 600 µL was mixed with 60 µL of phosphate buffer/ 119 D₂O (1.5 M Na₂HPO₄-NaH₂PO₄, pH 7.4). The buffer contains 0.1% of NaN₃ to avoid bacterial 120 contamination and 0.05% TSP to afford a field-frequency lock. The mixtures were centrifuged at 121 16000 g at 4 °C for 10 min to remove any sediment. Faecal extraction used the optimized method described by Wu et al.¹⁸ The 600 µL coalescent supernatant was pipetted into 5 mm 122 NMR tubes and 1D¹H NMR spectra were obtained using a Bruker AVIII 600 MHz spectrometer 123 124 (Bruker Biospin, Germany) at 600.13 MHz and 298 K. The standard pulse sequence (NOESY) with water presaturation for urine and faecal spectrums also referred to prior study.¹⁸ 2D NMR 125 126 experiments, including total correlation spectroscopy (TOCSY), J-resolved spectroscopy (JRES) 127 and ¹H-¹³C HSQC, were performed on selected samples to assign the NMR spectra of the

RSC Advances Accepted Manuscript

RSC Advances

metabolites. The metabolites were simultaneously identified based on the Human Metabolome
Database (http://www.hmdb.ca/,) and metabonomics toolbox (Chenomx NMR Suit 7.6,
Chenomx, Canada) as well as published work. ^{19,20}

All ¹H NMR spectra were manually phase and baseline-corrected and calibrated to TSP at 0.00 ppm using TOPSPIN (V2.1, Bruker Biospin). The spectral region (0.5-9.50 ppm) was segmented into 0.004 ppm chemical shift bins using the AMIX package (V3.9.14, Bruker Biospin). For urine samples, the water signal (4.70-4.95 ppm) and urea signal (5.50-6.25 ppm) were removed prior to analysis. The water signal (4.68-4.95 ppm) in faecal extracts was also discarded to exclude the efficient water suppression. All remaining regions were normalized to the total integrated spectrum before multivariate date analysis.

138 Molecular biological analysis and data processing

139 Total bacterial DNA was extracted from faecal samples using a TIANamp Stool DNA Kit (Tiangen, Beijing, P.R. China) in accordance with the manufacturers' instructions with slight 140 141 modification and then stored at -20 °C for further analysis. Universal primers 357f GC clamp 142 and 518r targeted the hypervariable V3 region of the 16S rRNA gene and were used to conduct 143 PCR amplification. Initial denaturation was at 95 °C for 3 min, and then a total 25 cycles 144 including denaturation at 95 °C for 1 min, annealing at 55 °C for 1 min, extension at 72 °C for 1 145 min, and a final extension at 72 °C at 8 min. After confirmation using agarose gels 146 electrophoresis, the PCR products were analysed with a 38-58% gradient DGGE under constant 147 voltage of 70 V for 13 h at 60 °C in 1 × Tris-acetate-EDTA (TAE) buffer using the DCode 148 universal mutation detection system (Junyi, Beijing, P.R. China). Silver staining was performed 149 to visualise the changing profile in predominant bacterial profiles and this fingerprint was

i uge o oi

recorded by a digital camera (Canon, Japan). DGGE images were converted to black-and-white using Adobe Photoshop CS4, and digitized by Quantity One software (version 4.6.2). The relative band intensity was exported as a data matrix for normalization prior to pattern recognition analysis. Meanwhile, the auto search option was used to mark individual bands of each sample lane, followed by necessary manual correction.

155 Statistical analysis and metabolite-strain correlation networks

Multivariate data analysis was conducted by SIMCA-P+ (version 12.0 Umetrics, Sweden) and 156 157 SPSS software (V20.0, Chicago, USA). The unit variance (UV)-scaled NMR data and DGGE 158 data were analysed separately with principal component analysis (PCA) to investigate the 159 intrinsic similarity or dissimilarity as well as possible outliers in each matrix. Following partial 160 least squares (PLS) and orthogonal projection to latent structure-discriminant analysis (OPLS-161 DA), the model was validated using a 7-fold cross-validation method and 200 permutation tests, 162 as well as further assessment using CV-ANOVA tests, with a significant level of p < 0.05. The 163 color-coded loading plots were carried out in MATLAB (The Mathworks Inc.; Natwick, MA, 164 version 7.1) based on correlation coefficient values to interpret important metabolites that contribute to the class separation. Meanwhile MSEA²¹, an approach to assess whether significant 165 166 metabolites found in known metabolic pathway maps or databases coincide with the metabolic 167 signature at a certain level of the biochemical pathway, was applied to reduce the massive 168 number of insignificant metabolic pathways. Finally, the covariation analysis between ¹H NMR and DGGE data were integrated by O2PLS²² modeling and Pearson's correlation coefficient²³ 169 calculation. NMR peaks or DGGE bands with $Q^2 > 0.6$ and $|r| \ge 0.755$ were selected to exhibit a 170 bio-network with the Gephi 0.8.2 software.²⁴ 171

Page 9 of 36

RSC Advances

172 Cloning and sequencing of specific bands

173 Bands that were closely correlated with metabolites in the two groups were excised and 174 subjected to further identification by sequencing. Rinsed DNA bands were dissolved in 25 µl TE 175 buffer for 16 h at 4 °C, and then amplified with universal V3 primers without GC clamp. The positive clones were purified and verificated as described in previous study.²⁵ After sequencing 176 177 (Sangon Biotech, Shanghai, China), the results were assembled with Chromas software for 178 homology searches in NCBI GenBank databases using the BLAST tool. Based on BLAST 179 results, reference sequences of phylogenetic neighbor species (up to 90% similarity) were 180 included to confirm the allocation of the purified band sequences to the most probable species. 181 The sequences were deposited in GenBank with the following accession numbers: KR 611915-182 611917, KR 708629 and KR 611919-611922.

183 **Results and Discussion**

184 Metabolic changes in urine and faeces following the CF intervention

185 CF-treated rats displayed diarrhea after 6 days of oral administration and recovered at 7 days 186 after intervention. CF-induced rats also exhibited growth suppression compared to control group, similar to our previous study.⁵ From NMR metabolic profiles, we detected 85 metabolites in 187 188 urine samples and 58 components in faecal solutions after CF consumption by combining CF-189 induced group with control group (Supplementary Figure S1). The signals from urine mainly 190 contained glucose, glycogen, amino acids, amines, organic acids, TCA intermediate metabolites 191 such as citrate, 2-oxoglutarate, succinate and fumarate, and a series of SCFAs. Faecal spectra 192 were mainly comprised of amino acids, glucose, hemicellulosic sugars (arabinose and xylose),

193 some keto acids (*e.g.*, α -ketoisovalerate and α -ketoisocaproate), as well as amines and SCFAs.

194 The specific NMR assignment can be found in Supplementary Table S1 and S2.

195 Subsquently, spectra signals were converted into a digital matrix for statistical analysis, which 196 could reveal more detailed information about the CF-induced metabonomic changes. Compared 197 with analysis of day -1 of control and CF-treated group, we found an obvious discrimination 198 between control rats and CF-treated rats on day 7 using PCA model (Supplementary Figure S2A, B). In addition, OPLS-DA models for urinary profile ($R^2X = 0.528$, $Q^2 = 0.836$) and faecal 199 extract spectra ($R^2X = 0.786$, $Q^2 = 0.963$) on day 7 were used to investigate the differences in 200 201 metabolic concentrations between samples which obtained from CF-induced rats and the 202 matched controls. The OPLS-DA scores plots and the coefficient loading plots (Figure 1A, B) 203 illustrated that the CF intervention significantly altered metabolites induced by CF intervention. As Jiang et al.^{26,27} reported, organ especially liver concentrations of berberine or its metabolites 204 205 was 10-fold or 30-fold higher than that in plasma, whereas only 0.0939% and 22.74% recovered 206 rate of berberine in urine and feces after oral administration. It is worth mentioning that the 207 differentiation occurred in control group at day -1 and day 7 (Supplementary Figure S2C, D) 208 which suggested that dietary and gavage cause the overall metabolic alteration in control rats 209 over time. To minimize unpredictable factors, we reviewed those biomarkers found on day 7. In 210 addition to verification with VIP values, Student's t-test was used to analyse authentically 211 different metabolites by comparing control samples at day -1 and day 7. Finally, 21 significantly 212 different metabolites in urine samples were sorted out. Those discarded components which 213 expressed differentially in the control group were supposed to have little association with CF 214 administration. Similarly, after removing hypocritical biomarkers from faecal extract solutions, 215 we noticed that 9 faecal metabolites showed significantly lower NMR response after CF

216 perturbation, whereas 10 metabolites in faeces displayed the opposite behavior as shown in

RSC Advances

217 Figure 1.

218

Figure 1 ¹H NMR coefficient loading profiles from OPLS-DA model on day 7 and PLS-DA scores plots with time-dependent trajectory. A is for urine samples, B is for faeces and in C graph: (1), (2), (3) exhibit fluctuations of 4, 3, 3 time points in urine, faeces and microbiota respectively.

RSC Advances Accepted Manuscript

223 To investigate the time-dependence and recoverability of the CF effects, we analysed the CF-224 induced urinary and faecal metabolic alterations at four and three time points respectively (Figure 1C). PLS-DA scores plots ((1) $R^2X = 0.327$, $Q^2 = 0.402$; (2) $R^2X = 0.621$, $Q^2 = 0.906$; 225 (3) $R^2X = 0.776$, $Q^2 = 0.973$) showed the specific profiles in the CF-induced group on the 226 selected days. Once the diarrhea occurred, the metabolic trajectories of host and gut microbiota 227 228 diverged from their initial metabolic position. After 7 days (on day 21) of recovery, we found 229 their metabolic profiles returned to approximately the pretreatment level. On the other hand, 230 using microbial profiles in faecal samples obtained from DGGE analysis, the CF-induced 231 fluctuations in the composition of gut microbiota were in accord with the faecal metabolic 232 changes (Figure 1C).

233 Altered metabolites in urinary and faecal samples are related to CF intake

234 In Figure 2, significant metabolites in urinary metabolic profile were investigated following 235 treatment and during convalescence, and compared to predose profiles. Alanine, pyruvate and glucose, which are involved in alanine-glucose cycle, ²⁸ displayed increased levels in CF-induced 236 237 group. Elevated levels of choline and glucose were also found in a number of CF intervention 238 urine samples, which were similar to faecal samples (Figure 3). Branched chain fatty acids 239 (BCFAs) especially isobutyrate, isovalerate, and 2-methylbutyrate are products from oxidation of valine, leucine, and isoleucine, respectively.²⁹ It is also believed that colonic bacteria are capable 240 of decomposing proteins, peptides, and amino acids to produce BCFAs, ³⁰ as well as SCFAs. 241 242 What surprised us is that there were higher levels of BCFAs particularly isobutyrate and 243 isovalerate in CF-administered rats compared to controls, but these differed from faecal 244 metabolism. The increased BCFAs in urine samples implied that host increased BCFAs 245 absorption following CF stimulation to maintain energy balance. Whereas, decreased BCFAs

and increased BCAAs of faecal samples suggested that the BCFA-BCAA (branched chain amino acid) pathway has been disturbed, in that the maladjusted gut microbiota decreased the utilization of BCAA to produce BCFA. It is remarkable that urinary hippurate, as a gut microbialmammalian co-metabolite that is generated from aromatic compounds and polyphenolics by gut microbes, ³¹ was obviously reduced in rats with diarrhea. The dysbiosis of the gut microflora in treated rats not only related to imbalanced SCFAs in faeces but also reflected the decreased hippurate in the urine.

253

Figure 2 Distributions of intensities for selected urinary metabolites based upon the normalized bucket table. Significant metabolites of rats' urine which compared control group with CFtreated group at different time points: day -1 is pre-administration day, day 7 and day 14 are diarrhea days, and day 21 is post-administration day for 7 days.

258

Figure 3 Distributions of intensities for selected faecal metabolites based upon the normalized
bucket table. Significant metabolites of faeces samples from CF-treated group were compared

RSC Advances Accepted Manuscrip

with control group ones at different time points: day -1 is pre-administration day, day 7 isdiarrhea at the first day.

263 The feacal metabolic profile (Figure 3), which is a direct reflection of changes in microbial 264 composition due to the CF intervention, showed altered faecal metabolites with previous VIP value sifting and t test (p < 0.05). Butyrate, the most important component of SCFAs, plays a 265 crucial role as an energy source for colon cells.³² Moreover, butyrate provides ATP, which 266 participates in Na⁺-H⁺ exchange to promote absorption of water and sodium, ³³ and this 267 268 facilitates foundation of the anti-diarrhea hypothesis. In this study, the significantly reduced 269 butyrate level in CF-treated rats may be closely associated with suppressed butyrate-producing 270 bacteria. Choline metabolites such as dimethylamine and trimethylamine, which often modulate lipid metabolism and glucose homeostasis, ^{34,35} had a similar decreasing trend in the group with 271 272 diarrhea. In contrast, choline level was not consistent with the dynamic change in its metabolites, 273 and instead showed an increase. We speculated that the CF-induced dysbiosis of gut microbiota 274 impaired choline metabolism. On the other hand, the elevated level of ethanolamine from choline 275 pathway is able to facilitate lecithin synthesis and preserve cellular integrity, because cytomembrane consists of lecithin. ³⁶ As we know, α -keto acids derived from deaminisation of α -276 277 amino acids can form nonessential amino acids or offer energy for host through complete oxygenolysis; while glucogenic amino acids are able to transform into glucose.²⁸ Interestingly. 278 279 we observed that α -keto acids such as 3-methyl-2-oxovalerate, α -keto- β -methyl-valerate, α -280 ketoisocaproate, and α -ketoisovalerate, were depleted levels in CF-treated group, whereas some 281 amino acids were consistent with the elevated level of glucose. Therefore, we tentatively 282 hypothesize that these results act as one factor that promotes the growth suppression of CFtreated rats in the current study. Although, some urinary and faecal biomarkers have been found 283

to be influenced by the CF intervention, there was no distinct identification of the systematicchanges in host.

286 MSEA focused on meaningful signaling pathways that regulate metabolism

MSEA¹³ is often applied to quantitative metabolomic data for identifying and interpreting 287 288 changes in human or other mammalian pathway-associated metabolite concentrations. According to precious studies, ^{21,37} we aimed to determine which pathways were dramatically affected based 289 290 on the detected metabolites. Enrichment tests with a qualitative overrepresentation analysis or a 291 quantitative enrichment analysis were performed, and numbers of potential target metabolites 292 from KEGG database (http://www.genome.jp/kegg/,) were swift reduced into a set of particular 293 metabolic pathways (Figure 4 and Table <u>\$2,</u> \$3, \$4, \$5 and \$6). From metabolite sets 294 enrichment profiles and pathway impact illustrations, we focused on 10 significant pathways in 295 urinary and faecal samples. Remarkably, they shared 5 pathways to some extent, although 296 metabolites involved in these shared pathways were not absolutely uniform.

Figure 4 Meaningful metabolic pathways of urine and faeces from MSEA. 57 components in faeces were imported to MSEA to show really changed pathways (A-1), a weight distribution of these pathways displayed on the right hand (A-2). 85 urinary metabolites were conducted as faecal samples, and results exhibited in B-1, B-2 severally. At the right corner of each block scheme, it emerged the specific pathway which detected metabolites were involved in (rectangles colored in blue are no metabolites matched, vice versa).

304 In this study, urinary pathways of host and faecal pathways of intestinal microbiome had an 305 interconnected role in energy metabolism. For instance, pyruvate metabolism, the core of TCA 306 cycle, showed difference in CF-treated faeces. As we know, TCA cycle is the common and ultimate pathway for the oxidation of carbohydrates, fatty acids, and amino acids³⁸ that connects 307 308 with numerous other pathways. Alanine, aspartate, and glutamate degradation include TCA 309 intermediates such as 2-oxoglutarate, citrate, and succinate showed suppression in urinary 310 samples, as well as glyoxylate and dicarboxylate metabolism. Furthermore, starch and sucrose 311 metabolism was disturbed in view of increased glucose level. These results indicated that host 312 and gut microbiota interacted to maintain balance of energy metabolism via some important 313 metabolic intermediates when suffered from excessive CF. Meanwhile, the maladjusted gut 314 microbiota may relate with some perturbed amino acids pathways. Valine, leucine and isoleucine 315 metabolism were altered in both faeces and urine. Increased leucine and valine levels indicated 316 that their biosynthesis restrained its degradation, and the homologous keto acids such as α -keto-317 β -methyl-valerate and α -ketoisovalerate, were subsequently decreased. In addition, succinate was 318 affected by the aberrant metabolism because it requires valine and leucine to take part in TCA cvcle.³⁹ Excessive and long-term dose of CF not only cut down the energy supplement of host 319 320 and gut microbiota, it may also tempt invasive bacteria to worsen the systemic metabolism. 321 Aromatic amino acid metabolism includes phenylalanine, tyrosine and tryptophan metabolism, 322 and is required to produce neurotransmitters; it is believed that this gut microbiota-host cometabolism is associated with the gut-brain axis (GBA). ⁴⁰ The GBA seems to modulate 323 324 homeostasis of gastrointestinal (GI) tract function once the central nervous system induces 325 changes or the GI tract alters the habitat and perturbs the gut microbiota, because the habitat of 326 the microbiota depends on GI motility and epithelial functions. Significant decrease levels of

327 hippurate and 4-hydroxyhippurate at day 7 and day 14 in the CF-induced group while the 328 elevation at day 21 were observed in urine, which suggested that phenylalanine pathway affected 329 GI tract function and disturbed gut microbiota. However, decreased 2-oxoglutarate level and 330 increased urea and asparagine levels involved in alanine, aspartate and glutamate metabolism 331 demonstrated that excessive CF did not injure the liver and kidney of rats, in that the metabolism correlates with the liver and kidney functions about ammonia transportation.²⁸ Changes in 332 333 glycine, serine and threonine metabolism (Figure 4A-2), the additional block scheme) were 334 noticed for glycine, which belongs to the choline degradation pathway and is degraded into creatine through betaine and N, N-dimethylglycine.⁴¹ Additionally, glycine and serine can be 335 336 transformed into one carbon unit which is indispensible for the synthesis of purine and pyridine. ²⁸ We found this metabolism was suppressed, which supposed to be the reason that some 337 338 intestinal bacteria growth was restrained. At the same time, we noticed that phosphorylcholine 339 level in choline degradation pathway increased while dimethylamine and trimethylamine 340 obtained from microbes degradation was dramatically reduced. In short, these aberrant 341 metabolites or pathways were deemed to correlate with altered intestinal bacteria.

342 Gut microbial markers in CF-induced rats

To investigate CF-induced fluctuations in rats' gut microbiota, we performed DGGE analysis to visualize microbial diversity in faecal samples collected on day 7. R²X and Q² values from OPLS-DA model (Figure 5) of digital DGGE gel are 0.564 and 0.907 respectively, which provided a good prediction of discriminating groups. We observed approximately 45 bands, and then integrated ¹H NMR spectral data with DGGE microbial data using O2PLS. Thirteen differential bands were associated with significant metabolites (Figure 6); and only 8 particularly prominent bands were selected for cloning and sequencing (Table 1). (Due to segmentary

350 correlations with sporadic metabolites, the 5 residual bands have not been probed in following 351 discussion.) Although the number of bands in CF-treated group has been significantly reduced, 352 there were 4 bacterial species that arosed in rats with diarrhea and 4 bacteria in control group that 353 appeared to correlate with important metabolites. Using BLAST analysis, we obtained bacterial 354 species or phylotypes which were confirmed by clustering analysis, and there were one Firmicute 355 (Veillonella parvula), one Bacteroidete (Bacteroides vulgatus), and two Proteobacteria species 356 (Acidovorax avenae and Enterobacter aerogenes) in CF-treated group, while 4 species from 357 control rats belonged to Bacteroidete.

358

Figure 5 16S rDNA PCR-DGGE on day 7, the red marked bands are significant in diarrhea progressing. OPLS-DA coefficient loading profile (right) displayed the discriminative DGGE bands by comparing the treated group with control.

Figure 6 Correlation network between altered DGGE bands (the corresponding bacterial species in Table 1) and changed metalolic components of rats' urine and faeces visualized with Gephi. This map calculated using Pearson correlation coefficients ($|\mathbf{r}| \ge 0.755$ and p < 0.05), and node size denotes the highest effect size for each band or metabolite comparing treated group with control group. Nodes colored red for bands, amaranth for faecal metabolites and cyan for urinary ones. Red lines correspond to positive correlations, whereas blue lines correspond to negative correlations.

Table 1 Closest relatives of 16S rDNA V3 regions sequences derived from DGGE bands.

DGGE band	Sampl e	Seq. length(bp)	domain	phylum	class	order	family	genus	species	S_ab score	Accesion Numbers
Band 2	CF	189	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	Bacteroides vulgatus	1.00	KR611915
Band 4	CF	194	Bacteria	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Acidovorax	Acidovorax avenae	0.90	KR611916
Band 6	Ctr	189	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Prevotellaceae	Prevotella	Prevotella dentalis	0.96	KR611917
Band 10	CF	194	Bacteria	Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Enterobacter	Enterobacter cloacae complex	0.96	KR708629
Band 30	CF	195	Bacteria	Firmicutes	Negativicutes	Selenomonadales	Veillonellaceae	Veillonella	Veillonella parvula	0.94	KR611919
Band 36	Ctr	190	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Prevotellaceae	Prevotella	Prevotella denticola	0.94	KR611920
Band 39	Ctr	189	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	Bacteroides helcogenes	0.94	KR611921
Band 43	Ctr	189	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	Bacteroides vulgatus	0.99	KR611922
271	OF	$OE \cdot 1$	1	<u><u> </u></u>	1						

371 CF, CF-induced group; Ctr, control group.

372

373 **CF-induced intestinal bacteria dominated the fluctuation in urinary and faecal metabolites**

374 The maintenance of human health and the occurrences or developments of disease are deemed to have close relationship with gut microbiota. To ascertain the complicated interaction between 375 376 host and microbes, we integrated ¹H NMR spectral data and DGGE microbial data to 377 demonstrate the mechanism of CF-induced diarrhea (Figure 6). In rats with diarrhea, we found 378 that the dysbiotic signature was highly characteristic for the abundant emergence of *Enterobacter* 379 aerogenes (band 10) and Veillonella parvula (band 30), which correlated with numbers of faecal 380 metabolites. Enterobacter aerogenes is a normal bacterium and often inhabits in the mammalian intestine, and it is believed to be linked with the occurrence of colicky in infants.⁴² In the 381 382 correlation map, Veillonella parvula, a member of the most active microflora that participates in immunoregulation, ⁴³ such as *Enterobacter*, had similar interactions with perturbed metabolites. 383 384 Two other invasive bacterial species in CF-induced rats were Bacteroides vulgatus (band 2) and 385 Acidovorax avenae (band 4), both of which interfered urine and faeces metabolism. Acidovorax 386 avenae is abundant in plant, but some researchers reported that Comamonadaceae including Acidovorax were decreased in the gut of high weight hosts.⁴⁴ Interestingly, the suppressed 387 388 growth of CF-treated rats exactly correlated with increased Acidovorax avenae; once the animals 389 resumed their growth, this bacterium was dramatically reduced (Figure S3). *Bacteroides*, which 390 are obligatory anaerobic bacteria, are important for food digestion because they are rich in 391 carbohydrate transport and protein-metabolism-related enzyme, and contain glycan, vitamins, and cofactor enzymes.⁴⁵ Bacteria from Bacteroidetes are the predominant and most robust 392 393 bacteria in the gut of conventional mice, which was ultimately confirmed by our results. 394 Excessive CF impeded these dominant bacteria (band 6, 36, 39 and 43), while the relevant 395 metabolism of CF-induced rats recovered after terminating the intervention.

RSC Advances Accepted Manuscript

396 Gut microbiota affected carbohydrates metabolism. It is known that the gut microbiota convert monosaccharide into SCFAs by fementation, ⁴⁶ and SCFAs are absorbed to supply 397 energy and nutrients to the host and microbes.⁴⁷ In our study, *Enterobacter aerogenes* and 398 399 *Veillonella parvula* showed strong positive correlations with monosaccharides such as α -xylose 400 and α -arabinose, but exhibited a negative relevance with SCFAs (butyrate, caproate and 401 isocaproate). SCFAs particularly butyrate, also have immunomodulatory effects that prevents the gut from the inflammation.⁴⁸ The fact that α -xylose and α -arabinose were elevated and SCFAs 402 403 were decreased in faeces may indicate that bacteria responsible for monosaccharide glycolysis 404 were suppressed and the inflammation that accompanies diarrhea cannot be alleviated. *Prevotella*, 405 the abundant genera of host gut, whose relatives are rich in xylanase, carboxymethylcellulase and endoglucanase^{49,50} in the rumen, may supply a 'permissive' gut microbiota to produce high 406 levels of SCFAs.⁵¹ However, it did not show a close relationship with SCFAs in this map, but 407 408 some reports demonstrated that abnormal fluctuations in *Prevotella* have been found in various intestinal diseases such as IBD ^{52,53} and diarrhea⁵⁴, which occurred in our study. 409

410 Gut microbiota affected amino acid metabolism. Combined with the metabolic biomarker 411 and significant pathways mentioned above, we found that the imbalanced gut microbiota 412 severely impaired amino acids metabolism but interacted with different directions for host and themselves. 5-aminovalerate is the intermediate of lysine degradation by gut microbiota, ⁵⁵ which 413 414 is then metabolized into acetate and propionate. In our study, there was no relationship between 415 band 2 and saccharides, except for 5-aminovalerate. Similarly, band 4 showed a positive 416 correlation with 5-aminovalerate but negative relevance with urinary acetate. Therefore, the 417 energy deficiency of host in response to decreased SCFAs may relate to the increase in band 4. 418 Alanine, aspartate and glutamate metabolism including faecal aspartate and asparagine levels,

419 were negatively correlated to band 10 and urinary glutamine negatively correlated with band 2, 420 band 4 and band 43. CF-induced bacteria are supposed to hamper the energy metabolism because 421 alanine metabolism is closely related to TCA cycle. In correlation map, we observed that 422 metabolites such as ornithine and aspartate in arginine and proline metabolic pathway displayed 423 negative correlations with band 2, band 4 and band 43 or band 10. As we know, Bacteroides convert mucoitin into proline⁵⁶ which is enriched in glycoprotein of intestinal epithelial cells.⁵⁷ 424 Proline is increased in colorectal cancer patients, ⁵⁸ and our results revealed a similar elevation in 425 426 the CF-treated rats. This may reflect that CF-induced diarrhea impaired morphology and function 427 of colonic epithelial cells. In previous studies, Bacteroides vulgates displayed a reduction in patients with IBD ^{59,60} and diarrhea, ⁶¹ but it showed a significant increase in our group with 428 429 diarrhea. The result demonstrated that the dysbiosis in CF-induced diarrhea differs from the gut 430 imbalance of IBD. Phenols are rich in our daily diet. After deglycosylation, dehydroxylation and demethylation by the gut microbiota, ⁶² they are converted to *p*-cresol and phenol in the systemic 431 circulation or excretion.⁶³ Interestingly, 3-hydroxyphenylacetate and *p*-cresol glucuronide were 432 433 positively correlated with the abundance of Prevotella, as well as hippurate and 4-434 hydroxyhippurate. Urinary hippuric acid is believed to have an association with tyrosine and 435 phenylalanine in faeces, in that the microbiota produces hippuric acid by the catabolism of these amino acids.⁶⁴ Moreover, faecal hydroxyphenylacetic acid, which is produced from tyrosine 436 437 through microbial enzymes, showed the same correlation with band 10 and band 30 as tyrosine. 438 Our result suggests that excessive CF administration impaired the bacterial-mediated synthesis 439 and then impaired host metabolism when the elevated phenylalanine level was compared with 440 decreased phenylpropionate, hydroxyphenylacetate, hippurate and hydroxyhippurate levels. In 441 conclusion, long-term excess CF use impaired the gut-host co-metabolism.

RSC Advances Accepted Manuscript

Gut microbiota affected choline metabolism. The prominent findings were the suppression 442 443 of bacterial activity for choline and promotion for glycine synthesis in the host. This is reflected by the depleted levels of faecal dimethylamine (DMA), trimethylamine (TMA), and elevated 444 445 concentrations of fecal choline and glycine as well as urinary choline and creatine. On one hand, 446 choline is usually derived from daily diet and can be metabolized into TMA via gut microbiota 447 and is further degraded to TMAO or DMA. On the other hand, host metabolises choline to 448 glycine via betaine, methionine and sarcosine, and then decomposes it into methylamine or creatine, which is ultimately excreted as creatinine.⁴¹ Our result showed negative correlations 449 450 between DMA, TMA and band 10 and band 30, respectively; furthermore, band 10 was 451 negatively correlated to faecal methionine and sarcosine and positively associated with glycine and creatinine. As previously reported, ^{65,66} increased creatine and ethanolamine levels (data not 452 453 shown) in our study may maintain intestinal muscle contractions and osmoregulation. These 454 correlations suggest that Enterobacter aerogenes damaged normal functions of the gut. In addition. *Enterobacter aerogenes* is able to produce putrescine and cadaverine ⁶⁷ (which were 455 456 elevated in rats with diarrhea, data not shown), which are deemed to indulge histamine induced diarrhea. 68,69 457

458 CF-induced diarrhea due to the intrusion of harmful bacteria and the suppression of helpful 459 microbial population, which is analogous to antibiotic treatments, can selectively sterilize normal 460 bacteria. It is different that the dysbiotic microflora in CF-treated rats returned to normal after 7 days of recovery (Figure S3), which does not occur in antibiotics treatments.^{17,65} Further 461 462 investigations should be performed to access the antimicrobial mechanism of CF because antibiotics often promote the expression of antibiotic resistance genes in the microbiome.⁷⁰ 463 464 Antibiotics not only cause dysbacteriosis but often down-regulate the levels of SCFAs, BCFAs,

methylamines, xanthine, uracil hippurate ect. ⁴⁰ However, monosaccharides, BCAAs, aromatic 465 466 amino acids and choline were up-regulated in our CF-induced intestinal turbulence. What 467 amazed us is that the SCFA levels in urine showed an increasing trend which differed from faeces. This distinction also found in antibiotics-treated metabolic profiles. ⁴⁰ because faecal 468 469 metabolites primarily reflected the gut microbiota metabolism but urinary excretions usually 470 come from the host-microbiome co-metabolism. Metabolic perturbations related to changes in 471 physiological status are only present in urine. Thus, significant components in urine may not be 472 the direct metabolic products of gut microbiota but are altered along with other metabolites in 473 host's systemic circulation.

474 Conclusion

475 This work describes toxicity of CF in rats with diarrhea, and the variations in urinary and 476 faecal metabolites have been clarified by an NMR metabolomic study, while the expected dysbiosis of gut microbiota were confirmed by DGGE analysis. Furthermore, we- employed 477 478 covariation analyses of NMR and DGGE data to explore the impact of the altered gut microbial 479 on metabolic profiles of CF-treated rats. The findings indicate that excessive and long-term CF 480 administration perturbed some metabolic pathways such as glycine and serine degradation, and 481 then disturbed the harmonious growth of intestinal bacteria. In rats with diarrhea, Bacteroides 482 and Prevotella were significantly suppressed, while Acidovorax, Enterobacter and Veillonella 483 were promoted. The disrupted gut microflora may have caused the diarrhea in response to the 484 decreased SCFA levels, which play an irreplaceable role in regulating the absorption of water 485 and sodium. Enterobacter and Veillonella have indispensible roles in gut microbiota or host 486 metabolism due to their frequent and compact correlations with the alternations in energy 487 metabolism, amino metabolism and choline metabolism in faeces. *Bacteroides* and *Acidovorax*,

which are related to most of urinary metabolites such as BCAAs, hippurate, creatine and
glutamate, restructure host's metabolic phenotype after CF administration. According to this
study, we found that CF toxicity on gut is reversible using metabolic and DGGE trajectory chart.
In conclusion, this work inspired us to find a novel way to study drug toxicity. Moreover, global
system biology combined with metabonomics can yet be regarded as a commendable strategy for
TCM research.

494 Abbreviations

495 PCR-DGGE, polymerase chain reaction-denaturing gradient gel electrophoresis; BCFAs, 496 branched chain fatty acids; GC-MS, gas chromatography-mass spectrometry; LC-MS, liquid 497 chromatography-mass spectrometry; NMR, nuclear magnetic resonance; TSP, sodium 3-498 (trimethylsilyl) propionate-2,2,3,3- d_4 ; HSQC, ¹H-¹³C heteronuclear single quantum correlation 499 spectroscopy; TCA, tricarboxylic acid cycle; VIP, variable importance to the projection.

500 Acknowledgement

501 This work was financially supported by the National Natural Science Foundation of China 502 (Grant No. 81173564, No. 81274028, No. 81473319 and No. 81473540), the National Key 503 Technology R&D Program during the Twelfth Five-Year Plan Period of People's Republic of 504 China (No. 2013BAD10B04-2) and the Guangzhou Science and Technology Program (No. 505 2014J4100176).

506 Notes

507 The authors declare no competing financial interest.

508

509 References

- J. Tang, Y. Feng, S. Tsao, N. Wang, R. Curtain and Y. Wang, J. Ethnopharmacol. 2009, 126, 5-17.
- 2 Z. Jiang, F. Liu, E. S. Ong and S. Li, *Metabolomics*. 2012, **8**, 1052-1068.
- 3 R. Shi, H. Zhou, B. Ma, Y. Ma, D. Wu, X. Wang, H. Luo and N. Cheng, *Biopharm. Drug Dispos.* 2012, **33**, 135-145.
- X. Zhang, Y. Zhao, M. Zhang, X. Pang, J. Xu, C. Kang, M. Li, C. Zhang, Y. Zhang, X. Li, G. Ning and L. Zhao, *PloS One*. 2012, 7.
- Y. Zhou, Q. Liao, M. Lin, X. Deng, P. Zhang, M. Yao, L. Zhang and Z. Xie, *PLoS One*.
 2014, 9.
- 6 X. Zhao, X. Tong, L. Zhao, Q. Zhou, Z. Peng and B. Pang, *Zhongguo Zhong Yao Za Zhi*. 2013, **38**, 546-547.
- 7 M. G. Gareau and K. E. Barrett, Curr. Opin. Pharmacol. 2013, 13, 895-899.
- 8 V. C. Antharam, E. C. Li, A. Ishmael, A. Sharma, V. Mai, K. H. Rand and G. P. Wang, J. *Clin. Microbiol.* 2013, **51**, 2884-2892.
- 9 J. M. Hollander and J. I. Mechanick, J. Am. Diet. Assoc. 2008, 108, 495-509.
- G. Xie, A. Zhao, L. Zhao, T. Chen, H. Chen, X. Qi, X. Zheng, Y. Ni, Y. Cheng, K. Lan,
 C. Yao, M. Qiu and W. Jia, *J. Proteome Res.* 2012, 11, 3449-3457.
- 11 T. E. Cowan, M. S. Palmnäs, J. Yang, M. R. Bomhof, K. L. Ardell, R. A. Reimer, H. J. Vogel and J. Shearer, J. Nutr. Biochem. 2014, 25, 489-495.
- 12 W. Xie, D. Gu, J. Li, K. Cui and Y. Zhang, *PLoS One*. 2011, **6**.
- 13 J. Xia and D. S. Wishart, Nucleic. Acids Res. 2010, 38 (Suppl.), W71-77.
- 14 A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A.

Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander and J. P. Mesirov, *Proc. Natl. Acad. Sci. U.S.A.* 2005, **102**, 15545-15550.

- 15 C. Pontoizeau, J. F. Fearnside, V. Navratil, C. Domange, J. B. Cazier, C. Fernández-Santamaría, P. J. Kaisaki, L. Emsley, P. Toulhoat, M. T. Bihoreau, J. K. Nicholson, D. Gauguier and M. E. Dumas, *J. Proteome Res.* 2011, **10**, 1675-1689.
- 16 Y. Zhao, J. Wu, J. V. Li, N. Y. Zhou, H. Tang and Y. Wang, J. Proteome Res. 2013, 12, 2987-2999.
- J. R. Swann, K. M. Tuohy, P. Lindfors, D. T. Brown, G. R.Gibson, I. D. Wilson, J. Sidaway, J. K. Nicholson and E. Holmes, *J. Proteome Res.* 2011, 10, 3590-3603.
- 18 J. Wu, Y. An, J. Yao, Y. Wang and H. Tang, Analyst. 2010, 135, 1023-1030.
- 19 C. A. Merrifield, M. Lewis, S. P. Claus, O. P. Beckonert, M. E. Dumas, S. Duncker, S. Kochhar, S. Rezzi, J. C. Lindon, M. Bailey, E. Holmes and J. K. Nicholson, *Mol. BioSyst.* 2011, 7, 2577-2588.
- 20 G. Le Gall, S. O. Noor, K. Ridgway, L. Scovell, C. Jamieson, I. T. Johnson, I. J. Colquhoun, E. K. Kemsley and A. Narbad, *J. Proteome Res.* 2011, **10**, 4208-4218.
- 21 M. E. Dumas, J. Kinross and J. K. Nicholson, *Gastroenterology*. 2014, 146, 46-62.
- 22 M. Rantalainen, O. Cloarec, O. Beckonert, I. D. Wilson, D. Jackson, R. Tonge, R. Rowlinson, S. Rayner, J. Nickson, R. W. Wilkinson, J. D. Mills, J. Trygg, J. K. Nicholson and E. Holmes, *J. Proteome Res.* 2006, **5**, 2642-2655.
- 23 D. J. Crockford, E. Holmes, J. C. Lindon, R. S. Plumb, S. Zirah, S. J. Bruce, P. Rainville, C. L. Stumpf and J. K. Nicholson, *Anal. Chem.* 2006, 78, 363-371.
- 24 S. Bastian Heymann and M. Jacomy, *International AAAI Conference on Weblogs and Social Media;* Association for the Advancement of Artificial Intelligence, CA, Palo

Alto, 2009.

- 25 H. Lu, J. He, Z. Wu, W. Xu, H. Zhang, P. Ye, J. Yang, S. Zhen and L. Li, *Microb. Ecol.*2013, 65, 781-791.
- 26 X. Tan, J. Ma, R. Feng, C. Ma, W. Chen, Y. Sun, J. Fu, M. Huang, C. He, J. Shou, W. He, Y. Wang and J. Jiang, *PloS One*. 2014, 8.
- 27 J. Ma, R.Feng, X. Tan, C. Ma, J. Shou, J. Fu, M. Huang, C. He, S. Chen, Z. Zhao, W. He, Y. Wang and J. Jiang, *J. Pharm. Sci.* 2013, **102**, 4181-4192.
- 28 X. Cha and C. Zhou, in *Biochemistry*, ed. N. Cheng, and A. Zhou, People's Medical Publishing House, Beijing, 2008, pp 179-206.
- 29 E. A. Smith and G. T. Macfarlane, Anaerobe. 1997, 3, 327-337.
- 30 M. Blaut and T. Clavel, J. Nutr. 2007, 137 (Suppl. 2), 751-755.
- 31 J. K. Nicholson, E. Holmes and I. D. Wilson, Nat. Rev. Microbiol. 2005, 3, 431-438.
- 32 S. E. Pryde, S. H. Duncan, G. L. Hold, C. S. Stewart, H. J. Flint, *FEMS Microbiol. Lett.* 2002, 217, 133-139.
- 33 J. H. Cumming, J. L. Rombeau and T. Sakata, in *Physiological and clinical aspects of short-chain fatty acids*, ed. Cambridge University Press, Cambridge, 1995.
- 34 F. P. Martin, N. Sprenger, I. Montoliu, S. Rezzi, S. Kochhar, J. K. Nicholson, J. *Proteome Res.* 2010, **9**, 5284-5295.
- Z. Wang, E. Klipfell, B. J. Bennett, R. Koeth, B. S. Levison, B. Dugar, A. E. Feldstein,
 E. B. Britt, X. Fu, Y. M. Chung, Y. Wu, P. Schauer, J. D. Smith, H. Allayee, W. H. Tang,
 J. A. DiDonato, A. J. Lusis, S. L. Hazen, *Nature*. 2011, 472, 57-63.
- 36 X. Cha and C. Zhou, in *Biochemistry*, ed. Y. Wang, People's Medical Publishing House,

Beijing, 2008, pp 120-159.

- 37 J. Xia and D. S. Wishart, Nat. Protoc. 2011, 6, 743-760.
- 38 L. Stryer, J. M. Berg and T. L. Tymoczko, in *Biochemistry*, ed. W. H. Freeman and Company, New York, 2006.
- 39 X. Cha and C. Zhou, in *Biochemistry*, ed. X. Cui, People's Medical Publishing House, Beijing, 2008, pp 220-235.
- 40 X. Zheng, G. Xie, A. Zhao, L. Zhao, C. Yao, N. H. Chiu, Z. Zhou, Y. Bao, W. Jia, J. K. Nicholson and W. Jia, *J. Proteome Res.* 2011, **10**, 5512-5522.
- 41 S. S. Heinzmann, C. A. Merrifield, S. Rezzi, S. Kochhar, J. C. Lindon, E. Holmes and J. K. Nicholson, *J. Proteome Res.* 2012, 11, 643-655.
- 42 F. Savino, L. Cordisco, V. Tarasco, E. Locatelli, D. Di Gioia, R. Oggero and D. Matteuzzi, *BMC Microbiology*. 2011, **11**, 157.
- 43 B. van den Bogert, M. Meijerink, E. G. Zoetendal, J. M. Wells and M. Kleerebezem, *PLoS One.* 2014, 9.
- 44 H. Meng, Y. Zhang, L. Zhao, W. Zhao, C. He, C. F. Honaker, Z. Zhai, Z. Sun and P. B. Siegel, *PLoS One*. 2014, 9.
- 45 F. H. Karlsson, D. W. Ussery, J. Nielsen and I. A Nookaew, *Microb. Ecol.* 2011, **61**, 473-485.
- 46 D. L. Topping and P. M. Clifton, *Physiol. Rev.* 2001, **81**, 1031-1064.
- 47 J. M. Wong, R. de Souza, C.W. Kendall, A. Emam and D. J. Jenkins, J. Clin. Gastroenterol. 2006, 40, 235-243.
- 48 J. J. Kovarik, W. Tillinger, J. Hofer, M. A. Hölzl, H. Heinzl, M. D. Saemann and G. J. Zlabinger, *Eur. J. Clin. Invest.* 2011, 41, 291-298.

- C. De Filippo, D. Cavalieri, M. Di Paola, M. Ramazzotti, J. B. Poullet, S. Massart, S. Collini, G. Pieraccini and P. Lionetti, *Proc. Natl. Acad. Sci. U.S.A.* 2010, 107, 14691-14696.
- 50 B. A. White, R. Lamed, E. A. Bayer and H. J. Flint, *Annu. Rev. Microbiol.* 2014, **68**, 279-286.
- 51 H. Zhang, J. K. DiBaise, A. Zuccolo, D. Kudrna, M. Braidotti, Y. Yu, P. Parameswaran,
 M. D. Crowell, R. Wing, B. E. Rittmann and R. Krajmalnik-Brown, *Proc. Natl. Acad. Sci. U.S.A.* 2009, 106, 2365-2370.
- F. Brito, C. Zaltman, A. T. Carvalho, R. G. Fischer, R. Persson, A. Gustafsson and C. M. Figueredo, *Eur. J. Gastroenterol. Hepatol.* 2013, 25, 239-245.
- 53 G. D. Wu, F. D. Bushmanc and J. D. Lewis, *Anaerobe*. 2013, 24, 117-120.
- 54 M. Pop, A. W. Walker, J. Paulson, B. Lindsay, M. Antonio, M. A. Hossain, J. Oundo, B. Tamboura, V. Mai, I. Astrovskaya, H. Corrada Bravo, R. Rance, M. Stares, M. M. Levine, S. Panchalingam, K. Kotloff, U. N. Ikumapayi, C. Ebruke, M. Adeyemi, D. Ahmed, F. Ahmed, M. T. Alam, R. Amin, S. Siddiqui, J. B. Ochieng, E. Ouma, J. Juma, E. Mailu, R. Omore, J. G. Morris, R. F. Breiman, D. Saha, J. Parkhill, J. P. Nataro and O. C. Stine, *Genome. Biol.* 2014, **15**, R76.
- 55 O. Revelles, M. Espinosa-Urgel, T. Fuhrer, U. Sauer and J. L. Ramos, *J. Bacteriol.*2005, 187, 7500-7510.
- 56 A. P. Corfield, S. A. Wagner, J. R. Clamp, M. S. Kriaris, and L. C. Hoskins, *Infect. Immun.* 1992, 60, 3971-3978.
- 57 J. C. Byrd and R. S. Bresalier, Cancer Metast. Rev. 2004, 23, 77-99.
- 58 D. Monleon, J. M. Morales, A. Barrasa, J. A. López, C. Vázquez and B. Celda, NMR

Biomed. 2009, 22, 342-348.

- 59 S. Kang, S. E. Denman, M. Morrison, Z. Yu, J. Dore, M. Leclerc and C. S. McSweeney, *Inflamm. Bowel. Dis.* 2010, **16**, 2034-2042.
- 60 S. O. Noor, K. Ridgway, L. Scovell, E. K. Kemsley, E. K. Lund, C. Jamieson, I. T. Johnson and A. Narbad, *BMC Gastroenterol*. 2010, **12**, 134.
- 61 B. Samb-Ba, C. Mazenot, A. Gassama-Sow, G. Dubourg, H. Richet, P. Hugon, J. C. Lagier, D. Raoult and F. Fenollar, *PLoS One*. 2014, 9.
- 62 R. Cermak and G. M. Breves, Arch. Anim. Nut. 2006, 60, 180-189.
- 63 J. K. icholson, E. Holmes, J. Kinross, R. Burcelin, G. Gibson, W. Jia and S. Pettersson, *Science*. 2012, **336**, 1262-1267.
- 64 T. A. Clayton, FEBS Lett. 2012, 586, 956-961.
- 65 F.P. Martin, Y. Wang, I.K. Yap N. Sprenger, J. C. Lindon, S. Rezzi, S. Kochhar, E. Holmes and J. K. Nicholson, J. Proteome Res. 2009, 8, 3464-3474.
- P. H. Yancey, M. E. Clark, S. C. Hand, R. D. Bowlus and G. N. Somero, *Science*. 1982, 217, 1214-1222.
- 67 P. Kalač, Meat Sci. 2006, 73, 1-11.
- 68 H. P. Til, H. E. Falke, M. K. Prinsen and M. I. Willems, *Food Chem. Toxicol*, 1997, 35, 337-348.
- 69 S. Bodmer, C. Imark and M. Kneubühl, Inflamm. Res. 1999, 48, 296-300.
- 70 S. R. Modi, J. J. Collins and D. A. Relman, J. Clin. Invest. 2014, 124, 4212-4218.

Supporting Information

Figure S1 shows 600 MHz ¹H NMR spectra of faeces and urine of SD rat, **Figure S2** shows PCA scores scatter plots for ¹H NMR data of urine and faeces, **Figure S3** shows PCA scores scatter plot for DGGE fingerprint of day 21. **Table S1** and **S2** list specific assignments of faecal and urinary metabolites. **Table S3** and **S4** exhibit results about quantitative enrichment analysis and pathway analysis of faecal metabolites on day 7. **Table S5** and **S6** exhibit similar results like Table S3 and S4 about urine.

Figure legends

Figure 1 ¹H NMR coefficient loading profiles from OPLS-DA model on day 7 and PLS-DA scores plots with time-dependent trajectory. A is for urine samples, B is for faeces and in C graph: (1), (2), (3) exhibit fluctuations of 4, 3, 3 time points in urine, faeces and microbiota respectively.

Figure 2 Distributions of intensities for selected urinary metabolites based upon the normalized bucket table. Significant metabolites of rats' urine which compared control group with CF-treated group at different time points: day -1 is pre-administration day, day 7 and day 14 are diarrhea days, and day 21 is post-administration day for 7 days.

Figure 3 Distributions of intensities for selected faecal metabolites based upon the normalized bucket table. Significant metabolites of faeces samples from CF-treated group were compared with control group ones at different time points: day -1 is pre-administration day, day 7 is diarrhea at the first day.

Figure 4 Meaningful metabolic pathways of urine and faeces from MSEA. 57 components in faeces were imported to MSEA to show really changed pathways (A-1), a weight distribution of these pathways displayed on the right hand (A-2). 85 urinary metabolites were conducted as faecal samples, and results exhibited in B-1, B-2 severally. At the right corner of each block scheme, it emerged the specific pathway which detected metabolites were involved in (rectangles colored in blue are no metabolites matched, vice versa).

Figure 5 16S rDNA PCR-DGGE on day 7, the red marked bands are significant in diarrhea progressing. OPLS-DA coefficient loading profile (right) displayed the discriminative DGGE bands by comparing the treated group with control.

Figure 6 Correlation network between altered DGGE bands (the corresponding bacterial species in Table 1) and changed metalolic components of rats' urine and faeces visualized with Gephi. This map calculated using Pearson correlation coefficients ($|\mathbf{r}| \ge 0.755$ and p < 0.05), and node size denotes the highest effect size for each band or metabolite comparing treated group with control group. Nodes colored red for bands, amaranth for faecal metabolites and cyan for urinary ones. Red lines correspond to positive correlations, whereas blue lines correspond to negative correlations.

Table 1 Closest relatives of 16S rDNA V3 regions sequences derived from DGGE bands.