

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1 2	One-Pot Synthesis of 3D flower-like heterostructured SnS ₂ /MoS ₂ for enhanced Supercapacitor Behaviors
3	a^{b} a^{b} a^{b} a^{b} a^{c} a^{b} a^{c} a^{c}
4	Lina Wang ",", Ying Ma ",", Min Yang ", Yanxing Qi",
5	a.State Key Laboratory for Oxo Synthesis and Selectve Oxidation, Lanzhou Institute of Chemical
6	Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
7	b.University of Chinese Academy of Sciences, Beijing 100039, PR China.
8	Corresponding author. Tel./fax: +86 931 4968190.
9	E-mail addresses: wanglina1106@126.com, qiyx@lzb.ac.cn(Y.Qi).
10	Abstract: Novel three-dimensional flower-like heterostructured SnS_2/MoS_2 was produced via one-step
11	hydrothermal method. The full potential of the heterostructured SnS_2/MoS_2 material could be realized
12	because of strong synergetic effect, which was not only able to effectively weaken the agglomerating
13	and restacking problems during the electrochemical reaction, but also able to ensure the high-rate and
14	long-life. We found that the SnS_2/MoS_2 had better electrochemical performance compared to the MoS_2 ,
15	due to the rapid electronic transport and volume change buffering of the formation of $\ensuremath{SnS_2/MoS_2}$
16	heterostructure. The electrochemical tests showed that the SnS_2/MoS_2 electrode had a specific
17	capacitance of 105.7 F g ⁻¹ at a current density of 2.35 A g ⁻¹ and it displayed good cyclic stability of
18	90.4% retention even after 1000 cycles, which indicated that the SnS_2/MoS_2 was an useful potential
19	electrode material for the application of energy storage and deserved to be further investigated.
20	Keywords: molybdenum disulfide, tin disulfide, heterostructured nanomaterial, energy storage,
21	supercapacitor
22	1. Introduction
23	To meet the urgent needs for renewable and sustainable power sources, great attention has been

24 focused on storage devices and energy conversion with ultra fast charge and discharge characteristics,

1	such as supercapacitors ^[1-3] . Supercapacitors are a new energy storage with high power density, fast
2	charging/discharging rate, super-long cycle life, and excellent cycle stability ^[4-7] .
3	Three-dimensional (3D) hierarchical structures, which are comprised of low dimensional nanosheets
4	building blocks nanostructures, are promising as electrodes [8-11]. Because 3D hierarchical structures
5	exhibit the advantages of the pristine building blocks and the improvement property of their secondary
6	architecture. With regard to Supercapacitor, the 3D hierarchical structures can facilitate the
7	transportation of electrons and ions and accommodate the volume change of materials in
8	electrochemical reaction process ^[12-14] .
9	Molybdenum disulfide (MoS ₂), as an important member of two-dimensional(2D) nanomaterials, is
10	composed of three atom layers (S-Mo-S) stacking together via week van der Waals interaction. Up to
11	now, 3D hierarchical structures MoS ₂ , such as flower-like nanostructures ^[15] , hierarchically porous
12	hollow spheres [16-18], have been proved to be effective in improving their electrochemical properties. In
13	general, self-assembled style, which minimize the energy of the reactive system in a spontaneous
14	process, is the simplest synthetic route to obtain 3D hierarchical structures ^[19] . However, the design and
15	electric reactivity of 3D nano-heterostructures have rarely been studied. Kim et al. reported the MoS_2
16	nanostructures synthesized by a hydrothermal route and the specific capacitance of MoS_2 was 92.85
17	Fg ⁻¹ at a constant discharge current density of 0.5 mA cm ^{-2[20]} . Ma and co-workers synthesized
18	flower-like MoS ₂ nanospheres through a hydrothermal method. However, the electrochemical tests
19	showed that the maximum specific capacity was just about 122 F g ⁻¹ at 1 A g ^{-1[21]} . Sun et al
20	demonstrated polyaniline/MoS2 composites for high-performance supercapacitors and the specific
21	capacitance of the pure MoS_2 electrodes was only 98 F g ⁻¹ at 1 A g ^{-1[22]} . However, the rate
22	performances and cycling stabilities of the electrode materials are still unsatisfactory. Ternary sulfides,

I	such as nickel-cobalt sulfides, exhibit an electric conductivity that is much higher than those of single
2	component sulfides. For example, Chen et al reported that the hierarchical structured NixCo1- $xS_{1.097}$
3	electrodes exhibited a remarkable maximum specific capacitance of approximately five times higher
4	than that of the $CoS_{1.097}$ precursors at a current density of 0.5 A g ^{-1[23]} . Chen and colleagues proved that
5	the specific capacitance of $Ni@Ni_3S_2$ was improved from 89 F g ⁻¹ to 122 F g ⁻¹ for $Ni@Ni_{1.4}Co_{1.6}S_2$ at a
6	current density of 1 A g^{-1} with a high loading level (20 mg cm ⁻²). The as-assembled
7	$Ni@Ni_{1.4}Co_{1.6}S_2//AC \ showed \ better \ cycling \ stability \ and \ coulombic \ efficiency \ than \ Ni@Ni_3S2//AC^{[24]}.$
8	Guan and colleagues fabricated a 3D hierarchical nest-like Ni_3S_2 @NiS with nanorods as building
9	blocks, which was then used as template to prepare $\mathrm{Ni}_3S_2@\mathrm{Co}_9S_8$ and $\mathrm{Ni}S@\mathrm{Ni}Se_2$ electrodes. The
10	specific capacities of Ni_3S_2 @NiS, Ni_3S_2 @Co ₉ S ₈ , and NiS @NiSe ₂ electrodes were 2440, 6427, and 7717
11	F g ⁻¹ , respectively, at a current density of 0.5 A g ^{-1[25]} . The results indicated that the synergistic effect of
12	double metal ions could enhance the electrochemical performance .
13	Herein, we report the preparation of MoS_2 3D hierarchical structures with grown SnS_2 by a
14	simple and not approach without using any taxis shamicals. In this papastructure. So ions can be

14 simple one-pot approach without using any toxic chemicals. In this nanostructure, Sn ions can be 15 readily embedded onto the flowerlike MoS₂ nanosheets through one-top hydrothermal technique. 16 And three-dimensional flowerlike heterostructured SnS₂/MoS₂ nanosheets act as framework-like 17 substrate to provide a path for ions diffusion. In the nanostructure, SnS₂ nanoplates reside in the 18 flowerlike MoS_2 nanosheets to prevent the collapse of the MoS_2 nanosheets. Thereby, the 19 synergistic effect of MoS₂ nanosheets and SnS₂ nanoplates is not only able to effectively weaken 20 the agglomerating and restacking problems during the electrochemical reaction, but also able to 21 ensure the high-rate and long-life. The structure, morphology and electrochemical performance of 22 the electrode material were investigated. The as-prepared SnS₂/MoS₂ electrode exhibits a high

RSC Advances Accepted Manuscript

1	capacitance of 105.4F g^{-1} at 2.35A g^{-1} , and also shows excellent cycle stability. The results
2	confirme that the as-prepared heterostructured $\mbox{SnS}_2/\mbox{MoS}_2$ nanostructured electrode exhibites an
3	enhanced electrochemical behavior.
4	2. Experimental section
5	2.1 Materials
6	Sodium molybdate, thiourea, and tin tetrachloride were of analytical grade and used without
7	further purification. In a typical procedure, 2.4mm Na ₂ MoO ₄ •2H ₂ O, 0.8mm SnCl ₄ and 9mm
8	$(\mathrm{NH}_2)_2\mathrm{CS}$ were dissolved in 15 ml of deionized water and 5ml of absolute ethanol. After stiring
9	for 30 min, the solution was transferred into a 50 ml Teflon-lined stainless steel autoclave and
10	sealed tightly and then heated at 210 ${}^\circ\!\mathrm{C}$ for 22 h. After cooling naturally, the black precipitates
11	were collected, washed by deionized water several times, and dried at 80 $^\circ\!\mathrm{C}for~5$ h in a vacuum
12	oven. Finally, the hierarchical heterostructured SnS_2/MoS_2 were obtained. As a comparison, 3D
13	flower-like MoS_2 was obtained, when 2.4mm $Na_2MoO_4 \cdot 2H_2O$ and $4.8mm(NH_2)_2CS$ were dissolved in
14	15 ml of deionized water and 5ml of absolute ethanol with the other reaction conditions left unchanged.
15	2.2 Characterization
16	The crystal structure of the obtained SnS_2/MoS_2 was characterized by X-ray diffraction (XRD) on a
17	PANalytical X' pert PRO instrument using Cu K α radiation. The morphology of the sample was
18	studied by transmission electron microscope (TEM) on a JEOLJEM-2100 instrument at an accelerating
19	voltage of 80 kV and field-emission scanning electron microscope (FESEM) using a JEOL-JSM6701F
20	instrument at an accelerating voltage of 5 kV. The qualitative information was obtained by X-ray
21	Photoelectron Spectrometer (XPS, VG ESCALAB 210)

22 **2.3 Electrochemical Measurements**

23 A typical three electrode test cell was used for capacitive performances of the as-prepared sample

I	on a CH1660D (Chenhua, Shanghai, China) electrochemical working station. All of the measurements
2	were carried out in a 1 M KCl aqueous electrolyte solution at room temperature. The working electrode
3	was fabricated by mixing the as-prepared electroactive material, carbon black and poly(tetra
4	fluoroethylene) at a weight ratio of 85:10:5 to form a homogeneous slurry (the total mass of the
5	electrode material was 10 mg), which was pasted onto a piece of nickel foam current collector using a
6	blade. Afterwards, the electrode was dried at 80° C for 12h. A saturated calomel electrode (SCE) and
7	platinum sheet were used as the reference and counter electrodes, respectively. Cyclic voltammetry
8	(CV) measurements were carried out in the potential range from _0.9 V to_0.3 V using different scan
9	rates, which was varied from 2 to 20 mV s ⁻¹ . Galvanostatic charge-discharge (GCD) curves were
10	recorded at different current densities within the potential range from -0.9 V to -0.3 V. Electrochemical
11	impedance spectroscopy (EIS) measurements were performed in the frequency range of 10^5 to 10^{-2} Hz.
12	3. Results and Discussion
13	The XRD pattern of the SnS_2/MoS_2 displays two kinds of diffraction peaks in firgure 1, Besides the
14	diffraction peaks at 13.9 $^\circ$ (002), 33.3 $^\circ$ (100) and 57.5 $^\circ$ (006) reflections assigned to the MoS_2
15	$(JCPDS \text{ card no.37-1492})^{[26]}$, all additional ones are well-matched to the SnS ₂ $(JCPDS \#23-0677)^{[27]}$
16	indicating the presence of SnS_2 grown with MoS_2 .
17	The low-magnification SEM image (Fig. 2a) demonstrates that the MoS ₂ consists of a large quantity
18	of uniform 3D flower-like nanostructures. The flower-like MoS ₂ has diameters of about 600-800 nm.
19	The high-magnification SEM image (Fig. 2b) reveals that the flower-like nanostructures are composed
20	of intercrossed curved nanoflakes with a thickness of several nanometers. The morphology of the
21	as-synthesized flowerlike MoS ₂ was further characterized by TEM. As shown in Fig. 2c, TEM image
22	confirmes the existence of flowerlike MoS_2 structures, which closely correlates with the results of the
23	SEM measurement. Figure 3(a,b) shows the SEM image of the as prepared flower-like SnS ₂ /MoS ₂

RSC Advances Accepted Manuscript

1 heterostructure. The 3D architecture is helpful to increase the specfic area. 3D flower-like 2 heterostructured MoS₂/SnS₂ facilitates rapid electronic transport in electrode reactions. Furthermore, 3 this structure also enhances the stability of electrochemical performance. Figure 3c shows the TEM 4 image of SnS_2/MoS_2 heterostructure. The image reveals a general trend with the sheets of SnS_2 5 homogeneously embedded in MoS₂, showing the layered platelets. The Mapping analyses on the 6 SnS_2/MoS_2 (Figure 3d) reveal the presence of not only Mo and S but also Sn, which confirm the 7 assumption that some SnS_2 may be formed in the interior of MoS_2 . Inductively coupled plasma mass 8 spectroscopy analysis reveals that the ratio of Mo:Sn was 3.4:1. 9 The obtained SnS₂/MoS₂ were further characterized by XPS. The high-resolution XPS of Mo 3d 10 exhibits three peaks in Fig. 4a. The peaks at 233.1and 229.9 eV are Mo 3d_{3/2} and Mo3d_{5/2} binding 11 energies, respectively. These peaks can be attributed to the Mo ion in the +4 oxidation state. The peak 12 227.1 eV can be ascribed to the 2s binding energy of S in MoS₂. The high-resolution of S 2p spectrum 13 showed main doublet located at binding energies of 162.1 and 163.2eV in Fig. 4b, which can be 14 assigned to the spin-orbit couple S $2p_{3/2}$ and S $2p_{1/2}$, respectively. These binding energies agrees well with the reported values for the MoS_2 ^[28-29]. The two strong peaks at around 486.5 and 495 15 16 eV are displayed in Fig. 3c. These peaks can be attributed to Sn 3d_{3/2} and 3d_{5/2} respectively, which 17 are consistent with the reference data of Sn^{4+} in $SnS_2^{[30]}$.

The electrochemical measurement results of the MoS_2 and SnS_2/MoS_2 electrodes were evaluated by cyclic voltammetry (CV). Fig. 5a shows the cyclic voltammograms curves of the SnS_2/MoS_2 electrode at various scan rates ranging from 2 to 20 mV s⁻¹ in a potential range of -0.9 V to -0.3 V. It can be observed that all the curves exhibit an approximately rectangular shape without any redox peaks which indicates a typical electrical double-layer capacitance feature with fast charging-discharging processes.

1	In addition, the shapes of these CV curves do not significantly change with increasing scan rate from 2
2	to 20 mV s ⁻¹ , which reveals the ideal capacitive behavior and good charge collection as well as the
3	facilitated diffusion of K^+ in the SnS ₂ /MoS ₂ electrode ^[31] . Furthermore, the CV curve area increases
4	with the scan rate, indicating that the rates of electric and proton transportation are rapid with respect to
5	the scan rates. The normalized CV of MoS_2 nanoflowers at the scan rate of 10 mV S ⁻¹ have also been
6	measured and shown for comparison with SnS_2/MoS_2 in Figure 5b. Obviously, the SnS_2/MoS_2 owns
7	larger enclosed area than pure MoS ₂ , suggesting that the former has a larger areal capacitance. This is
8	mainly due to the great contribution of the SnS_2/MoS_2 , which prevents the collapse of the MoS_2
9	nanosheets. Thereby, the synergistic effect of MoS_2 nanosheets and SnS_2 nanoplates is not only
10	able to effectively weaken the agglomerating and restacking problems, but also able to facilitate
11	rapid electronic transport in electrode reactions.
12	To further calculate the specific capacitance of the 3D flower-like heterostructured $\mathrm{SnS}_2/\mathrm{MoS}_2$
13	electrode, the charge/discharge measurements were performed between -0.9 V to -0.3 V at different

14 current densities in 1 M KCl solutions as shown in Fig. 3c. The specific capacitance was calculated by15 the following equation:

$$Cm = \frac{It}{m\Delta V}$$

17 where Cm (F g⁻¹) is the specific capacitance, I (A) is the discharge current, t (s) is the discharge time, 18 ΔV (V) is the potential window, and m (g) is the mass of the active material.

According to the equation, the specific capacitances of the SnS_2/MoS_2 are 151.9, 127.4, 111.3, and 105.7 F g⁻¹ at 0.24, 0.59, 1.18, and 2.35 A g⁻¹, respectively (Figure 5c). At low current densities, the inner active sites or the pores of the electrode can be fully accessed and diffused with cations; hence, high specific capacitance values are achieved. The charge/discharge behavior of MoS_2 had also been

measured and showed in Figure 5d. The capacitance of the electrode is calculated to be about 145.8,

1

125.1, 100.3 and 67.3 F g^{-1} at 0.24, 0.59, 1.18, and 2.35 A g^{-1} , respectively. They own low capacitance 2 $(67.3 \text{ F g}^{-1} \text{ at } 2.35 \text{ A g}^{-1})$ compared to SnS₂/MoS₂ electrode, which deliver an improved capacitance. 3 4 The enlarged specific capacitance can be attributed to the synergistic effect of two-component 5 heterostructured metal sulfides. 6 Fig. 6a shows Nyquist plots of the EIS data obtained for the SnS_2/MoS_2 and MoS_2 electrodes at open 7 circuit potential over the frequency range 0.01-100,000 Hz in 1M KCl electrolyte solutions. In low 8 frequency area, the Warburg impedance (W), which results from the diffusive resistance of the 9 electrolyte into the interior of the electrode and the ion diffusion into the electrode, is shown by the 10 slope of the curve. The more vertical the curve is, the smaller Warburg impedance is. The slopes of the 11 curve at low frequency area of SnS₂/MoS₂ electrode is more vertical compared to MoS₂, which 12 demonstrates the decreasing of diffusive resistance between the electrode and the electrolyte. In the 13 high frequency area, the semicircle corresponds to the charge-transfer resistance of the electrode and electrolyte interface^[32-33]. Different from pure MoS₂, the semicircle is smaller in SnS₂/MoS₂ electrode, 14 15 indicating that the resistance is significant lower. The bulk resistance of the electrochemical system can 16 also be realized from the intersection of the curve at real part Z. From the plots, we can see SnS_2/MoS_2 17 electrode shows lower bulk resistance. 18 The cycling stability of the SnS₂/MoS₂ electrode was investigated by repeating the galvanostatic

charge-discharge measurements ranging from -0.9V to -0.3 V over 1000 cycles at the current density of 2.35A g⁻¹, as shown in Figure 6b. The specific capacitance gradually decreases with the cycle number, and the specific capacitance of this electrode still remains at 90.4% after 1000 cycles. Figure 4b also shows the cycle characteristic of pure MoS₂ at a current density of 2.35 A g⁻¹ for up to 500 cycles. After

1	that, it only retains 79% of the initial capacitance with a quite quick decrease. It is clear that the cycle	
2	stability of SnS_2/MoS_2 are greatly improved. The excellent electrochemical performance can be	
3	attributed to SnS_2/MoS_2 heterostructure, which forms an interconnected conducting network, and	
4	facilitates rapid electronic transport in electrode reactions.	
5	4. Conclusions	
6	In summary, we have demonstrated a one-step hydrothermal way to fabricate 3D flower-like	
7	heterostructured SnS_2/MoS_2 , which had better electrochemical performance compared to the MoS_2 .	
8	The as-prepared SnS_2/MoS_2 electrode exhibited a high capacitance of 105.4F g ⁻¹ at 2.35A g ⁻¹ , and also	
9	showed excellent cycle stability. This capacitive behavior mainly resulted from the the rapid electronic	
10	transport and volume change buffering of $\mathrm{SnS}_2/\mathrm{MoS}_2$ heterostructure during electrochemical	
11	measurement. Due to the excellent performance, we believe that the $\ensuremath{SnS_2/MoS_2}$ is a potential	
12	promising electrode material for the application of energy storage or conversion with fine	
13	electrochemical performance and deserved to be further investigated.	
14 15	Author Information	
16	Corresponding Author	
17	*E-mail: wanglina1106@126.com, qiyx@lzb.ac.cn.	
18	Notes	
19	The authors declare no competing financial interest.	
20	Acknowledgments	
21	This work is supported by the Chinese Academy of Sciences and Technology Project (XBLZ-2011-013)	
22	and the Technologies R&D Program of Gansu Province (1104FKCA156).	
23	References	
24	[1] Winter, M.; Brodd, R. J. What Are Batteries, Fuel Cells, and Supercapacitors. Chem. Rev. 2004, 10,	
25	4245-4270.	

26 [2] Zhu,Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai,W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.;

- 1 Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Carbon-Based Supercapacitors
- 2 Produced by Activation of Graphene. Science 2011, 332, 1537-1541.
- 3 [3] Tarascon, J. M. Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries. Nature
- 4 2001, 414, 359-367.
- 5 [4] Conway, B. E.; Birss, V. ; Wojtowicz, J. The Role and Utilization of Pseudocapacitance for
- 6 Energy Storage by Supercapacitors. J. Power Sources 1997, 66, 1-14.
- 7 [5] Pech, D.; Brunet, M.; Durou, H.; Huang, P.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P.
- 8 Ultrahigh-power Micrometre-sized Supercapacitors Based on Onion-like Carbon. Nat. Nanotech. 2010,

9 5, 651-654.

- 10 [6] Mahmood, N.; Zhang, C.; Yin, H.; Hou, Y. Graphene-based Nanocomposites for Energystorage and
- 11 Conversion in Lithium Batteries, Supercapacitors and Fuel cells. J. Mater. Chem. A 2014, 2, 15-32.
- 12 [7] Simon, P.; Gogotsi, Y.; Dunn, B. Where Do Batteries End and Supercapacitors Begin. Science 2014,

13 343, 1210-1211.

- 14 [8] Li, B.; Wang, Y. Facile Synthesis and Enhanced Photocatalytic Performance of Flower-like ZnO
- 15 Hierarchical Microstructures. J Phys Chem C 2009,114, 890-896.
- 16 [9] Tiwari, J.N.; Tiwari, R.N.; Kim, K.S. Zero-dimensional, One-dimensional, Two-dimensional and
- 17 Three-dimensional Nanostructured Materials for Advanced Electrochemical Energy Devices. Prog
- 18 Mater Sci 2012, 57, 724-803.
- 19 [10] Hu, C.; Guo, J.; Wen, J. Hierarchical Nanostructure CuO with Peach Kernel-like Morphology as
- 20 Anode Material for Lithium-ion Batteries. Ionics 2013, 19, 253-258.
- 21 [11] Zhu, J.; Yin, Z.; Yang, D.; Sun, T.; Yu, H.; Hoster, H. E.; Hng, H.H.; Zhang, H.; Yan, Q.
- 22 Hierarchical Hollow Spheres Composed of Ultrathin Fe₂O₃ Nanosheets for Lithium Storage and

1	Photocatalytic Water Oxidation. Energy Environ Sci 2013, 6, 987-993.
2	[12] Wang, J.; Du, G.; Zeng, R.; Niu, B.; Chen, Z.; Guo, Z.; Dou, S. Porous Co ₃ O ₄ Nanoplatelets by
3	Self-supported Formation as Electrode Material for Lithium-ion Batteries. Electrochim Acta 2010, 55,
4	4805-4811.
5	[13] Park, M. H.; Kim, K.; Kim, J.; Cho, J. Flexible Dimensional Control of High-Capacity
6	Li-Ion-Battery Anodes: From 0D Hollow to 3D Porous Germanium Nanoparticle Assemblies. Adv
7	Mater 2010, 22, 415-418.
8	[14] Esmanski, A.; Ozin, G. A. Silicon Inverse-Opal-Based Macroporous Materials as Negative
9	Electrodes for Lithium Ion Batteries. Adv Funct Mater 2009, 19, 1999-2010.
10	[15] Huang, K. J.; Wang, L.; Liu, Y. J.; Wang, H. B.; Liu, Y. M.; Wang, L. L. Synthesis of
11	polyaniline/2-dimensional graphene analog MoS ₂ composites for high-performance supercapacitor.
12	Electrochim. Acta 2013, 109, 587-594.
13	[16] Wan, Z. M.; Shao, J.; Yun, J. J.; Zheng, H. Y.; Gao, T.; Shen, M.; Qu, Q. T.; Zheng, H. H.
14	Core-Shell Structure of Hierarchical Quasi-Hollow MoS ₂ Microspheres Encapsulated Porous Carbon
15	as Stable Anode for Li-Ion Batteries.Small 2014, 10, 4975-4981.
16	[17] Dhas, N. A.; Suslick, K. S. Sonochemical Preparation of Hollow Nanospheres and Hollow
17	Nanocrystals. J. am. chem. soc. 2005, 127, 2368-2369.
18	[18] Wang, M.; Li, G. D.; Xu, H.Y.; Qian, Y. T.; Yang, J. Enhanced Lithium Storage Performances of
19	Hierarchical Hollow MoS ₂ Nanoparticles Assembled from Nanosheets. ACS Appl. Mater. Interfaces
20	2013, 5, 1003-1008.
21	[19] Ma, J.; Lei, D.; Duan, X.; Li, Q.; Wang, T.; Cao, A.; Mao, Y.; Zheng, W. Designable Fabrication of

22 Flower-like SnS₂ Aggregates with Excellent Performance in Lithium-ion Batteries. RSC Adv 2012, 2,

1	3615-3617.
1	3615-3617.

2	[20]Krishnamoorthy, K.; Veerasubramani, G. K.; Radhakrishnan, S.; Kim, S. J. Supercapacitive
3	properties of hydrothermally synthesized sphere like MoS2 nanostructures. Mater. Res. Bull. 2014,
4	50,499-502.
5	[21] Zhou, X.; Xu, B.; Lin, Z.; Shu, D.; Ma, L. Hydrothermal Synthesis of Flower-Like MoS ₂
6	nanospheres for Electrochemical Supercapacitors. J. Nanosci. Nanotechnol. 2014, 14, 7250-7254.
7	[22] Hu, B.; Qin, X.; Asiri, A. M.; Alamry, K. A.; AlYoubi, A. O.; Sun, X. Synthesis of porous
8	tubular C/MoS_2 nanocomposites and their application as a novel electrode material for
9	supercapacitors with excellent cycling stability. Electrochim. Acta 2013, 100,24-28.
10	[23] Gao, Y.; Cui, S.; Mi, L.; Wei, W.; Yang, F.; Zheng, Z.; Hou, H.; Chen, W. Double Metal Ions
11	Synergistic Effect in Hierarchical Metal Sulfide Microflowers for Enhanced Supercapacitor
12	Performance. ACS Appl. Mater. Interfaces, 2015, 7, 4311-4319.
13	[24] Mi, L.; Wei,W.; Huang, S.; Cui, S.; Zhang, W.; Hou, H.; Chen,W. Nest-like Ni@Ni _{1.4} Co _{1.6} S ₂
14	Electrode for Flexible High-Performance Rolling Supercapacitors Device Design. J. Mater. Chem.
15	A, 2015, DOI: 10.1039/C5TA06265A.
16	[25]Wei, W.; Mi, L.; Gao, Y.; Zheng, Z.; Chen, W.; Guan, X. Partial Ion-Exchange of
17	Nickel-Sulfide-Derived Electrodes for High Performance Supercapacitors. Chem. Mater. 2014, 26,
18	3418_3426.
19	[26] Luo, H.; Xu, C.; Zou, D.; Wang, L.; Ying, T. Hydrothermal synthesis of hollow MoS ₂ micro-
20	spheres in ionic liquids/water binary emulsions. Mater. Lett. 2008, 62, 3558-3560.
21	[27] Jana, M. K.; Rajendra, H. B.; Bhattacharyya, A. J.; Biswas, K. Green ionothermal synthesis of
22	hierarchical nanostructures of SnS2 and their Li-ion storage properties. CrystEngComm 2014,16,

1	3994-4000.

- 2 [28] Li, W. J.; Shi. E. W.; Ko, J. M.; Chen, Z.; Ogino, H.; Fukuda, T. J. Hydrothermal synthesis of
- 3 MoS₂ nanowires. Crystal Growth & Design. 2003, 250,418-422.
- 4 [29] Lin, H.; Chen, X.; Li, H.; Yang, M.; Qi. Y. Hydrothermal synthesis and characterization of MoS₂
- 5 nanorods. Mater. Lett. 2010, 64, 1748-1750.
- 6 [30] Zhang, Y.; Li, J.; Zhang, M.; Dionysiou, D. D. Size-tunable hydrothermal synthesis of SnS₂
- 7 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI).
- 8 Environ. Sci. Technol. 2011, 45, 9324-9331.
- 9 [31] Li, J.; Yang, Q.M.; Zhitomirsky, I. Nickel foam-based manganese dioxide-carbon nanotube
- 10 composite electrodes for electrochemical supercapacitors. J. Power Sources 2008, 185, 1569-1574.
- 11 [32] Oswald, H. R.; Gunter, J. R.; Dubler, E. J. Topotactic decomposition and crystal structure of white
- 12 molybdenum trioxide-monohydrate: Prediction of structure by topotaxy. Solid State Chem. 1975, 13,

13 330-338.

- 14 [33]Nagasawa, T.; Kobayashi, K. Paracrystalline Structure of Polymer-Crystal Lattice Distortion
- 15 Induced by Electron Irradiation. J. Appl. Phys. 1970, 41, 4276-4284.

Figure 1. XRD patterns of the flower-like MoS_2 and heterostructured SnS_2/MoS_2 .

Figure 2. (a,b) SEM (c)TEM images of flower-like MoS₂.

Figure 3. (a,b) SEM(c) TEM images of flower-like heterostructured SnS₂/MoS₂(d)Corresponding elemental mapping of Mo, Sn, and S.

Fig. 4. XPS spectra of the flower-like heterostructured SnS_2/MoS_2 . (a) high-resolution spectra for Mo

3d (b) high-resolution spectra for S 2p (c)high-resolution spectra for Sn3d.

Figure 5. (a) CV curves of the SnS_2/MoS_2 electrodes at different scan rates (b) Normalized CV curves of the MoS_2 and SnS_2/MoS_2 electrodes at 10mv s⁻¹ (c)Galvanostatic charge-discharge curves of SnS_2/MoS_2 electrodes at different current density. (d)Specific capacitances of MoS_2 and SnS_2/MoS_2 electrodes a tifferent current density.

Figure 6.(a) Nyquist plots of MoS_2 and SnS_2/MoS_2 electrodes in 1 M KCl (b) Cycling stability of the MoS_2 and SnS_2/MoS_2 at a current density of 2.35A g⁻¹.

3D heterostructured SnS_2/MoS_2 for enhanced Supercapacitor Behaviors was produced via One-Pot hydrothermal Synthesis