

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	A series of	f coordination polymers based on varied
2	polycarbox	ylates and different imidazole-containing
3	ligands: Sy	ontheses, crystal structures and physical
4	properties	
5		
6	Xiao-Feng Wang	^a , Min Yu ^a , and Guang-Xiang Liu ^{a,b,*}
7		
8	^a Key Laboratory	of Advanced Functional Materials of Nanjing, Department of
9	Chemistry, Nanjir	ng Xiaozhuang University, Nanjing 211171, P. R. China
10	^b State Key Labor	atory of Coordination Chemistry, School of Chemistry and Chemical
11	Engineering, Nan	jing University, Nanjing 210093, P. R. China
12		
13		
14		
15		
16		
17	Corresponding A	Author:
18	Dr. Guang-Xiang	
19	Mailing Address:	Key Laboratory of Advancea Functional Materials of Nanjing,
20	Talanhona	+ 26 25 26178121
21	Fax.	+86-25-8617222
23	E-mail:	niuliugx@126.com (G. X. Liu)
24		
25		
26		

RSC Advances Accepted Manuscript

27 Abstract

28	To investigate the effect of organic ligands on the coordination frameworks, seven
29	new nickel complexes with formulae $Ni(BDC)(titmb)\cdot 3H_2O$ (1),
30	Ni ₂ (BDC) ₂ (bimb) ₂ (H ₂ O) ₂ ·3H ₂ O (2), NiZn(BTC)(titmb)Br (3), Ni(TBDC)(titmb)(H ₂ O)
31	(4), Ni(TBDC)(bix)·H ₂ O (5), Ni(TBDC)(mbix)(H ₂ O)·H ₂ O (6) and
32	Ni(TBDC)(obix)(H ₂ O) (7) (titmb = $1,3,5$ -tris(1-imidazol-1-ylmethyl)-2,4,6-tri-
33	methylbenzene, bimb = 4,4'-bis(imidazol-1-ylmethyl)biphenyl, bix =
34	1,4-bis(imidazol-1-ylmethyl)benzene, mbix = 1,3-bis(imidazol-1-ylmethyl)benzene,
35	obix = $1,2$ -bis(imidazol-1-ylmethyl)benzene, $H_3BTC = 1,3,5$ -benzenetricarboxylic
36	acid, H_2BDC = isophthalic acid, H_2TBDC = 5-(tertbutyl)isophthalic acid), have been
37	synthesized and characterized by elemental analyses, infrared spectra (IR),
38	thermogravimetric analyses (TGA) and single-crystal X-ray diffraction. Single crystal
39	structure analysis shows that complex 1 shows a three-dimensional (3D)
40	$(3,5)$ -connected network with the topology of $(6^3)(6^9.8)$. Complexes 2 and 6 have
41	similar two-dimensional (2D) lamella structure with (4,4) topology. Complex 3
42	exhibits an interesting 3D (3,6)-connected framework by self-penetration of two sets
43	of (10,3)-a nets. Complex 4 presents a unusual 2D (3,5)-connected framework with
44	the topology of $(3.5^2)(3^2.5^3.6^4.7)$. Complex 5 features a 3D two-fold interpenetrating
45	framework with (4 ⁶ .6 ⁴)-bnn hexagonal BN topology, whereas Complex 7 possesses
46	an interesting one-dimensional (1D) independent single-wall metal-organic nanotube.
47	The various dimensions and structural features of seven complexes may be attributed
48	to the different species of functional groups, the number and position of the
49	carboxylic groups in the carboxylates as well as the auxiliary ligands play a

50	significant role in promoting the diversity of the observed structural motifs. The SHG
51	properties of 1, 3 and 4 as well as ferroelectric properties for 1 have also been
52	investigated.
53	
54	Keywords: Nickel(II) coordination polymer; polycarboxylate; imidazole-containing
55	ligands; nonlinear optical property; ferroelectric property
56	
57	Introduction
58	Rational design and synthesis of coordination polymers (CPs) with tailor-made
59	structures have been one of the most attractive areas in crystal engineering and

60 supramolecular chemistry, because coordination polymers with desired structures 61 possess interesting functionalities and can act as potential materials in the field of gas storage and separation, magnetism, catalysis, non-linear optics, luminescence and ion 62 exchange.¹⁻⁶ In the realm of CPs, structure control is fundamental for determining the 63 properties and applications of the crystalline materials. Accordingly, numerous 64 intriguing structures and associated interesting properties have been investigated in 65 depth.⁷⁻⁸ Though great progress and developments have been made in the construction 66 67 of diverse architectures, the prediction of the precise solid-state structures or the control of structural dimensionality of CPs remains a long-term challenge in the field 68 of crystal engineering.⁹ Many factors affect the structural assembly process of the CPs, 69 such as the metal, the ligand, temperature, pH value of the reaction, the solvent, the 70 counter anions, and the ratio of ligand and metal.¹⁰⁻¹⁵ It has been established that the 71

ligands are crucial for the structural architectures and functionalities of CPs as the
structures and properties of these complexes are usually influenced by the flexibility,
shape, symmetry, length and substituent groups of ligands.¹⁶

75 Polycarboxylates are often used as bridging ligands to prepare CPs due to their versatile coordination modes, high structural stability and the ability to balance the 76 positive charges.¹⁷ Moreover, in view of the previous reports, it is found that angular 77 dicarboxylates (isophthalic acid) and its derivatives (5-nitroisophthalic acid) may have 78 79 an influence on the assembling processes, the structures and even the properties of CPs due to their geometric and electronic effects, while the use of the large hindrance 80 81 of the derivatives of the dicarboxylate remains largely unexplored. To the best of our 82 knowledge, there have been only a few reported coordination polymers based on the H₂TBDC ligand.¹⁸ As is well known, the mixed ligand strategy added the scope of the 83 CPs, giving diversified polymeric structures with interesting structures and unusual 84 properties.¹⁹ In this regard, bridging imidazole ligands have chance to find their niche 85 86 in the crystal engineering. Up to now, the bis(imidazole) ligands have been justified as an efficient and versatile organic building unit for construction of coordination 87 polymers by Cui and Zheng et al. groups;²⁰ however, we believe that the CPs of these 88 89 ligands with varied structures and topologies could still be achieved by changing assembly environments and strategies. As continuous exploration on the study of 90 Ni(II)-CPs with angular dicarboxylate and different imidazole-containing ligands, 91 92 seven nickel coordination polymers, namely, $Ni(BDC)(titmb) \cdot 3H_2O$ (1), $Ni_2(BDC)_2(bimb)_2(H_2O)_2 \cdot 3H_2O$ (2), NiZn(BTC)(titmb)Br (3), $Ni(TBDC)(titmb)(H_2O)$ 93

95

(4),

RSC Advances

Ni(TBDC)(obix)(H₂O) (7), have been successfully obtained. They are characterized

(5),

Ni(TBDC)(mbix)(H₂O)·H₂O

(6)

and

Ni(TBDC)(bix)·H₂O

96	by elemental analysis and X-ray crystallography. The crystal structures as well as
97	topological analysis of these complexes will be represented and discussed in detail. In
98	addition, their physical properties are also studied.
99	Experimental section
100	Materials and general methods
101	All the reagents and solvents for syntheses and analyses were purchased from Sigma
102	or TCI and employed as received without further purification. The titmb, bimb, bix,
103	mbix and obix ligands were prepared according to the reported method. ²¹ Elemental
104	analyses (C, H and N) were performed on a Vario EL III elemental analyzer. Infrared
105	spectra were performed on a Nicolet AVATAR-360 spectrophotometer with KBr
106	pellets in the 4000 - 400 cm ⁻¹ region. Thermal gravimetric analyses (TGA) were
107	performed on a Netzsch STA-409PC instrument in flowing N_2 with a heating rate of
108	10 °C min ⁻¹ . The second-order nonlinear optical intensity was estimated by measuring
109	a powder sample relative to urea. A pulsed Q-switched Nd:YAG laser at a wavelength
110	of 1064 nm was used to generate a SHG signal from powder samples. The
111	backscattered SHG light was collected by a spherical concave mirror and passed
112	through a filter that transmits only 532 nm radiation. The ferroelectric property of the
113	solid-state sample was measured by the Premier II ferroelectric tester at room
114	temperature.

115 Preparation of Ni(BDC)(titmb)·3H₂O (1). A mixture containing Ni(NO₃)₂·6H₂O

116	(58.2 mg, 0.2 mmol), H_2BDC (19.3 mg, 0.1 mmol), titmb (36.0 mg, 0.1 mmol) and
117	LiOH·H ₂ O (8.4 mg, 0.2 mmol) in 15 ml deionized water was sealed in a 25 mL Teflon
118	lined stainless steel container and heated at 140 °C for 3 days. Green block crystals of
119	1 were collected by filtration and washed with water and ethanol several times with a
120	yield of 71%. Anal. calcd for C ₂₉ H ₃₄ N ₆ O ₇ Ni: C 54.65; H 5.38; N 13.19; Found: C
121	54.66; H 4.36; N 13.17%. IR(KBr pellet, cm ⁻¹): 3459 (br), 3057 (w), 2923 (w), 1607
122	(s), 1541 (s), 1520 (m), 1444 (w), 1432 (m), 1382 (s), 1282 (w), 1233 (m), 1130 (w),
123	1109 (m), 1087 (m), 1033 (m), 947 (w), 853 (w), 821 (m), 767 (w), 679 (w), 532 (w).
124	Preparation of $Ni_2(BDC)_2(bimb)_2(H_2O)_2 \cdot 3H_2O$ (2). A mixture containing
125	Ni(NO ₃) ₂ ·6H ₂ O (58.2 mg, 0.2 mmol), H ₂ BDC (19.3 mg, 0.1 mmol), bimb (39.2 mg,
126	0.1 mmol) and NaOH (8.0 mg, 0.2 mmol) in 15ml deionized water was sealed in a 25
127	mL Teflon lined stainless steel container and heated at 160 °C for 3 days. Green block
128	crystals of 2 were collected by filtration and washed with water and ethanol several
129	times with a yield of 57% based on H_2BDC . Anal. calcd for $C_{56}H_{54}N_8O_{13}Ni_2$: C 57.76;
130	H 4.67; N 9.62; Found: C 57.74; H 4.68; N 9.61%. IR(KBr pellet, cm ⁻¹): 3471 (br),
131	3057 (w), 2827 (w), 1603 (s), 1585 (s), 1522 (m), 1442 (m), 1383 (s), 1288 (w),
132	1203(w), 1091 (m), 933 (w), 837 (m), 753 (m), 631 (w), 562 (w).
133	Preparation of NiZn(BTC)(titmb)Br (3). A mixture containing $Ni(NO_3)_2 \cdot 6H_2O$
134	(29.1 mg, 0.1 mmol), ZnBr ₂ (22.5 mg, 0.1 mmol), H ₃ BTC (21.0 mg, 0.1 mmol), titmb
135	(36.0 mg, 0.1 mmol) and NaOH (12.0 mg, 0.3 mmol) in 15 ml deionized water was

- sealed in a 25 ml Teflon lined stainless steel container and heated at 180 °C for 3 days.
- 137 Pale green cubic crystals of **3** were collected by filtration and washed with water and

138	ethanol several times with a yield of 42%. Anal. calcd for $C_{30}H_{27}BrN_6O_6NiZn$: C
139	46.70; H 3.53; N 10.89; Found: C 46.72; H 3.56; N 10.88%. IR(KBr pellet, cm ⁻¹):
140	3452 (br), 3092 (w), 2823 (w), 1610 (s), 1578 (s), 1520 (s), 1446 (m), 1387 (m), 1293
141	(m), 1250 (m), 1111 (m), 1091 (m), 1013 (m), 945 (m), 867 (w), 810 (w), 773 (m),
142	759 (m), 674 (w), 587 (m).

143 Preparation of Ni(TBDC)(titmb)(H₂O) (4).

Ni(NO₃)₂·6H₂O (29.1 mg, 0.1 mmol), H₂TBDC (22.2 mg, 0.1 mmol), timb (36.0 mg, 0.1 mmol), NaOH (8 mg, 0.2 mmol) and 15 mL deionized water in a 25 mL Teflon lined stainless steel container at 160 °C for 4 days produced green block crystals of **4** in 69% yield after washing with water and ethanol several times. Anal. Calcd for $C_{33}H_{35}N_6O_5Ni$: C 60.29; H 5.83; N 12.78; Found: C 60.28; H 5.81; N 12.77%. IR(KBr pellet, cm⁻¹): 3449 (br), 3062 (m), 1609 (s), 1571 (s), 1519 (m), 1383 (s), 1231 (w), 1093 (m), 875 (m), 822 (m), 765 (m), 716 (m), 653 (m), 569 (w), 462(w).

- 151 Preparation of Ni(TBDC)(bix)·H₂O (5).

A mixture containing Ni(NO₃)₂· $6H_2O$ (29.1 mg, 0.1mmol), H₂TBDC (22.2 mg, 0.1 152 mmol), bix (23.6 mg, 0.1 mmol) and LiOH·H₂O (8.4 mg, 0.2 mmol) in 15 mL 153 154 deionized water was sealed in a 25ml Teflon lined stainless steel container and heated 155 at 170 °C for 3 days. Green block crystals of 5 were collected by filtration and washed 156 with water and ethanol several times with a yield of 48%. Anal. Calcd for C₃₃H₃₅N₆O₅Ni: C 60.57; H 5.39; N 12.84; Found: C 60.55; H 5.41; N 12.85%. 157 IR(KBr pellet, cm⁻¹): 3453 (s), 3098 (w), 2823 (w), 1609 (s), 1589 (s), 1520 (m), 1442 158 159 (m), 1401 (s), 1375 (s), 1298 (w), 1126 (w), 1091 (m), 922 (m), 839 (s), 765 (m), 673

160 (w), 521(m).

161 **Preparation of Ni(TBDC)(mbix)(H₂O)·H₂O (6).**

- 162 The preparation of $\mathbf{6}$ was similar to that of $\mathbf{5}$ except that mbix was used instead of bix
- as auxiliary ligand. Green pillar crystals of **6** were collected in a 57% yield. Anal.
- 164 Calcd for C₂₆H₃₀N₄O₆Ni: C 56.45; H 5.47; N 10.13; Found: C 56.47; H 5.48; N
- 165 10.15%. IR(KBr pellet, cm^{-1}): 3466 (m), 3159 (w), 3059 (w), 2829 (w), 1586 (s),
- 166 1522 (m), 1447 (m), 1393 (s), 1298 (w), 1103 (m), 1089 (m), 951 (m), 922 (m), 835
- 167 (w),795 (w), 744 (m), 711 (m), 659 (m), 544 (w).

168 **Preparation of Ni(TBDC)(obix)(H₂O) (7).**

- 169 Complex 7 was prepared in the same way as that for 5 but using obix instead of bix as
- auxiliary ligand. Green block crystals of 7 were collected in a 61% yield. Anal. Calcd
- 171 for C₂₆H₂₈N₄O₅Ni: C 58.35; H 5.27; N 10.47; Found: C 58.33; H 5.29; N 10.44%.
- 172 IR(KBr pellet, cm⁻¹): 3457 (m), 3189 (m), 2826 (w), 1605 (s), 1582 (s), 1520 (m),
- 173 1441 (m), 1378 (s), 1256(m), 1179 (m), 1091 (s), 955 (w), 874 (w), 833 (s),792 (m),
- 174 745 (s), 663 (m), 555 (w).

175 **X-Ray crystallography**

176 Crystallographic data collections for complexes **1** - **7** were carried out on a Bruker 177 Smart Apex II CCD with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) 178 at 293(2) K using the ω -scan technique. The data were integrated by using the SAINT 179 program,²² which was also used for the intensity corrections for the Lorentz and 180 polarization effects. An empirical absorption correction was applied using the 181 SADABS program.²³ The structures were solved by direct methods using the program

182	SHELXS-97 and all non-hydrogen atoms were refined anisotropically on F^2 by the
183	full-matrix least-squares technique using the SHELXL-97 crystallographic software
184	package. The hydrogen atoms of the organic ligands were refined as rigid groups.
185	Some of the water hydrogen atoms in complex 2 could not be positioned reliably.
186	Other hydrogen atoms of water molecules were located from difference Fourier maps.
187	All calculations were performed on a personal computer with the SHELXL-97
188	crystallographic software package. ²⁴ The details of the crystal parameters, data
189	collection and refinement for the complexes are summarized in Table 1, and selected
190	bond lengths and angles with their estimated standard deviations are listed in Table S1.
191	CCDC-804097 (1), 733836 (2), 936716 (3), 936717 (4), 936718 (5), 936719 (6) and
192	936720 (7) contain the crystallographic data for this paper.
193	
193 194	<table 1="" here=""></table>
193 194 195	<table 1="" here=""></table>
193 194 195 196	<table 1="" here=""> Results and discussion</table>
193 194 195 196 197	<table 1="" here=""> Results and discussion IR spectra</table>
193 194 195 196 197 198	<table 1="" here=""> Results and discussion IR spectra For complexes 1 - 7, the observed bands of 3400 – 3400 cm⁻¹ characterize water</table>
193 194 195 196 197 198 199	<table 1="" here=""> Results and discussion IR spectra For complexes 1 - 7, the observed bands of 3400 - 3400 cm⁻¹ characterize water molecules in the structures, while the bands of C - H of aromatic rings at 2830 - 2820</table>
 193 194 195 196 197 198 199 200 	Table 1 here> Results and discussion IR spectra For complexes 1 - 7, the observed bands of 3400 – 3400 cm ⁻¹ characterize water molecules in the structures, while the bands of C - H of aromatic rings at 2830 – 2820 cm ⁻¹ . The IR spectra show the absence of the characteristic bands at around 1700 cm ⁻¹
 193 194 195 196 197 198 199 200 201 	<table 1="" here=""> Results and discussion IR spectra For complexes 1 - 7, the observed bands of 3400 – 3400 cm⁻¹ characterize water molecules in the structures, while the bands of C - H of aromatic rings at 2830 – 2820 cm⁻¹. The IR spectra show the absence of the characteristic bands at around 1700 cm⁻¹ attributed to the protonated carboxylate group indicates that the complete</table>
 193 194 195 196 197 198 199 200 201 202 	Table 1 here> Results and discussion IR spectra For complexes 1 - 7, the observed bands of 3400 – 3400 cm ⁻¹ characterize water molecules in the structures, while the bands of C - H of aromatic rings at 2830 – 2820 cm ⁻¹ . The IR spectra show the absence of the characteristic bands at around 1700 cm ⁻¹ attributed to the protonated carboxylate group indicates that the complete deprotonation of the polycarboxylic acids upon reaction with metal ion. The

RSC Advances Accepted Manuscript

antisymmetric stretching and 1360 - 1460 cm⁻¹ for symmetric stretching. The 204 separations (Δ) between v_{asym} (CO₂) and v_{sym} (CO₂) bands indicate the presence of 205 206 different coordination modes. The IR spectra exhibit the characteristic peaks of imidazole groups at ca.1520 cm⁻¹. The bands in the region 640 -1310 cm⁻¹ are 207 attributed to the -CH- in-plane or out-of-plane bend, ring breathing, and ring 208 209 deformation absorptions of benzene ring, respectively. The bands in the region 640 -1250 cm⁻¹ are attributed to the -CH- in-plane or out-of-plane bend, ring breathing, and 210 ring deformation absorptions of benzene ring, respectively.²⁵ 211

212

213 Crystal structure of Ni(BDC)(titmb)·3H₂O (1)

214 Complex 1 crystallizes in the orthorhombic acentric space group $Pna2_1$, the asymmetric unit contains one Ni(II) ion, one BDC²⁻ anion, one titmb ligand and three 215 216 lattice water molecule. The Ni(II) ion is six-coordinated and close to an octahedron 217 NiN_3O_3 geometry. As illustrated in Fig. 1a, three oxygen atoms (O1, O2 and O4A) belonging to two different BDC²⁻ anions and one titmb nitrogen atom (N3B) are 218 219 ligated to the Ni(II) ion in the equatorial plane, with the other two nitrogen atoms 220 (N1C and N5) arising from the titmb ligand situated in the axial position. Each Ni(II) 221 approximately lies in the equatorial position with a maximum deviation (0.024 Å)222 from the basal plane. In the structure, Ni-O and Ni-N bond distances are in the range 223 of 2.004(3)-2.200(3) and 2.043(4)-2.069(4) Å, respectively. Each titmb ligand in turn connects three Ni(II) ions which form a triangle with edge lengths (Ni…Ni) of 9.367, 224 225 11.862 and 12.954 Å, respectively. The three imidazolyl rings are inclined to the

226	phenyl ring with angles of 85.98°, 86.25° and 82.17°, respectively. As shown in Fig.
227	1b, each Ni(II) ion connects three titmb ligands and each titmb ligand connects three
228	Ni(II) ions, such a coordination mode makes the complex a 2D network with
229	honeycomb structure, and a schematic drawing is shown in Fig. 1c. It is obvious that
230	all titmb ligands in the network have cis, trans, trans-conformation with up- and
231	down-orientations alternatively. BDC2- anions adopt monodentate and bidentate
232	chelate coordination modes and connect the Ni-titmb layers as pillars to generate a 3D
233	structure (Fig. 1d). If the Ni(II) ion is considered as a five-connected node (connecting
234	to two BDC ²⁻ anions and three titmb ligands), the titmb ligand can be considered as a
235	three-connected node (connecting to three Ni(II) ions), and the structure of 1 can be
236	classified as a rare binodal $(3,5)$ -connected $(6^3)(6^9.8)$ topology (Fig. 1e). In addition,
237	the 3D structure of 1 is further stabilized by intermolecular H-bonding interactions.
238	
239	<figure 1="" here=""></figure>
240	
241	Crystal structure of Ni ₂ (BDC) ₂ (bimb) ₂ (H ₂ O) ₂ ·3H ₂ O (2)
242	Employing the bridging bimb ligand in this system, the reaction yielded complex 2
243	showing a much different structure from 1. Fig. 2a illustrates the coordination
244	environments of the Ni(II) ions. The crystallographically independent Ni(II) ion is
245	six-coordinated by two nitrogen atoms from two different bimb ligands, three
246	carboxylate oxygen atoms from two BDC ligands and one coordinated water molecule

247 to construct a distorted octahedral geometry. The Ni-O bond lengths are in the range

248	of 2.0273(17)–2.1369(17) Å, the Ni–N bond lengths are 2.063(2) and 2.071(2) Å and
249	the coordination angles around Ni(II) ion are in the range of $61.61(7)^{\circ}-178.79(8)^{\circ}$.
250	The two carboxylate groups of the BDC ligands adopting monodentate and bidentate
251	chelate coordination modes link two Ni(II) atoms to form a one-dimensional chain
252	with Ni…Ni distances of 10.11 Å. These chains are further extended by bimb ligands
253	into a 2D framework. It is interesting that the Ni(II) atoms all lie in the same plane,
254	parallel to the <i>ab</i> plane, and are joined through two types of ligands, above the plane
255	by one kind, and below by the other kind. The connection with the BDC^{2-} anions
256	occurs along the a direction, while with the bimb ligands the joining is made along the
257	c direction. So, the 2D structure formed is the 4-connected $(4,4)$ -sql net (Fig. 2b). The
258	undulated layers stack in an interweaving way along the b direction, to generate a 3D
259	structure with open channels (Fig. 2c). After the removal of these free water
260	molecules, $PLATON^{26}$ calculations show that the volume of the effective void is 5.5%
261	of the unit-cell volumes. In addition, intramolecular O1W-H1WA…O3 (2.699(3) Å),
262	O1W-H1WB…O2W (2.752(4) Å), O2W-H2WA…O3 (2.683(4) Å) and O2W-
263	H2WB…O3W (2.680(6) Å) hydrogen-bonding interactions exist among the lattice
264	water molecules and carboxylate oxygen atoms, which further stabilized the 2D
265	structure of 2 (Fig. 2d).
266	
267	<figure 2="" here=""></figure>

268

269 Crystal structure of NiZn(BTC)(titmb)Br (3)

270	X-ray single crystal diffraction analysis reveals that the asymmetric unit of 3 consists
271	of one nickel ion and one unique zinc ion (the Ni : Zn ratio of 1 : 1 based on ICP
272	analysis) bridged by three carboxylate groups, one crystallographically independent
273	titmb ligand, one individual BTC ³⁻ anion and one coordinated bromide ion. As shown
274	in Fig. 3a, each Zn(II) ion is tetrahedral coordinated by three oxygen atoms (O2, O2A
275	and O2B) from three different BTC ³⁻ anions and one terminal bromide ion (Br1).
276	Each Ni(II) ion is surrounded by three nitrogen atoms (N1, N1C and N1D) from three
277	distinct titmb ligands and three oxygen atoms (O1, O1C and O1D) from three
278	different BTC ³⁻ anions to furnish a distorted octahedral geometry. One Zn(II) ion and
279	one Ni(II) ion are connected by three carboxylate groups in a bidentate-bridging
280	fashion to form a binuclear $ZnNi(CO_2)_3Br$ unit, as exhibited in Fig. 3b. Each BTC^{3-}
281	anion connect with three Zn ions and three Ni ions from three different binuclear units
282	and each titmb ligand bridges three Ni ions from three individual binuclear units, thus
283	each binuclear unit is linked by six organic ligands (three titmb ligands and three
284	BTC^{3-} anions) to generate a (3,6)-connected network. The overall 3D network is so
285	intricate that it is described in terms of two subnets. For the first subnet, the titmb
286	ligands are omitted, the binuclear units can be considered 3-connected nodes. Each
287	binuclear unit is bridged to three different BTC ³⁻ anions. Thus the whole subnet
288	structure can be extended to a slightly distorted (10,3)-a net with left-handedness of
289	helices in the direction of c axis as shown in Fig. 3c. The extended Schläfli symbol of
290	this net is $10_5.10_5.10_5$. From another point of view, the BTC ³⁻ anions are ignored for
291	the second subnet. Interestingly, a heavily distorted (10,3)-a net with right-handedness

of helices is obtained as displayed in Fig. 3d. It is obvious that all titmb ligands in the
network have *cis, cis, cis*-conformation.
To describe the overall topology of complex 3, we add the titmb ligand to the
first subnet or add the BTC³⁻ ligand two the second subnet. Thus we get an

unprecedented $(6^3)_2(6^{12}.8^3)$ net calculated by the TOPOS program²⁷ (Fig. 3e). To the best of our knowledge, the network represents a novel (3,6)-connected topology which is different from the rutile and rutile-related topology²⁸ by self-penetration of two sets of (10,3)-a nets.

300

301

<Figure 3 here>

302

303 Crystal structure of Ni(TBDC)(titmb)(H₂O) (4)

304 The polymeric structure of 4 was confirmed by X-ray single crystal structure analysis. 305 The complex crystallizes in the orthorhombic space group $P2_12_12_1$ and Fig. 4a shows 306 the asymmetric unit of 4 with atom numbering scheme. Each Ni(II) atom is 307 coordinated by three imidazole nitrogen atoms derived from three different timb ligands and three oxygen atoms from two different TBDC²⁻ ligands and one water 308 309 molecule. The coordination geometry of the Ni(II) center is a slightly distorted 310 octahedron with coordination angles ranging from 85.22(10)° to 175.26(11)° and the 311 Ni–O/N bond lengths varying from 2.040(2) to 2.144(3) Å (Table S1). Each timb 312 ligand in turn connects three Ni(II) atoms which form a triangle with edge lengths 313 (Ni...Ni) of 8.01, 10.58 and 13.29 Å, respectively. The three imidazolyl rings are

314	inclined to the phenyl ring with angles of 73.24°, 69.23° and 59.21°, respectively. As
315	shown in Fig. 4b, such a coordination mode makes the compound a 2D network with
316	a honeycomb structure, and a schematic drawing is shown in Fig. 4c. It is obvious that
317	all timb ligands in the network have cis, trans, trans-conformation with up- and
318	down-orientations alternatively. TBDC ²⁻ ligands adopt monodentate and chelate
319	coordination modes and connect two Ni(II) atoms of the Ni-timb layers to generate a
320	2D structure (Fig. 4d). If the Ni(II) atom is considered as a five-connected node
321	(connecting to two TBDC anions and three timb ligands), the timb ligand can be
322	considered as a three-connected node (connecting to three Ni atoms), and the structure
323	of 4 can be classified as a rare $(3,5)$ -connected 2D framework with $(3.5^2)(3^2.5^3.6^4.7)$
324	topology (Fig. 4e). In addition, the 3D supramolecular structure of 4 is further
325	extended by C-H··· π interactions.

326

327

- 328

329 Crystal structure of Ni(TBDC)(bix)·H₂O (5)

Single crystal X-ray diffraction analysis reveals that complex **5** crystallizes in the triclinic space group *P*-1 and the asymmetric unit of **5** is constructed from one Ni(II) ion, one fully deprotonated TBDC²⁻ ligand, one and a half bix ligands and one lattice water molecule (Fig. 5a). The Ni(II) ion is coordination by three carboxylic oxygen atoms from two different TBDC²⁻ ligands and three imidazolyl nitrogen atoms from three bix ligands in a slightly distorted [NiO₃N₃] octahedral geometry. The three

<Figure 4 here>

coordinated carboxyl oxygen atoms together with two imidazolyl nitrogen atoms

define the equatorial positions, while the axial positions are occupied by two 337 338 imidazolyl nitrogen atoms. The Ni–O bond distances are in the range of 2.016(2)-339 2.234(2) Å while the Ni–N bond distances are in the range of 2.048(3)–2.092(3) Å, 340 which are all in good agreement with those reported for other nickel-oxygen and nickel-nitrogen donor compounds.²⁹ The TBDC²⁻ ligand exhibist $\eta^2 - \eta^1$ coordination 341 342 mode with one of the two carboxylate groups adopts chelating coordination mode 343 while the other one holds a monodentate bridging mode. The Ni(II) atoms are first linked by the TBDC²⁻ linkers to form 1D chain as shown in Fig. 5b. Meanwhile, the 344 345 Ni(II) centers are also bridged by bix ligands to form 2D layers with (6, 3) topology as 346 shown in Fig. 5c. Then these chains and layers are cross-connected with each other to form five-connected 3D framework with $(4^{6}.6^{4})$ -bnn hexagonal BN topology in which 347 348 the Ni(II) ions act as unimodal center (Fig. 5d). Further investigation into the topology 349 of complex 5 reveals that there are two identical independent 3D networks that 350 interpenetrate with each other (Fig. 5e). The two 3D subunits are related to each other 351 by one translation. In a word, the structure of **5** exhibits a 3D coordination network with two-fold interpenetration of subunits with $(4^{6}.6^{4})$ -bnn hexagonal BN topology. 352 353 <Figure 5 here> 354

355

336

356 Crystal structure of Ni(TBDC)(mbix)(H₂O)·H₂O (6)

357 In order to investigate the influence of auxiliary ligand on the structure of the

358	complexes, reactions of $Ni(NO_3)_2 \cdot 6H_2O$ with H_2TBDC in the presence of mbix were
359	carried out and complex 6 was obtained. As displayed in Fig. 6a, the asymmetric unit
360	of 6 contains crystallographically unique Ni(II) ion, one TBDC anion, one mbix
361	ligand, one coordinated water molecule and one lattice water molecule. The Ni(II)
362	center is six-coordinated by three carboxylate oxygen atoms from two individual
363	TBDC anions, two nitrogen atom from two different mbix ligands and one water
364	molecule, displaying a distorted octahedral coordination geometry. Each TBDC anion
365	links two Ni(II) ions with its two carboxylate groups adopting monodentate and
366	bidentate chelating modes. The mbix ligands connected adjacent Ni(II) ions to afford
367	a 1D zigzag chain. If mbix ligands are neglected, Ni(II) ions are bridged by TBDC
368	anions to form a 1D wavelike chain. The two types of chains are linked to generate
369	2D layers through sharing the central Ni(II) ions. Notably, the network has large
370	rhombic windows with approximate dimensions of 9.00 \times 20.60 \AA^2 built up by four
371	Ni(II) ions, two mbix ligands, and two TBDC anions within the 2D motif (Fig. 6b).
372	For convenience, if Ni(II) ions are viewed as uninodal 4-connected nodes, and TBDC
373	anions and mbix ligands are viewed as linkers, the layer can be described as a
374	4-connected sql topology with the point Symbol of $4^4.6^2$ (Fig. 6c). In addition, there
375	exist π - π stacking interactions associated with phenyl rings of TBDC anions and
376	phenyl rings of mbix ligands (face-to-face distance of 3.85 Å and centroid-to-centroid
377	distance of 3.63 Å) in the adjacent layers. These π - π interactions among layers led
378	the2D sheets to a 3D supramolecular architecture (Fig. 6d).

RSC Advances Accepted Manuscript

hydrogen bonds and weak π - π stacking interactions (the centroid-to-centroid distance

of 4.125 Å between the two adjacent benzene rings of TBDC ligands and benzene

380 <Figure 6 here> 381 382 Crystal structure of Ni(TBDC)(obix)(H₂O) (7) 383 The crystallographic analysis reveals that 7 is a one-dimensional tubular structure. As shown in Fig. 7a, the asymmetric unit contains one Ni(II) ion, one TBDC²⁻ anion, one 384 385 obix ligand and one coordinated water molecule. Each Ni(II) ion is six-coordinated by four oxygen atoms from two different TBDC²⁻ anion and one water molecule, and two 386 387 nitrogen atoms from two obix ligands to form a distorted octahedral geometry and its 388 basal plane is occupied by four oxygen atoms, while the apical position is occupied by 389 two nitrogen atom. The Ni-O bond lengths are in the range of 2.0227(18) - 2.1634(18) 390 Å, the Co-N bond lengths are 2.071(2) - 2.086(2) Å and the coordination angles 391 around Co ion are in the range of 61.24(7) - 176.82(9)°. Two Ni(II) ions are linked by 392 a couple of obix ligands to form 24-membered $\{Ni_2(obix)_2\}$ ring and the distance of neighboring Ni(II) ions is about 5.284 Å as presented in Fig. 7b. The obix ligand 393 394 adopts a *cis*-conformation with the dihedral angle between the two imidazole rings of 395 58.57°. Two carboxylate groups of TBDC²⁻ ligand adopt monodentate and bidentate 396 chelating coordination mode and link to the neighboring $\{Ni_2(obix)_2\}$ rings, giving a 397 one-dimensional tubular structure. The separation of neighboring Ni(II) ions is about 398 10.24 Å as illustrated in Fig. 7c. The packing structure of 7 shows a three-dimensional 399 supramolecular network derived from chains formed via intermolecular C-H···O

400

401

ted by ad two and its ied by 34(18) angles ced by nce of ligand ngs of **RSC Advances Accepted Manuscript**

402	rings of obix ligands, and the dihedral angle is 5.302(5)°).
403	
404	<figure 7="" here=""></figure>
405	
406	In this work, we selected imidazole-containing ligands and three different aromatic
407	dicarboxylates to construct seven target metal complexes, aiming at examining the
408	effect of substituent groups, the number of the carboxylic groups as well as the
409	auxiliary ligands on the assembly and structures of the resulting products. Compared
410	with related structures in the literature, $Co_3(BIPA)_3(titmb)_2] \cdot 0.73H_2O$ (8) and
411	Ni(mbix)(BDC)(H ₂ O) (9) (H ₂ BIPA = 5-bromoisophthalic acid). ^{151,20b} In complexes 1,
412	4 and 8, there exist the same metal coordination geometries and auxiliary ligand,
413	similar aromatic dicarboxylates and entirely different topological structures: a 3D
414	$(3,5)$ -connected binodal $(6^3)(6^9.8)$ topology framework for 1, a 2D $(3,5)$ -connected
415	$(3.5^2)(3^2.5^3.6^4.7)$ topology framework for 4 and a 3D (3,4)-connected coordination
416	framework with the topology of $(4.6.8)(4.62.8^3)(6.8^5)(6^2.8^3.10)(8^3)$ for 8 , which are
417	attributed to the effect of 5-substituent groups. Whereas complex 6 has a 2D lamella
418	structure with (4,4) topology, complex 9 exhibits a rare (3,5)-connected 3D network
419	with $(4^2.6^5.8^3)(4^2.6)$ topology. The presence of the noncoordinating groups in
420	dicarboxylate ligands changes their electronic and steric properties, which can
421	generate complexes different from those of the common dicarboxylate ligands. The
422	Ni(II) ions are bridged by 1,3-benzenedicarboxylates to form 1D chains in 1 and the
423	Ni(II) ions are linked through 1,3,5-benzenetricarboxylates to generate 3D network in

424 3, and the results in the changes of the number of the carboxylic group, finally, causes the difference between the frameworks of 1 and 3. In this study, complexes 4 - 7425 426 display a diversity of 1D, 2D and 3D frameworks, and the connectivities of the four 427 complexes are strongly related to the imidazole-containing ligands. As described 428 above, the imidazole-containing ligands serve as bridging ligands with nitrogen atoms 429 of the imidazole units coordinating to the metal atoms. In 4, Ni(II) ions are linked by 430 titmb ligands to form a 2D network with a honeycomb structure; in 5, the Ni(II) 431 centers are also bridged by bix ligands to form 2D layers with (6, 3) topology. In 6, 432 Ni(II) centers are bridged by mbix ligands to form zigzag chains and helices 433 simultaneously; in 7, Ni(II) ions are linked by obix ligands to form [Ni(obix)₂Ni] 434 dimers.

435 Thermogravimetric analyses

436 To estimate the stability of the coordination architectures of complexes 1 - 7, 437 thermogravimetric analyses (TGA) were carried out. The experiments were performed 438 on samples consisting of numerous single crystals of 1-7 under a N₂ atmosphere with 439 a heating rate of 10 °C min⁻¹ (Fig. 8). The TGA curves show that first a weight loss 440 occurs in the range of 40-180 °C (obsd 8.20%, calcd 8.47%) for 1, which corresponds 441 to the free water molecules, and indicating that there exist strong hydrogen-bonding 442 interactions among the water molecules. The second weight loss was observed from 443 290 to 600 °C (obsd 12.4%, calcd 13.0%), showing the departure of organic ligands. 444 Finally, the remaining weight corresponds to the oxidized metal. Complex 2 loses the 445 two lattice water molecules and three coordinated water molecules in the range of 40

446	-198 °C (obsd 7.4% and calcd 7.7%). The removal of water at a high temperature is
447	attributed to the strong hydrogen-bonding interactions. Further weight loss occurs
448	from 267 to 570°C (obsd 70.0% and calcd 78.0%), indicating organic ligands loss and
449	complex decomposition. The final residual weight corresponds to that of $\mathrm{Ni}_2\mathrm{O}_3$ (obsd
450	14.5%, calcd 14.2%). The TGA curve of 3 reveals that no obvious weight loss was
451	observed until the temperature rose to 290°C. The anhydrous compound decomposes
452	from 290 to 600°C (obsd 75.8 %, calcd 78.3%), indicating the release of organic
453	components. For 4, the weight loss before 160 °C corresponds to the release of
454	coordinated water molecules (obsd 2.89%, calcd 2.74%), and the weight loss between
455	230 and 620 $^{\circ}$ C is attributable to the departure of organic components (obsd 78.2%,
456	calcd 84.7%). The residual is oxidized metal (obsd 11.3 %, calcd 12.6 %). The TG
457	curve for 5 reveals that the first weight loss of lattice water molecules is observed
458	from room temperature to 165 °C (obsd 2.9%, calcd 2.8 %), which shows that there
459	exist strong hydrogen-bonding interactions between the water molecules at high
460	temperature. The second weight loss occurs in the range of 250–630 °C (obsd 78.5%,
461	calcd 84.6 %), revealing that the compound decomposes. Finally, the residual is Ni_2O_3
462	(obsd 13.2%, calcd 12.7%). The first weight loss for complex 6 from 45 to 177 $^{\circ}$ C
463	corresponds to the elimination of one lattice water and one coordinated water (obsd
464	6.4% and calcd 6.5%). The second weight loss occurs between 210-620 $^{\circ}\mathrm{C}$ (obsd
465	76.2%, calcd 78.5%), which may be assigned to the removal of organic ligands. After
466	that, the weight loss is slow, and finally yields the residual oxidised metal at 620 $^{\circ}\mathrm{C}$
467	(obsd 16.2% and calcd 15.0%). The TGA curve for 7 shows that a weight loss of 3.6%

Page 22 01 6

occurs in range of 80–172 °C, which may be attributed to the removal of one
coordinated water molecule (obsd 3.1% and calcd 3.4%). Further, a weight loss occurs
in the range of 295–620 °C (obsd 76.9%, calcd 82.0%). There is no mass loss from
190 to 290 °C, indicating a relatively higher thermal stability.

472

473 SHG response

474 As mentioned in the introduction, CPs show interesting non-linear optical properties 475 (NLO) and second harmonic generation (SHG) responses. SHG is completely 476 dependent on crystal symmetry and SHG materials have been extensively applied to 477 high technique fields such as laser devices and optical communications. Generally, an 478 SHG-active material must require the absence of a symmetric center. Lin, Xiong, 479 Chen and coworkers illustrated that CPs with noncentrosymmetric structures can be 480 rationally designed and prepared by making use of metal ions with specific geometries and high directional coordination bonds.³⁰ Thus, rationally designing and 481 482 synthesizing CPs with SHG responses has enabled us to understand the relationships 483 between structures and properties. Considering that complexes 1, 3 and 4 crystallize 484 in the acentric space group $(Pna2_1, P2_13 \text{ or } P2_12_12_1)$, their nonlinear optical properties were studied.³¹ The strength of the second harmonic generation (SHG) efficiency of 485 486 complexes 1, 3 and 4 was tested by measuring the microcrystalline powder samples with $61-90 \ \mu m$ in diameters. Preliminary examinations indicate that complexes 1, 3 487 488 and 4 are SHG-active and the SHG efficiency is approximately 0.8, 0.6, and 0.7 times that of urea, respectively, which indicates that complexes 1, 3 and 4 have potential 489

493 Recently, a prevalent research has focused on developing ferroelectric materials based on coordination polymers (CPs) and have reported some such materials.³² 494 495 However, the reported ferroelectric materials are mostly built upon chiral organic tectons, whereas the proper use of achiral ligands by spontaneous are scarce.³³ Herein, 496 497 we describe the preliminary investigation of the possible ferroelectric property of 498 complex 1. Complex 1 crystallizes in the acentric space group $Pna2_1$, which belongs to the polar point group $C_{2\nu}$, which falls in one of the 10 polar point groups (C1, Cs, 499 500 C2, C2v, C4, C4v, C3, C3v, C6, C6v) required for ferroelectric materials. Therefore, 501 the ferroelectric behavior of 1 was examined. Fig. 9 clearly shows that there is an 502 electric hysteresis loop that is a typical ferroelectric feature with a remanent polarization (*Pr*) of *ca*. 0.049 μ C cm⁻² and coercive field (*Ec*) of *ca*. 850 V cm⁻¹. The 503 saturation spontaneous polarization (*Ps*) of **1** is *ca*. 0.21 μ C cm⁻², which is slightly 504 lower than that of Rochelle salt (NaKC₄H₄O₆·4H₂O, $Ps = 0.25 \ \mu C \ cm^{-2}$).³⁴ The value 505 of *Ps* is comparable to that of some CPs reported in the literature.³⁵ Furthermore, we 506 507 also studied the behavior of permittivity $(\varepsilon) = \varepsilon_1(\omega) - i\varepsilon_2(\omega)$, where $\varepsilon_1(\omega)$ and $i\varepsilon_2(\omega)$ 508 are the real (dielectric constant) and imaginary (dielectric loss) parts, respectively. The results reveal that the frequency dependence of the dielectric constant ε_1 at room 509 temperature (20 °C) indicates that ε_1 rapidly decreases with the increase of frequency, 510 511 while dielectric loss remains unchanged.

<Figure 8 here>

514

515 **Conclusions**

516 In this work, we have successfully fabricated seven novel coordination polymers under hydrothermal condition. Complex 1 shows a three-dimensional (3D) 517 (3,5)-connected network with the topology of $(6^3)(6^9.8)$. Complexes 2 and 6 have 518 519 similar two-dimensional (2D) lamella structure with (4.4) topology. Complex 3 exhibits an interesting 3D (3,6)-connected framework by self-penetration of two sets 520 521 of (10,3)-a nets. Complex 4 presents a unusual 2D (3,5)-connected framework with the topology of $(3.5^2)(3^2.5^3.6^4.7)$. Complex 5 features a 3D two-fold interpenetrating 522 framework with $(4^{6},6^{4})$ -bnn hexagonal BN topology, whereas Complex 7 possesses 523 524 an interesting one-dimensional (1D) independent single-wall metal-organic nanotube. The various dimensions and structural features of the seven complexes may be 525 526 attributed to the different species of functional groups, the number and position of the 527 carboxylic groups in the carboxylates as well as the auxiliary ligands. Additionally, 528 the ferroelectric and NLO properties of the imidazole and carboxylate system have 529 been investigated, and open up a new avenue to NLO and ferroelectric materials 530 through CPs.

531

532 Acknowledgements

533 This work was supported by the National Natural Science Foundation of China (Nos.

534	212	271116, 21171097), the Key Project of Chinese Ministry of Education (No. 210102)
535	and	the Qing Lan Project of Jiangsu Provincial Department of Education.
536		
537	Re	ferences
538	1	(a) Y. Kang, F. Wang, J. Zhang and X. Bu, J. Am. Chem. Soc., 2012, 134, 17881;
539		(b) R. B. Getman, Y. S. Bae, C. E. Wilmer and R. Q. Snurr, Chem. Rev., 2012,
540		112, 703; (c) D. S. Li, Y. P. Wu, J. Zhao, J. Zhang and J. Y. Lu, Coord. Chem. Rev.,
541		2014, 261, 1; (d) L. Q. Ma, C. Abney and W. B. Lin, Chem. Soc. Rev., 2009, 38,
542		1248; (e) W. W. Zhou, J. T. Chen, G. Xu, M. S. Wang, J. P. Zou, X. F. Long, G. J.
543		Wang, G. C. Guo and J. S. Huang, Chem. Commun., 2008, 2762; (f) T. Hang, W.
544		Zhang, H. Y. Ye and R. G. Xiong, Chem. Soc. Rev., 2011, 40, 3577; (g) Z. G. Guo,
545		R. Cao, X. Wang, H. F. Li, W. B. Yuan, G. J. Wang, H. H. Wu and J. Li, J. Am.
546		Chem. Soc., 2009, 131, 6894; (h) W. W. Xiong, E. U. Athresh, Y. T. Ng, J. Ding, T.
547		Wu and Q. Zhang, J. Am. Chem. Soc., 2013, 135, 1256.
548	2	(a) W. Xuan, C. Zhu, Y. Liu and Y. Cui, Chem. Soc. Rev., 2012, 41, 1677; (b) S. R.
549		Batten, N. R. Champness, X. M. Chen, J. Garcia-Martinez, S. Kitagawa, L.
550		Ohrstrom, M. O'Keeffe, M. P. Suh and J. Reedijk, Pure Appl. Chem., 2013, 85,
551		1715; (c) X. Xi, Y. Liu and Y. Cui, Inorg. Chem., 2014, 53, 2352; (d) S. M. F.
552		Vilela, J. A. Fernandes, D. Ananias, L. D. Carlos, J. Rocha, J. P. C. Tome and F. A.
553		A. Paz, CrsytEngComm, 2014, 16, 344; (e) S. Freslon, Y. Luo, G. Calvez, C.
554		Daiguebonne, O. Guillou, K. Bernot, V. Michel and X. Fan, Inorg. Chem., 2014,
555		53, 1217; (f) C. Zhang, M. Zhang, L. Qin and H. Zheng, Cryst. Growth Des.,

	2014, 14, 491; (g) Y. X. Tan, Y. P. He and J. Zhang, Chem. Mater., 2012, 24, 4711;
	(h) Y. Zhao, D. S. Deng, L. F. Ma, B. M. Ji and L. Y. Wang, Chem. Commun.,
	2013, 49 , 10299.
3	(a) M. H. Zeng, Y. X. Tan, Y. P. He, Z. Yin, Q. Chen and M. Kurmoo, Inorg.
	Chem., 2013, 52, 2353; (b) T. R. Cook, Y. R. Zheng and P. J. Stang, Chem. Rev.,
	2013, 113, 734; (c) Q. Zhai, Q. Lin, T. Wu, L. Wang, S. Zheng, X. Bu and P. Feng,
	Chem. Mater., 2012, 24, 2624; (d) G. Q. Kong, S. Ou, C. Zou and C. D. Wu, J.
	Am. Chem. Soc., 2012, 134, 19851; (e) M. I. Bodnarchuk, R. Erni, F. Krumeich
	and M. V. Kovalenko, Nano Lett., 2013, 13, 1699; (f) Y. Liu, K. Mo and Y. Cui,
	Inorg. Chem., 2013, 52, 10286; (g) V. Bon, I. Senkovska, D. Wallacher, D. M.
	Többens, I. Zizak, R. Feyerherm, U. Mueller and S. Kaskel, Inorg. Chem., 2014,
	53, 1513; (h) B. Bhattacharya, R. Haldar, R. Dey, T. K. Maji and D. Ghoshal,
	Dalton Trans., 2014, 43, 2272.
4	(a) P. Wang, R. Q. Fan, X. R. Liu, L. Y. Wang, Y. L. Yang, W. W. Cao, B. Yang, W.
	Hasi, Q. Su and Y. Mu, CrystEngComm, 2013, 15, 1931; (b) Y. P. He, Y. X. Tan
	and J. Zhang, Inorg. Chem., 2013, 52, 12758; (c) J. Li, J. Zhang, M. G.
	Humphrey and C. Zhang, Eur. J. Inorg. Chem., 2013, 328; (d) B. Moulton and M.
	J. Zaworotko, Chem. Rev., 2011, 101, 1629; (e) G. P. Zhou, Y. L. Yang, R. Q. Fan,
	W. Cao and B. Yang, CrystEngComm, 2012, 14, 193; (f) P. Wang, R. Q. Fan, Y. L.
	Yang, X. R. Liu, W. W. Cao and B. Yang, J. Solid State Chem., 2012, 196, 441; (g)
	R. Q. Fan, L. Y. Wang, P. Wang, H. Chen, C. F. Sun, Y. L. Yang and Q. Su, J.
	3

577 Solid State Chem., 2012, **196**, 332.

578	5	(a) Y. Liang, Z. M. Zhang, Z. J. Liu, Y. Zhang, J. Zhang and E. B. Wang,
579		CrystEngComm, 2014, 16, 1187; (b) A. Masello, K. A. Abboud, W. Wernsdorfer
580		and G. Christou, Inorg. Chem., 2013, 52, 10414; (c) Y. Q. Lan, S. L. Li, X. L.
581		Wang, K. Z. Shao, Z. M. Su and E. B. Wang, Inorg. Chem., 2008, 47, 529; (d) Y.
582		Z. Zheng, Z. Zheng and X. M. Chen, Coord. Chem. Rev., 2014, 258, 1; (e) S.
583		Biswas, H. S. Jena, S. Goswami, S. Sanda and S. Konar, Cryst. Growth Des.,
584		2014, 14, 1287; (f) Z. Chen, L. Liu, Y. Wang, H. H. Zou, Z. Zhang and F. Liang,
585		Dalton Trans., 2014, 43, 8154; (g) A. Kondo, H. Kajiro, H. Noguchi, L. Carlucci,
586		D. M. Proserpio, G. Ciani, K. Kato, M. Takata, H. Seki, M. Sakamoto, Y. Hattori,
587		F. Okino, K. Maeda, T. Ohba, K. Kaneko and H. Kanoh, J. Am. Chem. Soc., 2011,
588		133 , 10512.
589	6	(a) M. D. Zhang, H. G. Zheng, Z. Z. Lu and X. Q. Yao, CrystEngComm, 2013, 15,
589 590	6	 (a) M. D. Zhang, H. G. Zheng, Z. Z. Lu and X. Q. Yao, <i>CrystEngComm</i>, 2013, 15, 9265; (b) C. Wang, T. Zhang and W. Lin, <i>Chem. Rev.</i>, 2012, 112, 1084; (c) Z. Jin,
589 590 591	6	 (a) M. D. Zhang, H. G. Zheng, Z. Z. Lu and X. Q. Yao, <i>CrystEngComm</i>, 2013, 15, 9265; (b) C. Wang, T. Zhang and W. Lin, <i>Chem. Rev.</i>, 2012, 112, 1084; (c) Z. Jin, H. He, H. Zhao, T. Borjigin, F. Sun, D. Zhang and G. Zhu, <i>Dalton Trans.</i>, 2013,
589 590 591 592	6	 (a) M. D. Zhang, H. G. Zheng, Z. Z. Lu and X. Q. Yao, <i>CrystEngComm</i>, 2013, 15, 9265; (b) C. Wang, T. Zhang and W. Lin, <i>Chem. Rev.</i>, 2012, 112, 1084; (c) Z. Jin, H. He, H. Zhao, T. Borjigin, F. Sun, D. Zhang and G. Zhu, <i>Dalton Trans.</i>, 2013, 42, 13335; (d) Z. Zhang, L. Zhang, L. Wojtas, M. Eddaoudi and M. J. Zaworotko,
589 590 591 592 593	6	 (a) M. D. Zhang, H. G. Zheng, Z. Z. Lu and X. Q. Yao, <i>CrystEngComm</i>, 2013, 15, 9265; (b) C. Wang, T. Zhang and W. Lin, <i>Chem. Rev.</i>, 2012, 112, 1084; (c) Z. Jin, H. He, H. Zhao, T. Borjigin, F. Sun, D. Zhang and G. Zhu, <i>Dalton Trans.</i>, 2013, 42, 13335; (d) Z. Zhang, L. Zhang, L. Wojtas, M. Eddaoudi and M. J. Zaworotko, <i>J. Am. Chem. Soc.</i>, 2012, 134, 928; (e) Y. Cui, Y. Yue, G. Qian and B. Chen,
 589 590 591 592 593 594 	6	 (<i>a</i>) M. D. Zhang, H. G. Zheng, Z. Z. Lu and X. Q. Yao, <i>CrystEngComm</i>, 2013, 15, 9265; (<i>b</i>) C. Wang, T. Zhang and W. Lin, <i>Chem. Rev.</i>, 2012, 112, 1084; (<i>c</i>) Z. Jin, H. He, H. Zhao, T. Borjigin, F. Sun, D. Zhang and G. Zhu, <i>Dalton Trans.</i>, 2013, 42, 13335; (<i>d</i>) Z. Zhang, L. Zhang, L. Wojtas, M. Eddaoudi and M. J. Zaworotko, <i>J. Am. Chem. Soc.</i>, 2012, 134, 928; (e) Y. Cui, Y. Yue, G. Qian and B. Chen, <i>Chem. Rev.</i>, 2012, 112, 1126; (<i>f</i>) R. Chen, J. Yao, Q. Gu, S. Smeets, C. Baerlocher,
589 590 591 592 593 594 595	6	 (<i>a</i>) M. D. Zhang, H. G. Zheng, Z. Z. Lu and X. Q. Yao, <i>CrystEngComm</i>, 2013, 15, 9265; (<i>b</i>) C. Wang, T. Zhang and W. Lin, <i>Chem. Rev.</i>, 2012, 112, 1084; (<i>c</i>) Z. Jin, H. He, H. Zhao, T. Borjigin, F. Sun, D. Zhang and G. Zhu, <i>Dalton Trans.</i>, 2013, 42, 13335; (<i>d</i>) Z. Zhang, L. Zhang, L. Wojtas, M. Eddaoudi and M. J. Zaworotko, <i>J. Am. Chem. Soc.</i>, 2012, 134, 928; (e) Y. Cui, Y. Yue, G. Qian and B. Chen, <i>Chem. Rev.</i>, 2012, 112, 1126; (<i>f</i>) R. Chen, J. Yao, Q. Gu, S. Smeets, C. Baerlocher, H. Gu, D. Zhu, W. Morris, O. M. Yaghi and H. Wang, <i>Chem. Commun.</i>, 2013, 49,
589 590 591 592 593 594 595 596	6	 (<i>a</i>) M. D. Zhang, H. G. Zheng, Z. Z. Lu and X. Q. Yao, <i>CrystEngComm</i>, 2013, 15, 9265; (<i>b</i>) C. Wang, T. Zhang and W. Lin, <i>Chem. Rev.</i>, 2012, 112, 1084; (<i>c</i>) Z. Jin, H. He, H. Zhao, T. Borjigin, F. Sun, D. Zhang and G. Zhu, <i>Dalton Trans.</i>, 2013, 42, 13335; (<i>d</i>) Z. Zhang, L. Zhang, L. Wojtas, M. Eddaoudi and M. J. Zaworotko, <i>J. Am. Chem. Soc.</i>, 2012, 134, 928; (e) Y. Cui, Y. Yue, G. Qian and B. Chen, <i>Chem. Rev.</i>, 2012, 112, 1126; (<i>f</i>) R. Chen, J. Yao, Q. Gu, S. Smeets, C. Baerlocher, H. Gu, D. Zhu, W. Morris, O. M. Yaghi and H. Wang, <i>Chem. Commun.</i>, 2013, 49, 9500; (<i>g</i>) L. Wen, L. Zhou, B. Zhang, X. Meng, H. Qu and D. Li, <i>J. Mater. Chem.</i>,
 589 590 591 592 593 594 595 596 597 	6	 (<i>a</i>) M. D. Zhang, H. G. Zheng, Z. Z. Lu and X. Q. Yao, <i>CrystEngComm</i>, 2013, 15, 9265; (<i>b</i>) C. Wang, T. Zhang and W. Lin, <i>Chem. Rev.</i>, 2012, 112, 1084; (<i>c</i>) Z. Jin, H. He, H. Zhao, T. Borjigin, F. Sun, D. Zhang and G. Zhu, <i>Dalton Trans.</i>, 2013, 42, 13335; (<i>d</i>) Z. Zhang, L. Zhang, L. Wojtas, M. Eddaoudi and M. J. Zaworotko, <i>J. Am. Chem. Soc.</i>, 2012, 134, 928; (e) Y. Cui, Y. Yue, G. Qian and B. Chen, <i>Chem. Rev.</i>, 2012, 112, 1126; (<i>f</i>) R. Chen, J. Yao, Q. Gu, S. Smeets, C. Baerlocher, H. Gu, D. Zhu, W. Morris, O. M. Yaghi and H. Wang, <i>Chem. Commun.</i>, 2013, 49, 9500; (<i>g</i>) L. Wen, L. Zhou, B. Zhang, X. Meng, H. Qu and D. Li, <i>J. Mater. Chem.</i>, 2012, 22, 22603.
 589 590 591 592 593 594 595 596 597 598 	6	 (<i>a</i>) M. D. Zhang, H. G. Zheng, Z. Z. Lu and X. Q. Yao, <i>CrystEngComm</i>, 2013, 15, 9265; (<i>b</i>) C. Wang, T. Zhang and W. Lin, <i>Chem. Rev.</i>, 2012, 112, 1084; (<i>c</i>) Z. Jin, H. He, H. Zhao, T. Borjigin, F. Sun, D. Zhang and G. Zhu, <i>Dalton Trans.</i>, 2013, 42, 13335; (<i>d</i>) Z. Zhang, L. Zhang, L. Wojtas, M. Eddaoudi and M. J. Zaworotko, <i>J. Am. Chem. Soc.</i>, 2012, 134, 928; (e) Y. Cui, Y. Yue, G. Qian and B. Chen, <i>Chem. Rev.</i>, 2012, 112, 1126; (<i>f</i>) R. Chen, J. Yao, Q. Gu, S. Smeets, C. Baerlocher, H. Gu, D. Zhu, W. Morris, O. M. Yaghi and H. Wang, <i>Chem. Commun.</i>, 2013, 49, 9500; (<i>g</i>) L. Wen, L. Zhou, B. Zhang, X. Meng, H. Qu and D. Li, <i>J. Mater. Chem.</i>, 2012, 22, 22603. (<i>a</i>) S. D. Han, W. C. Song, J. P. Zhao, Q. Yang, S. J. Liu, Y. Li and X. H. Bu,

- 600 X. Liu, Z. Z. Zhu, B. Ding, Y. Wang, J. Z. Huo and G.X. Du, *RSC Adv.*, 2014, 4,
- 601 25172; (c) Y. L. Hou, G. Xiong, P. F. Shi, R. R. Cheng, J. Z. Cui and B. Zhao,
- 602 Chem. Commun., 2013, 49, 6066; (d) G. S. Yang, Z. L. Lang, H. Y. Zang, Y. Q.
- 603 Lan, W. W. He, X. L. Zhao, L. K. Yan, X. L. Wang and Z. M. Su, Chem.
- 604 Commun., 2013, 49, 1088; (e) J. P. Zou, Q. Peng, Z. Wen, G. S. Zeng, Q. J. Xing
- and G. C. Guo, Cryst. Growth Des., 2010, 10, 2613; (f) X. Zou, H. Ren and G.
- 606 Zhu, Chem. Commun., 2013, **49**, 3925.
- 607 8 (a) W. Kaneko, S. Kitagawa and M. Ohba, J. Am. Chem. Soc., 2007, 129, 248; (b)
- Z. G. Guo, R. Cao, X. Wang, H. F. Li, W. B. Yuan, G. J. Wang, H. H. Wu and J.
- 609 Li, J. Am. Chem. Soc., 2009, **131**, 6894; (c) T. Hang, W. Zhang, H. Y. Ye and R. G.
- 610 Xiong, Chem. Soc. Rev., 2011, 40, 3577; (d) W. W. Zhou, J. T. Chen, G. Xu, M. S.
- Wang, J. P. Zou, X. F. Long, G. J. Wang, G. C. Guo and J. S. Huang, *Chem. Commun.*, 2008, 2762.
- 613 9 (a) X. Q. Yao, D. P. Cao, J. S. Hu, Y. Z. Li, Z. J. Guo and H. G. Zheng, Cryst.
- 614 *Growth Des.*, 2011, **11**, 231; (*b*) J. Y. Lee, C. Y. Chen, H. M. Lee, E. Passaglia, F.
- 615 Vizza and W. Oberhauser, *Cryst. Growth Des.*, 2011, **11**, 1230; (*c*) J. P. Zhao, B.
- 616 W. Hu, Q. Yang, T. L. Hu and X. H. Bu, *Inorg. Chem.*, 2009, 48, 7111; (d) A.
- 617 Datta, K. Das, J. Y. Lee, Y. M. Jhou, C. S. Hsiao, J. H. Huang and H. M. Lee,
- 618 CrystEngComm, 2011, 13, 2824; (e) S. C. Sahoo, T. Kundu and R. Banerjee, J.
- 619 *Am. Chem. Soc.*, 2011, **133**, 17950.
- 620 10 (a) Y. Chen, L. Li, Z. Chen, Y. Liu, H. Hu, W. Chen, W. Liu, Y. Li, T. Lei, Y. Cao,
- 621 Z. Kang, M. Lin and W. Li, *Inorg. Chem.*, 2012, **51**, 9705; (*b*) X. G. Guo, W. B.

622		Yang, X. Y. Wu, K. Zhang, L. Lin, R. M. Yu and C. Z. Lu, CrystEngComm, 2013,
623		15, 3654; (c) C. X. Chen, Q. K. Liu, J. P. Ma and Y. B. Dong, J. Mater. Chem.,
624		2012, 22, 9027; (d) Z. J. Lin and M. L. Tong, Coord. Chem. Rev., 2011, 255, 421;
625		(e) T. Liu, S. Wang, J. Lu, J. Dou, M. Niu, D. Li and J. Bai, CrystEngComm, 2013,
626		15, 5476; (f) X. Bao, P. H. Guo, W. Liu, J. Tucek, W. X. Zhang, J. D. Leng, X. M.
627		Chen, I. Gural'skiy, L. Salmon, A. Bousseksou and M. L. Tong, Chem. Sci., 2012,
628		3, 1629; (g) X. L. Zhao, D. Sun, S. Yuan, S. Y. Feng, R. Cao, D. Q. Yuan, S. N.
629		Wang, J. M. Dou and D. F. Sun, <i>Inorg. Chem.</i> , 2012, 51 , 10350; (<i>h</i>) S. N. Wang, Y.
630		Q. Peng, X. L. Wei, Q. F. Zhang, D. Q. Wang, J. M. Dou, D. C. Li and J. F. Bai,
631		CrystEngComm, 2011, 13, 5313; (i) L. M. Fan, X. T. Zhang, D. C. Li, D. Sun, W.
632		Zhang and J. M. Dou, CrystEngComm, 2013, 15, 349.
633	11	(a) X. Zhang, L. Hou, B. Liu, L. Cui, Y. Y. Wang and B. Wu, Cryst. Growth Des.,
634		2013, 13, 3177; (b) Z. Q. Shi, Y. Z. Li, Z. J. Guo and H. G. Zheng, Cryst. Growth
635		Des., 2013, 13, 3078; (c) D. Sun, Z. H. Yan, V. A. Blatov, L. Wang and D. F. Sun,
636		Cryst. Growth Des., 2013, 13, 1277; (d) B. L. Chen, N. W. Ockwig, F. R.
637		Fronczek, D. S. Contreras and O. M. Yaghi, Inorg. Chem., 2005, 44, 181; (e) S.
638		Yang, X. Lin, A. J. Blake, K. M. Thomas, P. Hubberstey, N. R. Champness and M.
639		Schröder, Chem. Commun., 2008, 6108; (f) H. S. Choi and M. P. Suh, Angew.
640		Chem., Int. Ed., 2009, 48, 6865; (g) B. L. Chen, N. W. Ockwig, A. R. Millward,
641		D. S. Contreras and O. M. Yaghi, Angew. Chem., Int. Ed., 2005, 44, 4745; (h) J. L.
642		Liu, W. Q. Lin, Y. C. Chen, J. D. Leng, F. S. Guo and M. L. Tong, Inorg. Chem.,
643		2013, 52, 457; (i) P. H. Guo, J. L. Liu, Z. M. Zhang, L. Ungur, L. F. Chibotaru, J.

644		D. Leng, F. S. Guo and M. L. Tong, Inorg. Chem., 2012, 51, 1233; (j) A. H.
645		Shelton, I. V. Sazanovich, J. A. Weinstein and M. D. Ward, Chem. Commun.,
646		2012, 48 , 2749.
647	12	(a) B. Li, L. Q. Chen, R. J. Wei, J. Tao, R. B. Huang, L. S. Zheng and Z. P. Zheng,
648		Inorg. Chem., 2011, 50, 424; (b) W. G. Lu, D. C. Zhong, L. Jiang and T. B. Lu,
649		Cryst. Growth Des., 2012, 12, 3675; (c) F. L. Yang, J. Tao, R. B. Huang and L. S.
650		Zheng, Inorg. Chem., 2011, 50, 911; (d) X. J. Zhang, M. A. Ballem, M. Ahren, A.
651		Suska, P. Bergman and K. Uvdal, J. Am. Chem. Soc., 2010, 132, 10391; (e) J. Ma,
652		F. L. Jiang, L. Chen, M. Y. Wu, S. Q. Zhang, K. C. Xiong, D. Han and M. C.
653		Hong, CrystEngComm, 2012, 14, 4181; (f) L. Cheng, L. M. Zhang, S. H. Gou, Q.
654		N. Cao, J. Q. Wang and L. Fang, CrystEngComm, 2012, 14, 4437; (g) P. Cui, L.
655		Ren, Z. Chen, H. Hu, B. Zhao, W. Shi and P. Cheng, Inorg. Chem., 2012, 51,
656		2303; (h) W. X. Chen, H. R. Xu, G. L. Zhuang, L. S. Long, R. B. Huang and L. S.
657		Zheng, Chem. Commun., 2011, 47, 11933; (i) G. X. Liu, H. Xu, H. Zhou, S.
658		Nishihara and X. M. Ren, CrystEngComm, 2012, 14, 1856; (j) Q. H. Chen, F. L.
659		Jiang, L. Chen, M. Yang and M. C. Hong, ChemEur. J., 2012, 18, 9117; (k) B.
660		Li, X. M. Dai, X. G. Meng, T. L. Zhang, C. M. Liu and K. C. Yu, Dalton Trans.,
661		2013, 42 , 2588; (<i>l</i>) F. Yu and B. Li, <i>CrystEngComm</i> , 2011, 13 , 7025; (<i>m</i>) Y. Y. Yin,
662		X. Y. Chen, X. C. Cao, W. Shi and P. Cheng, Chem. Commun., 2012, 48, 705.
663	13	(a) X. Zhang, Z. H. Yi, L. Y. Zhao, Q. Chen, X. L. Wang, J. Q. Xu, W. J. Xia and
664		C. Yang, CrystEngComm, 2010, 12, 595; (b) L. S. Long, CrystEngComm, 2010,

665 **12**, 1354; (*c*) M. Chen, S. S. Chen, T. A. Okamura, Z. Su, M. S. Chen, Y. Zhao, W.

666		Y. Sun and N. Ueyama, Cryst. Growth Des., 2011, 11, 1901; (d) G. C. Ou, X. L.
667		Feng and T. B. Lu, Cryst. Growth Des., 2011, 11, 851; (e) H. X. Yang, S. Y. Gao,
668		J. Lu, B. Xu, J. X. Lin and R. Cao, Inorg. Chem., 2010, 49, 736; (f) H. Y. Liu, J.
669		Yang, Y. Y. Liu and J. F. Ma, Dalton Trans., 2012, 41, 9922; (g) D. Sun, Z. H.
670		Wei, C. F. Yang, D. F. Wang, N. Zhang, R. B. Huang and L. S. Zheng,
671		CrystEngComm, 2011, 13, 1591; (h) H. Y. Liu, H. Wu, J. Yang, Y. Y. Liu, B. Liu,
672		Y. Y. Liu and J. F. Ma, Cryst. Growth Des., 2011, 11, 2920; (i) A. B. Lago, R.
673		Carballo, S. Rodriguez-Hermida and E. M. Vazquez-Lopez, CrystEngComm,
674		2013, 15, 1563; (j) Y. H. Tan, J. J. Wu, H. Y. Zhou, L. F. Yang and B. H. Ye,
675		CrystEngComm, 2012, 14, 8117; (k) K. P. Rao, M. Higuchi, J. G. Duan and S.
676		Kitagawa, Cryst. Growth Des., 2013, 13, 981.
677	14	(a) M. Wriedt, A. A. Yakovenko, G. J. Haider, A. V. Prosvirin, K. R. Dunbar and
678		H. C. Zhou, J. Am. Chem. Soc., 2013, 135, 4040; (b) C. P. Li and M. Du, Chem.
679		Commun., 2011, 47, 5958; (c) F. Y. Yi and Z. M. Sun, Cryst. Growth Des., 2012,
680		12, 5693;(d) B. Li, R. J. Wei, J. Tao, R. B. Huang, L. S. Zheng and Z. P. Zheng, J.
681		Am. Chem. Soc., 2010, 132, 1558; (e) M. F. Wang, X. J. Hong, Q. G. Zhan, H. G.
682		Jin, Y. T. Liu, Z. P. Zheng, S. H. Xu and Y. P. Cai, Dalton Trans., 2012, 41, 11898;
683		(f) X. M. Lin, H. C. Fang, Z. Y. Zhou, L. Chen, J. W. Zhao, S. Z. Zhu and Y. P.
684		Cai, CrystEngComm, 2009, 11, 847; (g) B. Liu, L. Y. Pang, L. Hou, Y. Y.Wang, Y.
685		Zhang and Q. Z. Shi, CrystEngComm, 2012, 14, 6246; (h) X. Zhu, X. G. Liu, B.
686		L. Li and Y. Zhang, CrystEngComm, 2009, 11, 997; (i) X. L. Zhao, L. L. Zhang,
687		H. Q. Ma, D. Sun, D. X. Wang, S. Y. Feng and D. F. Sun, RSC Adv., 2012, 2,

688		5543; (j) D. Sun, Y. H. Li, H. J. Hao, F. J. Liu, Y. M. Wen, R. B. Huang and L. S.
689		Zheng, Cryst. Growth Des., 2011, 11, 3323; (k) L. Wen, P. Cheng and W. B. Lin,
690		Chem. Commun., 2012, 48, 2846.
691	15	(a) Q. Y. Zhu, L. Yu, Y. R. Qin, L. B. Huo, M. Y. Shao and J. Dai, CrystEngComm,
692		2011, 13, 2521; (b) B. Notash, N. Safari and H. R. Khavasi, Inorg. Chem., 2010,
693		49, 11415; (c) J. K. Sun, P. Wang, Q. X. Yao, Y. J. Chen, Z. H. Li, Y. F. Zhang, L.
694		M. Wu and J. Zhang, J. Mater. Chem., 2012, 22, 12212; (d) Z. P. Deng, H. L. Qi,
695		L. H. Huo, H. Zhao and S. Gao, CrystEngComm, 2011, 13, 6632; (e) U. P. Singh,
696		S. Kashyap, H. J. Singh and R. J. Butcher, CrystEngComm, 2011, 13, 4110; (f) D.
697		A. Safin, M. G. Babashkina, K. Robeyns and Y. Garcia, Dalton Trans., 2012, 41,
698		4324; (g) X. H. Yan, Z. H. Cai, C. L. Yi, W. S. Liu, M. Y. Tan and Y. Tang, Inorg.
699		Chem., 2011, 50, 2346; (h) I. H. Park, H. J. Kim and S. S. Lee, CrystEngComm,
700		2012, 14, 4589; (i) S. H. Zhang, L. F. Ma, H. H. Zou, Y. G. Wang, H. Liang and
701		M. H. Zeng, Dalton Trans., 2011, 40, 11402; (j) Y. H. Lau, J. R. Price, M. H.
702		Todd and P. J. Rutledge, ChemEur. J., 2011, 17, 2850; (k) F. J. Liu, D. Sun, H. J.
703		Hao, R. B. Huang and L. S. Zheng, Cryst. Growth Des., 2012, 12, 354; (1) G. X.
704		Liu, H. Xu, H. Zhou, S. Nishiharab and X. M. Ren, CrystEngComm, 2012, 14,
705		1856.
706	16	(a) S. L. Cai, M. Pan, S. R. Zheng, J. B. Tan, J. Fan and W. G. Zhang,

R. Prendergast, M. Helliwell, S. R. Choudhury, A. Frontera and S.
Mukhopadhyay, *Inorg. Chem.*, 2012, **51**, 3557; (c) J. Yang, J. F. Ma, Y. Y. Liu, J.

CrystEngComm, 2012, 14, 2308; (b) P. Manna, S. K. Seth, A. Das, J. Hemming,

710		C. Ma and S. R. Batten, Inorg. Chem., 2007, 46, 6542; (d) R. Feng, F. L. Jiang, L.
711		Chen, C. F. Yan, M. Y. Wu and M. C. Hong, Chem. Commun., 2009, 5296; (e) J.
712		L. Gulbransen and C. M. Fitchett, CrystEngComm, 2012, 14, 5394; (f) J. Chen, C.
713		P. Li and M. Du, CrystEngComm, 2011, 13, 1885; (g) F. Jin, H. Z. Wang, Y.
714		Zhang, Y. Wang, J. Zhang, L. Kong, F. Y. Hao, J. X. Yang, J. Y. Wu, Y. P. Tian and
715		H. P. Zhou, CrystEngComm, 2013, 15, 3687.
716	17	(a) C. L. Zhang, M. D. Zhang, L. Qin and H. G. Zheng, Cryst. Growth Des., 2014,
717		14, 491; (b) M. L. Han, Y. P. Duan, D. S. Li, H. B. Wang, J. Zhao and Y. Y. Wang,
718		Dalton Trans., 2014, 43, 15450; (c) L. L. Han, X. Y. Zhang, J. S. Chen, Z. H. Li,
719		D. F. Sun, X. P. Wang and D. Sun, Cryst. Growth Des., 2014, 14, 2230; (d) L. N.
720		Jin, Q. Liu and W. Y. Sun, CrystEngComm, 2014, 16, 3816; (e) Y. F. Han, X. Y. Li,
721		L. Q. Li, C. L. Ma, Z. Shen, Y. Song and X. Z. You, Inorg. Chem., 2010, 49,
722		10781; (f) L. L. Liu, J. M. Du, Y. Y. Liu, F. Zhao and F. J. Ma, J. Coord. Chem.,
723		2014, 67, 136; (g) W. Wei, H. T. Yu, F. L. Jiang, B. Liu, J. Ma and M. C. Hong,
724		CrystEngComm, 2012, 14, 1693; (h) X. P. Yang, C. Chan, D. Lam, D. Schipper, J.
725		M. Stanley, X. Y. Chen, R. A. Jones, B. J. Holliday, W. K. Wong, S. C. Chen and
726		Q. Chen, Dalton Trans., 2012, 41, 11449.
727	18	(a) Y. P. Li, Y. Chai, G. P. Yang, H. H. Miao, L. Cui, Y. Y. Wang and Q. Z. Shi,
728		Dalton Trans., 2014, 43, 10947; (b) X. L. Sun, Z. J. Wang, S. Q. Zang, W. C.
729		Song and C. X. Du, Cryst. Growth Des., 2012, 12, 4431; (c) L. L. Liu, C. X. Yu, Y.
730		Zhou, J. Sun, P. P. Meng, D. Liu and R. J. Sa, Inorg. Chem. Commun., 2014, 40,

731 194; (d) X. H. Chang, L. F. Ma, H. Guo and L. Y. Wang, Cryst. Growth Des.,

732		2012, 12, 3638; (e) Y. Yang, P. Du, Y. Y. Liu and J. F. Ma, Cryst. Growth Des.,
733		2013, 13, 4781; (f) T. Liu, S. N. Wang, J. Lu, J. M. Dou, M. J. Niu, D. H. Lia and
734		J. F. Bai, CrystEngComm, 2013, 15, 5467; (g) L. F. Ma, L. Y. Wang, Y. Y. Wang,
735		S. R. Batten and J. G. Wang, Inorg. Chem., 2009, 48, 915; (h) L. Pan, B. Parker,
736		X. Y. Huang, D. H. Oison, J. Y. Lee and J Li, J. Am. Chem. Soc., 2006, 128, 4180.
737	19	(a) F. Guo, B. Zhu, M. Liu, X. Zhang, J. Zhang and J. Zhao, CrystEngComm,
738		2013, 15, 6191; (b) L. Zhang, J. Guo, Q. Meng, R. Wang and D. Sun,
739		CrystEngComm, 2013, 15, 9578; (c) L. Fan, X. Zhang, W. Zhang, Y. Ding, W.
740		Fan, L. Sun, Y. Pang and X. Zhao, <i>Dalton Trans.</i> , 2014, 43 , 6701; (<i>d</i>) B. Liu, L.
741		Wei, N. N. Li, W. P. Wu, H. Miao, Y. Y. Wang and Q. Z. Shi, Cryst. Growth Des.,
742		2014, 14, 1110; (e) X. Zhang, L. Fan, W. Zhang, W. Fan, L. Sun and X. Zhao,
743		CrystEngComm, 2014, 16, 3203.
744	20	(a) S. L. Xiao, L. Liu, P. J. Ma and G. H. Cui, Z. Anorg. Allg. Chem., 2014, 640,
745		1484; (b) J. M. Hao, Y. N. Zhao, B. Y. Yu, K. V. Hecke and G. H. Cui, Transition
746		Met. Chem., 2014, 39,741; (c) G. H. Cui, J. R. J. L. Tian, X. H. Bu and S. R.
747		Batten, Cryst. Growth Des. 2005, 5, 1775; (d) Y. Qi, F. Luo, S. R. Batten, Y. X.
748		Che and J. M. Zheng, Cryst. Growth Des. 2008, 8, 2806; (e) Y. Qi, F. Luo, Y. X.
749		Che and J. M. Zheng, Cryst. Growth Des. 2008, 8, 606; (f) J. H. Qin, L. F. Ma, Y.
750		Hu and L. Y. Wang, CrystEngComm, 2012, 14, 2891.
751	21	(a) J. Fan and B. E. Hanson, Chem. Commun., 2005, 2327; (b) Y. H. So,
752		Macromolecules, 1992, 25 , 516.

753 22 SAINT, Version 6.02a; Bruker AXS Inc., Madison, W1, 2002.

754	23	G. M. Sheldrick, SADABS, Program for Bruker Area Detector Absorption
755		Correction, University of Göttingen, Göttingen, Germany, 1997.
756	24	(a) G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution,
757		University of Göttingen, Göttingen, Germany, 1997; (b) G. M. Sheldrick,
758		SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen,
759		Göttingen, Germany, 1997.
760	25	(a) K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordinated
761		Compounds, 5th edn, Wiley & Sons, New York, 1997; (b) C. G. Wang, Y. H. Xing,
762		Z. P. Li, J. Li, X. Q. Zeng, M. F. Ge and S. Y. Niu, Cryst. Growth Des., 2009, 9,
763		1525; (c) R. S. Zhou, X. B. Cui, J. F. Song, X. Y. Xu, J. Q. Xu and T. G. Wang, J.
764		Solid State Chem. 2008, 181, 1565.
765	26	A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
766	27	(a) V. A. Blatov, IUCr CompComm Newslett., 2006, 7, 4; (b) V. A. Blatov,
767		TOPOS, A Multipurpose Crystallochemical Analysis with the Program Package,
768		Samara State University, Russia, 2009.
769	28	(a) J. P. Sauvage, Acc. Chem. Res., 1998, 31 , 611; (b) C. Qin, X. L. Wang, E. B.

- 770 Wang and Z. M. Su, *Inorg. Chem.*, 2005, 44, 7122; (c) B. F. Abrahams, M. G.
- Haywood and R. Robson, CrystEngComm, 2005, 7, 629; (d) F. C. Liu, Y. F. Zeng,
- 772 J. Jiao, X. H. Bu, J. Ribas and S. R. Batten, *Inorg. Chem.*, 2006, 45, 2776.
- 29 (a) N. Zhao, Y. E. Deng, P. Liu, C. X. An, T. X. Wang and Z. X. Lian, Polyhedron,
- 2015, **85**, 607; (*b*) L. M. Fan, X. T. Zhang, W. Zhang, Y. S. Ding, W. L. Fan, L. M.
- 775 Sun, Y. Pang and X. Zhao, *Dalton Trans.*, 2014, **43**, 6701; (*c*) R. M. Han, J. F. Ma,

- 776 Y. Y. Liu and J. Yang, *CrystengComm*, 2013, **15**, 5641; (*d*) K. K. Bisht and E.
- 777 Suresh, Inorg. Chem., 2012, 51, 9577; (e) B. K. Tripuramallu, P. Manna, S. N.
- 778 Reddy and S. K. Das, *Cryst. Growth Des.*, 2012, **12**, 777.
- 779 30 (a) C. Wang, T. Zhang and W. Lin, Chem. Rev., 2012, 112, 1084; (b) Y. T. Wang,
- 780 H. H. Fan, H. Z. Wang and X. M. Chen, *Inorg. Chem.*, 2005, 44, 4148; (c) Y. T.
- 781 Wang, H. H. Fan, H. Z. Wang and X. M. Chen, J. Mol. Struct., 2005, 740, 61; (d)
- 782 Y. T. Wang, M. L. Tong, H. H. Fan, H. Z. Wang and X. M. Chen, Dalton Trans.,
- 783 2005, 424; (e) Q. Ye, Y. Z. Tang, X. S. Wang and R. G. Xiong, Dalton Trans.,
- 784 2005, 1570; (*f*) D. W. Fu, W. Zhang and R. G. Xiong, *Cryst. Growth Des.*, 2008, **8**,
- 785 3461; (g) D. W. Fu, W. Zhang and R. G. Xiong, *Dalton Trans.*, 2008, 3946.
- 786 31 S. K. Kurtz and T. T. Perry, J. Appl. Phys., 1968, **39**, 3798.
- 787 32 (a) D. W. Fu, Y. M. Song, G. X. Wang, Q. Ye, R. G. Xiong, T. Akutagawa, T.
- 788 Nakamura, P. W. H. Chan and S. D. Huang, J. Am. Chem. Soc., 2007, 129, 5346;
- (b) T. Okubo, R. Kawajiri, T. Mitani and T. Shimoda, J. Am. Chem. Soc., 2005,
- 790 **127**, 17598; (*c*) T. Sivakurnar, H. Y. Chang, J. Baek and P. S. Halasyamani, *Chem*.
- 791 *Mater.*, 2007, **19**, 4710; (*d*) D. L. deMurillas, R. Pinol, M. B. Ros, J. L. Serrano, T.
- 792 Sierra and M. R. delaFuente, J. Mater. Chem., 2004, 14, 1117.
- 793 33 (a) L. Song, S. W. Du, J. D. Lin, H. Zhou, T. Li, Cryst. Growth Des., 2007, 7,
- 794 2268; (*b*) X. Q. Liang, J. T. Jia, T. Wu, D. P. Li, L. Liu, Tsolmon and G. S. Zhu,
- 795 CrystEngComm, 2010, 12, 3499; (c) Z. Su, M. S. Chen, J. Fan, M. Chen, S. S.
- 796 Chen, L. Luo and W. Y. Sun, *CrystEngComm*, 2010, **12**, 2040.

797	34	(a) Q. Ye, Y. M. Song, G. X. Wang, K. Chen, D. W. Fu, P. W. H. Chan, J. S. Zhu,
798		S. D. Huang and R. G. Xiong, J. Am. Chem. Soc., 2006, 128, 6554; (b) H. Y. Ye,
799		D. W. Fu, Y. Zhang, W. Zhang, R. G. Xiong and S. P. Huang, J. Am. Chem. Soc.,
800		2009, 131 , 42.
801	35	(a) J. H. Wang, G. M. Tang, T. X. Qin, S. C. Yan, Y. T. Wang, Y. Z. Cui and S. W.
802		Ng, J. Solid State Chem., 2014, 219, 55; (b) F. L. Du, H. B. Zhang, C. B. Tian and
803		S. W. Du, Cryst. Growth Des., 2013, 13, 1736; (c) Y. Z. Tang, M. Zhou, J. Huang,
804		Y. H. Tan, J. S. Wu and H. R. Wen, <i>Inorg. Chem.</i> , 2013, 52 , 1779; (<i>d</i>) Y. H. Liu, C.
805		C. Peng, S. H. Lee, P. H. Chien and P. C. Wu, CrystEngComm., 2013, 15, 10333.

Complex	1	2	3
Formula	C ₂₉ H ₃₄ N ₆ O ₇ Ni	$C_{56}H_{54}N_8O_{13}Ni_2$	C ₃₀ H ₂₇ BrN ₆ O ₆ NiZn
Formula weight	637.33	1164.49	771.57
Temperature (K)	293(2)	293(2)	293(2)
Crystal system	Orthorhombic	Triclinic	Cubic
Space group	$Pna2_1$	<i>P</i> -1	P2 ₁ 3
<i>a</i> (Å)	18.023(3)	10.1090(14)	14.6382(4)
<i>b</i> (Å)	11.862(2)	11.2544(16)	14.6382(4)
<i>c</i> (Å)	13.824(3)	12.3282(17)	14.6382(4)
α (°)	90	70.576	90
β (°)	90	77.903	90
γ (°)	90	82.210	90
$V(\text{\AA}^3)$	2955.4(9)	1290.1(3)	3136.63(15)
Z	4	1	4
$D_{\text{calc}} (\text{Mg/m}^3)$	1.432	1.499	1.634
$\mu (\mathrm{mm}^{-1})$	0.713	0.806	2.691
<i>F</i> (000)	1336	606	1560
θ range (°)	2.06-25.50	1.92-25.10	1.97-25.48
Reflections collected	14704	6473	22244
Independent reflections (R_{int})	5377 (0.0563)	4500 (0.0663)	1966 (0.0818)
Data/restraints/parameters	5377 / 1 / 391	4500 / 4 / 371	1966 / 13 / 137
Goodness-of-fit	1.070	1.004	1.044
<i>R</i> indices $[I > 2\sigma(I)]^{a,b}$	$R_1 = 0.0573$	$R_1 = 0.0413$	$R_1 = 0.0380$
	$wR_2 = 0.1225$	$wR_2 = 0.1097$	$wR_2 = 0.0828$
R indices (all data)	$R_1 = 0.0703$	$R_1 = 0.0474$	$R_1 = 0.0545$
	$wR_2 = 0.1284$	$wR_2 = 0.1120$	$wR_2 = 0.0899$

80

 ${}^{a} R_{1} = \Sigma ||F_{o}| - |F_{c}|| \Sigma |F_{o}|.$ ${}^{b} wR_{2} = |\Sigma w(|F_{o}|^{2} - |F_{c}|^{2})| \Sigma |w(F_{o})^{2}|^{1/2}$ 809

Complex	4	5
Formula	C ₃₃ H ₃₈ N ₆ O ₅ Ni	C ₃₃ H ₃₅ N ₆ O ₅ Ni
Formula weight	657.40	654.38
Temperature (K)	293(2)	293(2)
Crystal system	Orthorhombic	Triclinic
Space group	$P2_{1}2_{1}2_{1}$	<i>P</i> -1
<i>a</i> (Å)	10.5786(6)	8.9712(9)
<i>b</i> (Å)	15.8768(8)	10.0571(10)
<i>c</i> (Å)	18.6358(11)	18.3348(19)
α (°)	90	74.5820(10)
β (°)	90	79.4070(10)
γ (°)	90	83.0710(10)
$V(Å^3)$	3130.0(3)	1563.0(3)
Ζ	4	2
D_{calc} (Mg/m ³)	1.395	1.390
$\mu (\mathrm{mm}^{-1})$	0.671	0.672
<i>F</i> (000)	1384	686
θ range (°)	2.21-25.10	2.14-25.50
Reflections collected	12615	11104
Independent reflections (R_{int})	5336 (0.0224)	5738 (0.0434)
Data/restraints/parameters	5336 / 2 / 408	5738 / 2 / 409
Goodness-of-fit	1.057	1.065
<i>R</i> indices $[I > 2\sigma(I)]^{a,b}$	$R_1 = 0.0381$	$R_1 = 0.0509$
	$wR_2 = 0.1050$	$wR_2 = 0.1029$
R indices (all data)	$R_1 = 0.0415$	$R_1 = 0.0785$
	$wR_2 = 0.1081$	$wR_2 = 0.1180$

RSC Advances Accepted Manuscript

811

^{*a*} $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|.$ ^{*b*} $wR_2 = |\Sigma w(|F_0|^2 - |F_c|^2)| / \Sigma |w(F_0)^2|^{1/2}$ 812

Complex	6	7
Formula	C ₂₆ H ₃₀ N ₄ O ₆ Ni	C ₂₆ H ₂₈ N ₄ O ₅ Ni
Formula weight	553.25	535.23
Temperature (K)	293(2)	293(2)
Crystal system	Triclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> -1
<i>a</i> (Å)	9.0020(5)	10.2427(9)
<i>b</i> (Å)	10.2280(6)	11.0898(10)
<i>c</i> (Å)	14.9680(9)	11.8660(10)
α (°)	78.7850(10)	105.9120(10)
β (°)	84.2210(10)	94.2520(10)
γ (°)	78.2830(10)	106.0960(10)
$V(Å^3)$	1320.97(13)	1228.84(19)
Ζ	2	2
D_{calc} (Mg/m ³)	1.391	1.447
$\mu (\mathrm{mm}^{-1})$	0.781	0.835
<i>F</i> (000)	580	560
θ range (°)	2.07-25.10	2.25-25.50
Reflections collected	16100	9751
Independent reflections (R_{int})	4680 (0.1024)	4560 (0.0201)
Data/restraints/parameters	4680 / 2 / 345	4560 / 2 / 318
Goodness-of-fit	1.055	1.041
<i>R</i> indices $[I > 2\sigma(I)]^{a,b}$	$R_1 = 0.0420$	$R_1 = 0.0421$
	$wR_2 = 0.1131$	$wR_2 = 0.1071$
R indices (all data)	$R_1 = 0.0528$	$R_1 = 0.0477$
	$wR_2 = 0.1450$	$wR_2 = 0.1109$

^{*a*} $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|.$ ^{*b*} $wR_2 = |\Sigma w(|F_0|^2 - |F_c|^2)| / \Sigma |w(F_0)^2|^{1/2}$ 815

1.17.

817 818	Captions for Scheme and Figures:
819	Scheme 1 Structures of imidazole-containing ligands and polycarboxylates used in
820	this work.
821	Fig. 1 (a) Coordination environment of Ni(II) ions in 1 with the ellipsoids drawn at
822	the 30% probability level; hydrogen atoms and water molecules were omitted for
823	clarity. Symmetry codes: A -x+3/2, y-1/2, z-1/2; B x-1/2, -y-1/2, z; C x, y-1, z. (b)
824	Ball-stick representation of the Ni-titmb sheet in 1. (c) Schematic representation of the
825	2D (6,3) framework. (d) Stick representation of a 3D structure of 1 along the c -axis. (e)
826	Schematic view of the $(6^3)(6^9.8)$ topology.
827	Fig. 2 (a) Coordination environment of Ni(II) ions in 2 with the ellipsoids drawn at
828	the 30% probability level; hydrogen atoms were omitted for clarity. Symmetry codes:
829	A x-1, y, z; B x+1, y, z+1. (b) Molecular packing of the sub-layer in 2. (c)The
830	square-like network of 2 . Only the nickel atoms and the connections between them are
831	shown. The orientation of the diagram is along a-axis. (d)View of the 3D
832	hydrogen-bonding network in the packing of 2 along the <i>c</i> axis; O–H···O interactions
833	are shown as dashed lines.
834	Fig. 3 (a) Coordination environment of Ni(II) and Zn(II) ions in 3 with the ellipsoids
835	drawn at the 30% probability level; hydrogen atoms were omitted for clarity.

836 Symmetry codes: A y, z, x; B z, x, y; C y, z, x; D z, x, y. (b) Heterometallic binuclear 837 ZnNi(CO₂)₃Br unit observed for **3**. (c) Schematic representation of the (10,3)-a net in 838 **3** along the *c*-axis; the binuclear units are represented by the green balls and the BTC³⁻ 839 anions are represented by the blue nods. (d) Schematic representation of the second

840 (10,3)-a net in **3** along the *c*-axis; the binuclear units are represented by the purple 841 balls and the titmb ligands are represented by the yellow nods. (e) Schematic 842 representation of the overall network topology in complex **3**; titmb and BTC^{3-} ligands 843 are represented by yellow and blue nods, respectively.

Fig. 4 (a) Coordination environment of Ni(II) ions in 4 with the ellipsoids drawn at the 30% probability level; hydrogen atoms and water molecules were omitted for clarity. Symmetry codes: A -x+1, y-1/2, -z+1/2; 2; B -x, y+1/2, -z+1/2; C -x+1, y+1/2, -z+1/. (b) Ball-stick representation of the Ni-titmb sheet in 4. (c) Schematic representation of the 2D (6,3) framework. (d) Stick representation of a 3D structure of 4 along the *c*-axis. (e) Schematic view of the $(3.5^2)(3^2.5^3.6^4.7)$ topology.

Fig. 5 (a) Coordination environment of Ni(II) ions in 5 with the ellipsoids drawn at the 30% probability level; hydrogen atoms and water molecules were omitted for clarity. Symmetry codes: A x, y-1, z; B -x, 2-y, 2-z; C -1-x, 1-y, 1-z; D 1-x, 2-y, 1-z. (b) View of the 1D chain of Ni(II) linked by TBDC²⁻ anion in 5. (c) View of the (6, 3) layer of Ni(II) bridged by bix ligands; (d) View of the 3D framework with (4⁶.6⁴)-bnn hexagonal BN topology. (e) Schematic illustration of the two-fold interpenetration network in 5.

Fig. 6 (a) Coordination environment of Ni(II) ions in 6 with the ellipsoids drawn at the 30% probability level; hydrogen atoms were omitted for clarity. Symmetry codes: A x, y-1, z; B x+1, y-1, z. (b)View of 2D layer constructed by Ni(II) ions, TBDC anions, and mbix ligands. (c) Schematic representation of topology of 6 (the green spheres represent the Ni(II) ions and blue and purple lines represent the mbix ligands

862	and TBDC anions, respectively). (d)The 3D supramolecular network constructed by
863	π - π interactions in 6 .
864	Fig. 7 (a) Coordination environments of the Ni(II) atoms in 7 with the ellipsoids
865	drawn at the 30% probability level; hydrogen atoms were omitted for clarity.
866	Symmetry codes: A x+1, y ,z; B -x+1, -y+1, -z. (b) View of 24-membered [Ni ₂ (obix) ₂]
867	ring in 7. (c) Schematic representation of the 1D tubular structure in 7.
868	Fig. 8 TGA curves of complexes $1 - 7$.
869	Fig. 9 Electric hysteresis loops of complex 1 under different voltages at room
870	temperature.

RSC Advances Accepted Manuscrip

876 877

(a)

N3

C17

C21

C20

C19

884 885

Figure 1.

896 Figure 2.

RSC Advances Accepted Manuscrip

(e)

903 904

905

906

907 Figure 3.

909

910

911

(b)

913

- 917
- 918 Figure 4.

RSC Advances Accepted Manuscript

919

929 Figure 5.

930

940

(a)

941

942

(b)

949 Figure 8.

Graphical Abstract:

Seven nickel(II) coordination polymers, based on varied polycarboxylates and different imidazole-containing ligands, are obtained, indicating that the different species of functional groups, the number and position of the carboxylic groups in the carboxylates as well as the auxiliary ligands have crucial influences on the final structures.

