This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Reactive porous composites for chromium(VI) reduction applications based on Fe/carbon obtained from post-consumer PET and iron oxide.

Lílian A. Carvalho, José D. Ardisson, Rochel M. Lago, Maria D. Vargas and Maria H. Araujo

By using post-consumer PET waste and iron oxide (Fe₂O₃) novel porous magnetic Fe/carbon composites for environmental applications have been obtained by a very simple process. XRD, Mössbauer, TG/MS, SEM, BET and Raman analyses have indicated that molten PET containing dispersed Fe₂O₃ particles decomposes in the 500-1000 °C range to produce a carbon matrix with developed micro and mesoporosities and surface areas of 136-260 m²g⁻¹, with simultaneous reduction of Fe³⁺ to iron phases whose composition depended on the decomposition temperature: i) reactive Fe²⁺ phases, FeOOH, Fe₃O₄ (magnetite) and FeO (wüstite) for the composites obtained at 500-600 °C and ii) Fe₀ and Fe₃C for those obtained at higher temperatures. Investigation of these composites for the reduction of aqueous chromium(VI) showed high activities for the materials obtained at 500 and 600 °C, which is discussed in terms of the phase composition and presence of carbon surface oxygen groups for the adsorption of Cr⁶⁺.

Keywords: PET waste, Fe reduced phases, porous carbon, chromium(VI) removal

1 Introduction

Reactive composites based on carbon and reduced iron species have been investigated for different environmental applications, such as reduction of organochloro compounds, chromium(VI), nitroaromatics, dyes, pesticides, nitrate/nitrite and oxidations via the Fenton reaction.

Some of these composites showed very good reactivities and the possibility of regeneration after use and deactivation, i.e. the oxidized iron species in the composite can be reduced and regenerated by simple thermal treatment. Different approaches have been used for the production of iron reduced reactive species with different reductants, such as activated carbon, tar pitch and H₂.

In this work we report the preparation of a reactive Fe/carbon porous composite by a very simple process using post-consumer polyethylene terephthalate (PET) waste and iron oxide (Fe₂O₃). A schematic representation of the preparation route for the Fe/carbon porous composites is shown in Fig. 1.

Fig. 1 Schematic representation of the preparation of the Fe/Cₚₑᵗ composites.

Different applications for post-consumer PET have been proposed, including the production of fibers, polymer blends, cationic exchange resins and building. The carbonization of PET has also been previously described, however the use of PET in the process depicted in Fig. 1 is new and contemplates several important features. PET is a hydrophilic polymer, which can interact and efficiently disperse iron oxide particles. Thermal decomposition of PET produces small molecules, such as CO, volatile organics and a
carbon matrix, which should act as reducing agents for iron oxide, yielding iron reduced species. Furthermore, the reaction of iron oxide with the PET carbon matrix should have an activation effect in the formation of a porous structure with significant surface area. The high oxygen content in PET can potentially generate oxygen functional groups on the formed carbon surface, such as –COOH (carboxylic) and –OH (phenolic), which can play several important roles in adsorption processes. Another interesting potential feature of this process is that the iron oxide can be obtained from different wastes and natural materials. Herein, the preparation and characterization of different Fe/PET composites, and their use for the reduction of hazardous aqueous and soil contaminant chromium(VI) is described. Hexavalent chromium in the environment is of great concern due to its high mobility and carcinogenic/mutagenic activities. Efficient technologies for the removal of hazardous chromium(VI) contaminants are, therefore, of considerable interest.

2 Experimental

2.1 Chemicals

Fe(NO₃)₃·9H₂O (Vetec), sulfuric acid (Synth), 1,5-diphenylcarbazide (Vetec) and K₂Cr₂O₇ (Synth) were used without further purification. Post-consumer PET from colorless beverage bottles was used for the preparation of the carbon-coated reactive composites.

2.2 Preparation of hematite and composites

Hematite was obtained by slowly heating Fe(NO₃)₃·9H₂O (20 g) in a beaker from 30 to 150 °C until it dried and became a red powder. This red powder was transferred to a tubular furnace (Lindberb Blue M) and heated from 30 to 450 °C (at 15 °C/min, in air), and kept at this temperature for 4 h, after which time the sample was cooled down to room temperature inside the furnace. The Fe/PET composites were prepared by mixing 8 g of molten PET (at 270 °C) with 2 g of the powdered hematite. The red Fe₂O₃/PET composite was then cooled down and broken into small pieces (ca. 2 mm). Portions of this material (5 g) were heated in a tubular furnace (10 °C/min, under N₂ atmosphere) to 500, 600, 700, 800, 900 or 1000 °C and kept at the given temperature for 30 min, yielding black samples of Fe₂O₃/PET, Fe₃O₄/PET, Fe₇O₁₂/PET, Fe₁₀O₁₉/PET, Fe₁₇O₃₄/PET and Fe₃₉O₆₉/PET, respectively, that were kept in a desiccator in the air.

2.3 Characterization

The X-ray diffraction patterns were obtained on a Rigaku, Geigerflex model diffractometer using Ni filtered Cu-Kα radiation (30 kV, 30 mA, λ = 1.5418 Å) with an angle of 2θ which was varied from 4 to 60 degrees at a rate of 2°/min. Mössbauer spectroscopy was carried out using a spectrometer CMTE MA250 model, with a source of cobalt-57 in rhodium matrix (⁵⁷Co/Rh) and α-Fe as reference. The spectra obtained were fitted using the Normos-90 program. Measurements of nitrogen (99.999%) adsorption/desorption at 77 K were carried out using volumetric adsorption equipment (Autosorb 1 Quantachrome). Prior to such measurements the samples were degassed at 150 °C for 12 h until the residual pressure was less than 0.5 Pa. Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) equations were used to calculate surface area and pore size distribution, respectively. Scanning electron microscopy (SEM) images were taken with the FEI Quanta 200 FEG at an operating voltage of 2–20 kV. The samples were prepared by deposition on a carbon tape. To observe genuine pore structures on the external surface, the samples were observed without metal coating. Raman spectroscopy were performed at a Bruker Senterra model, using a helium neon laser at 633 nm line, power of 2 mW, as excitation source and a CCD detector. This spectrometer has an OLYMOUS BX51 optical microscope, 20x magnification, with a typical resolution of 1 cm⁻¹ for 5 accumulation of 5 s. The FTIR was performed using a Perkin-Elmer Spectrum GX FT-IR spectrometer with KBr pellets, with analysis between 4000-400 cm⁻¹, resolution of 4 cm⁻¹ and 64 accumulations for sample. The KBr pellets were prepared using a Perkin-Elmer press (7 tons), diluting the sample of interest in KBr in the ratio of 1:100. UV-Vis absorption spectra were used to determine chromium(VI) concentration with a Shimadzu UV 2550 spectrophotometer interfaced with a microcomputer. The quartz cuvette used has 1 cm optical path and analyzes were recorded between 190 and 800 nm. CHN elemental analysis were obtained using a Perkin-Elmer 2400-CMN equipment and used to carbon and hydrogen dosage. Flame atomic absorption spectrometry (FAAS) was used to determine the iron dosage in the samples using a Varian AA240FS spectrometer model, with air-acetylene mixture flame. Thermogravimetric analyses coupled to mass spectrometry were performed in a thermobalance NETZSCH model STA 449 F3, coupled to a mass spectrometer NETZSCH Aëlos model QMS 403C. The mass spectrometer is equipped with a source of ionization by electron impact and a quadrupole mass analyzer. For the analysis ca. 20 mg of sample were heated in an argon flow of 20 ml min⁻¹ in the temperature range between 40 and 900 °C and a heating rate of 5 °C min⁻¹. The operating range of the mass analyzer is one 1-100 u.a.m.

2.4 Chromium(VI) reduction studies

Chromium(VI) reduction was performed using 10 mL of a K₂Cr₂O₇ solution containing 50 mg L⁻¹ of chromium (initial pH ca. 4.0) with 10 mg of the composites. The mixtures were shaken for 24 h at 200 rpm and 25 ± 2 °C (using an Ovan Orbital Maxi). After which time the composites were magnetically separated and an aliquot of 0.1 mL was collected. The concentration of unreacted chromium(VI)
was determined by the DPC method, which involved addition of 1,5-diphenylcarbazide (5 g L\(^{-1}\) in acetone) at pH 1.0 (H\(_2\)SO\(_4\)) and spectrophotometric determination of the concentration of the red complex at 542 nm.

3 Results and discussion

Hematite (Fe\(_2\)O\(_3\)) prepared by thermal treatment of iron(III) nitrate at 450°C was fully characterized by XRD, Mössbauer and Raman spectroscopy (Fig. S1 in ESI). The XRD data suggests a crystallite average size of ca. 31 nm forming microspherical particles, which agglomerate to form large aggregates, as confirmed by the SEM images (Fig. 2). The hematite was mixed with PET, ground and melted at 270°C to produce the Fe\(_2\)O\(_3\)/PET precursor. SEM images suggest good dispersion of the Fe\(_2\)O\(_3\) in the PET matrix with the presence of some agglomerates.

The Fe\(_2\)O\(_3\)/PET precursor was thermally treated at 500-1000°C under N\(_2\) atmosphere and the products, named hereafter as Fe\(_{500}\)/C\(_{PET}\), Fe\(_{600}\)/C\(_{PET}\), Fe\(_{700}\)/C\(_{PET}\), Fe\(_{800}\)/C\(_{PET}\), Fe\(_{900}\)/C\(_{PET}\) and Fe\(_{1000}\)/C\(_{PET}\) accordingly. The Mössbauer spectra of the different Fe/C\(_{PET}\) samples are shown in Fig. 3 and the hyperfine parameters are presented in Table S1 (ESI). The Fe\(_{500}\)/C\(_{PET}\) and Fe\(_{600}\)/C\(_{PET}\) composites showed similar phase compositions with the presence of Fe\(_2\)O\(_3\) (15-18 %), FeOOH (16-17%), magnetite (Fe\(_3\)O\(_4\) 53-57%) and wüstite (FeO 9-15%). The spectra of Fe\(_{700}\)/C\(_{PET}\), Fe\(_{800}\)/C\(_{PET}\), Fe\(_{900}\)/C\(_{PET}\) and Fe\(_{1000}\)/C\(_{PET}\) composites, however, only evidenced the presence of metallic iron (30-80%) and iron-carbon alloys Fe\(_3\)C (20-70%). Fig. 4 summarizes the iron phase compositions for the different composites.

The XRD patterns (Fig. 5) confirmed the Mössbauer spectroscopy results. The diffractograms of the samples Fe\(_{500}\)/C\(_{PET}\) and Fe\(_{600}\)/C\(_{PET}\) showed peaks associated to magnetite (Fe\(_3\)O\(_4\) - PDF 19-629) and wüstite (FeO - PDF 2-1180), whereas those of samples Fe\(_{700}\)/C\(_{PET}\), Fe\(_{800}\)/C\(_{PET}\), Fe\(_{900}\)/C\(_{PET}\) and Fe\(_{1000}\)/C\(_{PET}\) showed peaks due to metallic iron (Fe - PDF 6-696), iron carbide (Fe\(_3\)C - PDF 23-1113) and graphitic carbon (C - PDF 3-401).
The thermogravimetric curves obtained for PET and Fe₂O₃/PET samples in N₂ atmosphere are shown in Fig. 6.

The TG curve obtained for the pure PET sample showed weight loss of ca. 80% around 430 °C, due to the decomposition and carbonization of the polymer, which produces mainly CO₂, CO, H₂O and other volatile organic molecules. As the temperature increases, a gradual weight loss is observed leaving only 5% of carbon at 800°C. The TG curve for the PET mixed with 20% Fe₂O₃ (precursor) also shows initial weight loss around 440°C (about 60%). With the temperature increase two other processes are clearly observed around 500 and 650°C. These results are in accordance with the Mössbauer and XRD data, which evidenced different phase compositions for the samples obtained below and above 600°C. Thus the first process at about 500 °C is most likely related to the reductions of Fe₂O₃ to Fe₂O₄ and FeO by CO and organic volatile molecules from the decomposition of PET (Eq. 1 and 2):

\[
\text{Fe}_2\text{O}_3 + \text{volatiles} \xrightarrow{400-500\,\degree\text{C}} \text{Fe}_2\text{O}_4/\text{FeO} \quad \text{Eq.1}
\]

\[
\text{Fe}_2\text{O}_4 + \text{PET} \xrightarrow{400-500\,\degree\text{C}} \text{FeO} + \text{CO}_x \quad \text{Eq.2}
\]

The significant weight loss observed at 650°C is probably due to the further reduction reactions of the iron oxides to yield metallic iron, which combines further with carbon to produce iron carbides (Eq. 3 and 4). All these reactions have been previously observed.²

\[
\text{Fe}_2\text{O}_4 + \text{PET} \xrightarrow{650\,\degree\text{C}} 3\text{Fe} + \text{CO}_x \quad \text{Eq.3}
\]

\[
\text{Fe} + \text{C} \xrightarrow{650\,\degree\text{C}} \text{Fe}_3\text{C} \quad \text{Eq.4}
\]

It is interesting to observe that the iron oxide induces carbonization of the polymer, since pure PET decomposes to produce only 5% carbon whereas PET/Fe₂O₃ led to the formation of 29% of material. TG analyses in air were carried out to determine the carbon and iron contents in the Fe/C_PET samples. The results, gathered in Table 1, indicate that the composites obtained at 500 and 600 °C have the same carbon and iron compositions and considering the Mössbauer data (Fig. 3 and Table S1 in ESI) are in fact the same material. The carbon and iron content by TG were calculated considering that the high temperature and the oxidant atmosphere favor oxidation of carbon to CO₂ and iron compounds to iron (III) oxide - Fe₂O₃.

Table 1 Carbon and iron contents in the composites, determined by TGA² and FAAS³.

<table>
<thead>
<tr>
<th>Material</th>
<th>%C</th>
<th>%Fe⁺</th>
<th>%Fe²⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₁₀₀₀/C_PET</td>
<td>31</td>
<td>48</td>
<td>46</td>
</tr>
<tr>
<td>Fe₆₀₀/C_PET</td>
<td>33</td>
<td>45</td>
<td>41</td>
</tr>
<tr>
<td>Fe₈₀₀/C_PET</td>
<td>33</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Fe₉₀₀/C_PET</td>
<td>33</td>
<td>46</td>
<td>48</td>
</tr>
<tr>
<td>Fe₁₀₀₀/C_PET</td>
<td>46</td>
<td>35</td>
<td>39</td>
</tr>
<tr>
<td>Fe₁₂₀₀/C_PET</td>
<td>46</td>
<td>34</td>
<td>40</td>
</tr>
</tbody>
</table>

The Raman spectra of the composites (Fig. 7) exhibited the typical D and G bands, which are characteristic of less organized and organized carbons, respectively.⁴ The increase of the area of the G band compared to the D band with the increase in the temperature of composite treatment indicates formation of more organized carbon. Also, the presence of the G´ band at 2750 cm⁻¹ suggests formation of graphitic structures.⁴¹

Fig. 7 Raman spectra of the Fe/C_PET composites.

TG-MS analyses of the Fe/C_PET samples confirm the presence of oxygenated groups on the carbon surface of Fe₆₀₀/C_PET and Fe₈₀₀/C_PET. In the TG-MS of Fe₆₀₀/C_PET (Fig. 8) the peak observed at m/z = 44, at 250-400°C, is likely due to CO₂ formed from the decomposition of carboxylic groups,⁴⁴ and CO₂ evolution around 600°C is probably due to lactone-type groups.⁴⁴ Semiquantitative...
considerations using potassium oxalate for the calibration of the
tG-Ms, suggest the presence of 0.1 mmol \text{COOH}/g (Fe600/CPET) and 0.2
mmol \text{COOH}/g (Fe450/CPET). The other materials presented much lower
concentration of surface oxygenated groups (see supplementary
information Fig S2). The scanning electron microscopies of the
composites obtained at different temperatures (Fig. 9) indicate that
the spherical Fe3O4 aggregate particles well dispersed throughout
the PET matrix (Fig. 2 Hematite/PET) are converted to needle-like
shaped rectangular particles (pointed at Fig.9a and Fig.9b). EDS
mapping (Fig. S3 in ESI) suggests that the Fe is homogeneously
distributed throughout the particles. The needle-like rectangular
particles seem to be wrapped by a material likely related to carbon.
These agglomerated particles present a developed large porous
structure in the space formed in between the needle crystals and
the carbon. Similar textures have been observed for the composites
obtained at 500-900°C. On the other hand, at 1000°C a significant
sintering seems to take place to form more compacted particles.

Fig 8 TG-MS profile of m/z 28 (CO) and 44 (CO2) during thermal
treatment of the composite Fe600/CPET

Fig 9 SEM microphotographs for the different Fe/CPET composite: Fe500/CPET (a), Fe600/CPET (b), Fe700/CPET (c), Fe800/CPET (d), Fe900/CPET (e) and Fe1000/CPET (f).
BET nitrogen adsorption/desorption measurements (Fig. S4 in ESI) showed no significant surface area for the Fe$_2$O$_3$/PET precursor. Upon treatment at 500 °C, however, the surface area increased to 262 m2/g with the formation of pores with average diameter of 4 nm. As the treatment temperature increased to 600, 800 and 1000 °C the surface area decreased to 230, 195 and 136 m2/g, respectively. It is interesting to observe that the carbon material obtained from the carbonization of pure PET (without Fe$_2$O$_3$), at 600 °C, did not show any significant surface area or porosity. These results suggest that the Fe$_2$O$_3$ particles have an activation effect during the carbonization of PET and contribute to increase the composite surface area. The adsorption and desorption isotherms and the pore diameter distribution of the composites are shown in the supplementary information (Fig. S4-S5 in ESI). The Fe$_6$/PET and Fe$_8$/PET samples showed mainly microporosity, whereas the Fe$_{10}$/PET and Fe$_{12}$/PET samples showed a significant presence of mesopores.

3.1 Chromium(VI) reduction

Metallic iron and magnetite phases are known reducing agents for aqueous chromium(VI). Considering the presence of low oxidation state iron compounds on the surface of the Fe/C$_{PET}$ composites, these materials were tested as chromium(VI) reductants, and the results are gathered in Fig. 10. The experiments were carried out with 10 mg of each reducing material (Fe/C$_{PET}$ composites) and 30 mL of a K$_2$CrO$_7$ solution containing 50 mg L$^{-1}$ of chromium(VI), i.e. 150 mg of chromium/g of the reducing material, at 25 °C, for 24 hours.

Fig. 10 Total chromium removal from a Cr(VI) aqueous solution during reduction tests in the presence of the Fe/C$_{PET}$ composites and other known reducing materials.

The results indicate that composites Fe$_{6}$/C$_{PET}$ and Fe$_{8}$/C$_{PET}$ are the most efficient, reducing ca. 100 mg Cr$^{6+}$/g, i.e. around 70% of the chromium present in solution after 24 h. As the composite treatment temperature increased to 700-1000 °C chromium(VI) reduction significantly decreased to 20-40 mg Cr$^{6+}$/g after the same period of time. The activities of the following analogous chromium(VI) reducing materials previously described in the literature were also investigated under the same conditions for comparison: Fe$_{800}$/C$_{PET}$ (obtained from Fe$_2$O$_3$ tar pitch at 800°C),8 Fe$_{800}$/C$_{AC}$ (obtained from Fe$^{3+}$ impregnated on activated carbon 800 m2/g at 800 °C),9 Fe$_{800}$/C$_{AC}$ (obtained from Fe$_2$O$_3$ tar at 800°C)8 and a ground Fe/F$_2$O$_3$ mixture.6 As shown in Fig. 10 the Fe$_{800}$/C$_{PET}$ and Fe$_{800}$/C$_{PET}$ composites exhibited much higher activity compared to all the other materials. Even the less active composites Fe$_{500}$/C$_{PET}$, Fe$_{500}$/C$_{PET}$, Fe$_{500}$/C$_{PET}$ and Fe$_{500}$/C$_{PET}$ were more active than the materials described in the literature and similar to the high surface area Fe$_{800}$/C$_{AC}$.4 The reasons for the higher chromium(VI) removal efficiency of the Fe$_{500}$/C$_{PET}$ and Fe$_{600}$/C$_{PET}$ composites are most probably related to the Fe composition in each composite and possibly also to their surface characteristics, e.g. area and reactivity. At 500 and 600 °C, Fe is present as different reducing phases, i.e. FeO, Fe$_2$O$_3$ and Fe$^{3+}$, all of which are well known chromium(VI) reductants.5,9,20 At 700°C and higher temperatures all these phases are reduced to produce Fe0 and Fe$_3$C according to Mössbauer and XRD data. The carbide phase is very stable and does not seem to react with chromium(VI) under the employed reaction conditions. Furthermore, the Fe$^2+$ phase present in the composites produced above 700 °C is likely passivated by carbon and not efficient to reduce the aqueous Cr(VI) species. Therefore, the results obtained for the materials treated above 700 °C are very similar (considering the experimental error bar, Fig 10). It can also be considered that PET, a highly oxygenated polymer, during thermal decomposition at 500 and 600°C produces carboxylic surface groups, as observed by TG-MS analyses, which has been observed before.8 These surface carboxylic groups can play an important role in chromium (Cr$^{3+}$) removal by adsorption. A simplified process showing Cr$^{6+}$ reduction to the cation Cr$^{3+}$ on the carbon surface is shown in Fig. 11.

Fig. 11 Simplified process showing Cr$^{6+}$ reduction to Cr$^{3+}$ and adsorption on the carbon surface.

Another interesting feature of these reactive composites is the facile dispersion in aqueous medium and separation by magnetic processes. The Fe/C$_{PET}$ composites can be dispersed in water, likely due to presence of very hydrophilic oxygen surface groups formed during the PET decomposition. As the composites are strongly magnetic, the dispersed powder can be easily attracted and removed by a simple magnet (see Fig. S6 in ESI). Moreover, preliminary experiments showed that the composites can be regenerated and reused several times by treatment at 800 °C for 1h, according to previous published results.5
4 Conclusion

Reactive magnetic porous carbon containing exposed iron reducing species can be prepared from PET waste and iron oxides by a very simple and low cost process. The magnetic porous carbon produced at 500 and 600°C showed the presence of different Fe phases, which were very active for chromium(VI) removal, superior to other materials described in the literature. These results illustrate a new and exciting possibility to use different wastes to produce versatile materials for different environmental applications.

Acknowledgements

The authors acknowledge the financial support provided from FAPEMIG, CNPq, CAPES and Centro de Microscopia/UFMG.

Notes and references

20. R. C. C. Costa, F. C. C. Moura, P. E. F. Oliveira, F. Magalhães, J. D. Ardisson and R. M. Lago, Controlled reduction of red mud waste to produce active systems for environmental applications: heterogeneous Fenton...
reaction and reduction of Cr(VI), *Chemosphere*, 2010, 78, 1116-1120.

45 M. A. Aldosari, A. A. Othman and E. H. Alsharaeh, Synthesis and Characterization of the in Situ Bulk Polymerization of PMMA Containing Graphene Sheets