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An efficient [4+3] cycloaddition reaction of in situ generated aza-

o-quinodimethanes with C,N-cyclic azomethine imines has been 

developed. A wide range of 1,2,4-triazepine derivatives were 

synthesized in high yields (81-99%). 

The biological activity of natural products has not only stimulated 
the development of efficient strategies for the assembly of complex 

structures, but also inspired the design of unnatural molecules with 

diverse structures and pharmaceutical applications.
1 

Particularly 

intriguing are nitrogen-containing heterocyclic compounds. For 
example, seven-membered heterocycles are key subunits found in a 

large number of complex molecules with significant biological 

activities.
2 

Among the wide variety of synthetic approaches to 

access these heterocycles, the 1,3-dipolar cycloaddition reaction, 
extensively studied by Huisgen,

3
 has emerged as a particularly 

useful strategy, because of their bond-forming efficiency, atom 

economy, excellent stereoselectivity, product structure 

diversity/complexity, etc.
4 

Recently, 1,3-dipolar cycloaddition 
reaction of alkynes or electron-deficient alkenes with azomethine 

imines (Scheme 1a), a less common but yet functionally valuable 

class of 1,3-dipoles, has recently attracted more attention.
5 

Azomethine imines were for a long time restricted to acyclic 
structures, whose generation requires a high activation energy,

6 
or 

special pyrazolidinone-derived N,N′-cyclic forms.
7 

Novel C,N-cyclic 

N′-acyl azomethine imines were then discovered by Tamura
8 

and 

more recently developed by Maruoka and co-workers,
9
 thus 

opening the field to an unexplored class of dipoles. From then on, 

normal- and inverse-electron-demand 1,3-cycloaddition reaction 

with these substrates was realized, first with enals via Ti−binolate 

catalysis
9 

and second with vinyl ethers or acrolein-derived 
vinylogous azaenamines catalyzed by a chiral dicarboxylic acid.

10 

Furthermore, these C,N-cyclic azomethine imine substrates were 

recently used in thermal 1,3-cycloaddition reaction with N-aryl 

maleimides,
11

 allenoates,
12

 and seleno- or thioaldehydes,
13 

phosphine-catalyzed [3 + 2] and [4 + 3] annulation reactions with 

allenoates,
14

 and catalyst free [5 + 1] cycloaddition with 

isocyanides.
15 

Finally, several recent reports concern a variety of 
metal-catalyzed cycloaddition reactions of azomethine imines,

16 

including an enantioselective Ni-catalyzed cycloaddition with 

alkylidene malonates.
17

 More recently, our group reported the 

asymmetric [3+2] cycloaddition of C,N-cyclic azomethine imines 
with α,β-unsaturated aldehydes and aldehydes.

18 
As a part of our 

continuing interests in this area,
19

 herein, we report the first 

example regarding an efficient catalyst-free [4+3] 1,3-dipolar 

cycloaddition reaction of C,N-cyclic azomethine imines with in situ 
generated aza-oquinodimethanes, which generated 1,2,4-triazepine 

derivatives in high yields and excellent stereo-control (Scheme 1b). 

 

Scheme 1. Strategies for the reaction of azomethine imines.. 

We started our study with the model reaction of N-(2-

(chloromethyl) phenyl)-4-methylbenzenesulfonamide 1a (1.0 equiv) 
and C,N-cyclic azomethine imine 2a (1.1 equiv) in the presence of 

Na2CO3 (1.1 equiv). 1a and 2a were carried out in DMSO at room 

temperature for 1h. Pleasingly, thin-layer chromatography (TLC) 

indicated that 1a showed an excellent conversion. NMR analysis 
revealed that the desired 1,2,4-triazepine 3aa was generated in 

79% (Table 1, entry 1). To further improve the chemical yield, 

several bases were screened (Table 1, entry2-6). Notably, inorganic 

bases (Na2CO3, K2CO3, Cs2CO3, KOH, and NaHCO3) gave good yields 
(Table 1, entries 1-5), while the use of organic base, Et3N led to a 

huge decrease in chemical yield (Table 1, entry 6). In addition, 

solvent was found to be a critical impact on the reaction efficiency 
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(Table 1, entries 7-11). As the result indicated in Table 1, THF were 

identified as an ideal medium for the generation of 3aa (entry 11, 

99%). Reducing the reaction time to 0.5 h (Table 1, entry 12), the 

chemical yield was slightly diminished to 89%. 
With the optimized conditions in hands (Table 1, entry 11; 1a 

(1.0 equiv), 2a (1.1 equiv), Na2CO3 (1.1 equiv), THF as solvent, room 

temperature), we next investigated the substrate scope by 

employing a variety of N-(ortho-chloromethyl)aryl amides and C,N-
cyclic azomethine imines (Table 2). The scope of N-(ortho-

chloromethyl)aryl amides was examined firstly (Table 2, entries 1-

11). N-(ortho-chloromethyl)aryl amides bearing electron-neutral 

(Table 2, entry 1) or electron-rich (Table 2, entries 2-4) substituents 
afforded high yields of the cycloadducts 3aa-3da. When N-(ortho-

chloromethyl)aryl amides bearing electron-deficient substituents,  

the corresponding products 3ea-3ia were obtained in high to 

excellent yields (Table 2, entries 5-9). Furthermore, incorporation of 
methyl or chloro substituents at the ortho, meta, or para- positions 

of the NHTs group did not retard the reaction, thus demonstrating 

that steric effects in the N-(ortho-chloromethyl)aryl amides did not 

alter the reaction efficiency (Table 2, entries 2, 3, 5 and 6). In 
addition, disubstituted N-(ortho-chloromethyl)aryl amide 1j with 

electron-donating substituent (R
3
 = 3,4-Me2) was efficiently formed 

cycloadduct 3ja in 96% yield (Table 2, entry 10). Disubstituted N-

(ortho-chloromethyl)aryl amide 1k with electron-withdrawing group 
(R

4
 = 5-Cl) resulted in a slightly lower yield (Table 2, entry 11). 

Moreover, substrates with substituents (1l: R
4
 = 2-ClC6H4; 1m: R

4
 = 

Me) at the benzylic position also underwent the transformation to 

produce the corresponding products in excellent yields (Table 2, 
entries 12 and 13, 90% and 87%, respectively). 

 
Table 1. Optimization of the reaction conditions.

a 

 
Entry Base Solvent Time (h) Yield

 
(%)

b
 

1 Na2CO3 DMSO 1 79 
2 K2CO3 DMSO 1 74 
3 KOH DMSO 1 58 
4 Cs2CO3 DMSO 1 65 
5 NaHCO3 DMSO 1 68 
6 Et3N DMSO 1 27 
7 Na2CO3 CH2Cl2 1 80 
8 Na2CO3 CH3OH 1 83 
9 Na2CO3 CH3CN 1 67 

10 Na2CO3 Et2O 1 74 
11 Na2CO3 THF 1 99 
12 Na2CO3 THF 0.5 89 

a
 Unless otherwise noted, reactions were carried out with 1a (0.1 

mmol), 2a (0.11 mmol), base (0.11 mmol) in the solvent (2.0 mL) at 
r.t.

 b
 Isolated yield.

 

We next turned our attention to C,N-cyclic azomethine imines 
(Table 2, entries 14-24). It was found that both 7-Br and 7-Me 
substituted C,N-cyclic azomethine imines 2b and 2c reacted with 
N-(ortho-chloromethyl)aryl amides to give the corresponding 
products in good yields (Table 2, entries 14-15 and 19-21, 86-
92%). Notably, azomethine imine with a simple acetyl group (2f 
and 2c, R

2
 = Ac) on the nitrogen also underwent the desired 

cyclization smoothly to give the desired cycloadduct 3af and 3bc 
in 90% and 89%, respectively (Table 2, entries 18 and 24). The 

relative configuration of the analogues was assigned based on 
single-crystal X-ray analysis of 3aa.

20 

 

Table 2. Substrate scope of the reaction.
a 

 

Entry R
3
, R

4
 ( 1 ) R

1
, R

2
 ( 2 ) Product 

Yield 
(%)

b
 

1 H, H (1a) H, Ph (2a) 3aa 99 

2 3-Me, H (1b) H, Ph (2a) 3ba 98 

3 5-Me, H ( 1c) H, Ph (2a) 3ca 98 

4 
 5-MeO, H 

(1d) 
H, Ph (2a) 3da 91 

5 4-Cl, H (1e) H, Ph (2a) 3ea 90 

6 5-Cl, H (1f) H, Ph (2a) 3fa 89 

7 4-F, H (1g) H, Ph (2a) 3ga 89 

8 4-NO2, H (1h) H, Ph (2a) 3ha 81 

9 5-Br, H (1i) H, Ph (2a) 3ia 88 

10 3,4-Me2, H (1j) H, Ph (2a) 3ja 96 

11 
3-Me/5-Cl, H 

(1k) 
H, Ph (2a) 3ka 85 

12 
5-Cl, 2-ClC6H4 

(1l) 
H, Ph (2a) 3la 90 

13 H, Me (1m) H, Ph (2a) 3ma 87 

14 H, H (1a) 7-Br, Ph (2b) 3ab 86 

15 H, H (1a) 
7-Me, Ph 

(2c) 
3ac 88 

16 H, H (1a) 
H, 4-ClC6H4 

(2d) 
3ad 93 

17 H, H (1a) 
H, 4-MeC6H4 

(2e) 
3ae 95 

18 H, H (1a) H, Me (2f) 3af 90 

19 5-Me, H (1c) 7-Br, Ph (2b) 3cb 92 

20 5-MeO, H (1g) 7-Br, Ph (2b) 3gb 89 

21 H, Me (1m) 7-Br, Ph (2b) 3mb 87 

22 5-MeO, H (1g) 
H, 4-ClC6H4 

(2d) 
3gd 95 

23 H, Me (1m) 
H, 4-MeC6H4 

(2e) 
3me 90 

24 3-Me, H (1b) Me, Ph (2c) 3bc 89 
a
 Unless otherwise noted, reactions were carried out with 1 (0.1 

mmol), 2 (0.11 mmol), Na2CO3 (0.11 mmol) in THF (2.0 mL) at r.t 

for 1-2 h. [b] Isolated yield. 

As shown in Scheme 2, we proposed a plausible reaction 

pathway to explain the reaction mechanism. First, N-(ortho-

chloromethyl)aryl amide 1 reacts with 1.1equivalent of Na2CO3 to 

form the in situ generated aza-o-quinodimethane intermediate A. 

Intermediate A then reacts with the C,N-cyclic azomethine 2 to 
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generate the desired product 3 through a thermal [4+3] 

cycloaddition (B).   

 

Scheme 2. Plausible mechanism. 

Conclusions 

In summary, we have developed an efficient method for the 

[4+3] cycloaddition reaction of in situ generated aza-o-

quinodimethanes with C,N-cyclic azomethine imines. The 

reaction generated 1,2,4-triazepine derivatives in high yields. 

Considering the large variety and the operational simplicity, a 

convenient, practical and highly yield of synthesis has been 

developed.  
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An efficient [4+3] cycloaddition reaction of in situ generated aza-o-quinodimethanes 

with C,N-cyclic azomethine imines has been developed. 
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