RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

RSC Advances

ARTICLE

Received 00th January 20xx,

Blue-Silica by Eu²⁺-Activator Occupied in Interstitial Sites

Donghyeon Kim,^a Yoeng-Hun Jin,^b Ki-Wan Jeon,^c Sungyun Kim,^d Seung-Joo Kim,^e Oc Hee Han,^f Dong-Kyun Seo^c and Jung-Chul Park^{*ab}

Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

www.rsc.org/

Blue-emitting $SiO_2:Eu^{2+}$ compound has been successfully synthesized and characterized. The PL intensity of $SiO_2:Eu^{2+}_{0.002}$ compound is about 24 times higher than that of the O-defective SiO₂ compound (without activators) which emits blue light. The valence state of Eu ions as the nature of the highly enhanced blue emission in resulting material, is determined to be Eu²⁺ using reference materials (EuCl₂ and EuCl₃) in XPS measurements. The Eu²⁺-activator ions occupied in the interstitial sites of SiO₂ matrix, are confirmed by FT-IR, XPS, and ²⁹Si MAS-NMR spectroscopy. Even though the void spaces formed structurally in both α -quartz and α -cristobalite can accommodate Eu²⁺ ions (ionic radius = 1.25 Å at CN = 8), SiO₂:Eu²⁺ compound fired at 1300°C under hydrogen atmosphere is destined to be deficient in O or Si atoms, indicating the formation of the wider void spaces in SiO₂ crystal lattice. A sputtered depth profile of SiO₂-related compounds obtained by time-of-flight secondary ion mass spectrometry (TOF-SIMS) corroborates the O-defective SiO2 induced by hydrogen. In particular, the interatomic potentials depending on the interstitial positions of Eu atom in α -cristobalite and α -quartz are calculated based on Lennard-Jones potential and coulomb potential; for α-cristobalite the minimum potential value is -51.47 eV, for α -quartz 221.8 eV, which reveals that the Eu²⁺-activator ions more preferably enter the interstitial sites of α cristobalite than those of α -quartz. Thanks to the stable Eu²⁺-activator ions enclosed by Si-O linkages, $SiO_2:Eu_{0,002}^{2+}$ compound emits blue light and its PL emission intensity is about 24 times higher than that of the O-defective SiO₂ compound. This phosphor material could be a platform for modeling a new phosphor and application in the solidstate lighting field.

1 Introduction

Silicone (27.2 wt %) is the most abundant element in the earth's crust after oxygen (45.5 %), and silicone never occurs free but invariably occurs combined with 4-coordinated oxygen in nature. The $[SiO_4]$ unit may occur as an individual group or be linked into chains, ribbons, sheets, or three-dimensional frameworks.¹ Silica, or silicon dioxide (SiO₂) naturally occurs in both crystalline and amorphous forms. The various forms of the crystalline silica are: α -quartz, β -quartz, α -tridymite, β -tridymite, α -cristobalite, β -cristobalite, keatite, coesite, stishovite, and moganite.² The most abundant form of the silica is α -quartz which is the most thermodynamically

This journal is © The Royal Society of Chemistry 20xx

^a Graduate School of Advanced Engineering, Silla University, Busan 617-736, Republic of Korea. E-mail: parkjc@silla.ac.kr

^{b.} Center for Green Fusion Technology and Department of Engineering in Energy & Applied Chemistry, Silla University, Busan617-736, Republic of Korea

^c Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA

^d Institute of NT.IT Fusion Technology, Energy Center 401, Ajou University, Suwon 443-749, Republic of Korea.

^e Department of Chemistry, Division of Energy Systems Research, Ajou University, Suwon 443-749, Republic of Korea

^f Western Seoul Center, Korea Basic Science Institute University-Industry Cooperation Building 150 Bukahyun-ro, Seodaemun-gu, Seoul 120-140, and Graduate School of Analytical Science & Technology Chungnam National University, Daejeon 305-764, Republic of Korea

ARTICLE

Rayleigh scattering by the ilmenite inclusions because the large difference in the ionic radii of Si⁴⁺ (0.40 Å) and Eu²⁺ (1.31 Å) precludes direct substitution.⁴ It is very interesting that the blue emission induced by the O-related defects (without activator ions) in SiO₂-related compounds, was reported by several groups. $^{12\mathchar`-18}$ Uchino et al. proposed that the blueemitting center in oxidized porous silicone and nano-SiO₂ materials, is a metastable defect pair consisting of =Si(O₂) and =Si:, on the basis of the density functional theory calculation, which was in good agreement with the peak positions of the PLE from the blue-emitting materials.¹⁴ McCrate et al. also presented that the intrinsic oxygen vacancy defect (OVD) on planar fused silica was experimentally detected by titration with fluorescent probe molecules, such as perylene-3methanamine and 3-vinyl perylene.¹⁸ Blue emission by Ce³⁺ ions occupied in the interstitial site of AIN structure was reported by Liu et al.¹⁹ According to their results, an octahedral interstitial site of the AIN compound with würtzite structure was proposed to be the site for Ce^{3+} ions because the ionic size of Ce³⁺ ions is much larger than that of Al³⁺. It should be noted that there is an interstitial sites formed structurally in the crystal lattice of α -quartz (or. α -cristobalite) and possibilities for ${\rm Ce}^{3+}$ or ${\rm Eu}^{2+}$ activator ions to enter the interstitial sites of α -quartz (or. α -cristobalite), which probably results in the blue coloration in α -quartz (or. α -cristobalite). In this work, we report synthesis and characterization of a blue silica induced by Eu²⁺-activator ions occupied in interstitial sites. In particular, the Eu²⁺-doping mechanism in SiO₂ matrix is discussed using Photoluminescence (PL) apparatus, Rietveld refinements, Nano-Secondary Ion Mass Spectrometry (Nano-SIMS), X-ray photoelectron spectroscopy (XPS), ²⁹Si magicangle-spinning nuclear magnetic resonance (MAS-NMR) spectrometer, and theoretical calculation of the interatomic potential based on Lennard-Jones potential and coulomb potential.

2 Experimental

The polycrystalline SiO₂:Eu compounds have been prepared from a mixture of SiO₂ (quartz) and Eu₂O₃ using NH₄Cl as a flux and lubricant under 4% $\rm H_2\text{-}Ar$ mixture gas between 1000 $^\circ\!C$ and 1500°C for 6 h. Alumina boats covered with lid were used in order to maximize collision time among starting materials (SiO₂, NH₄Cl, and Eu₂O₃), and to prevent loss of unreacted NH₄Cl from a rapid out-gassing. In the firing step, each mixture was initially heated at 450° C for 1 h, and subsequently heated at final temperature for 3 h (heating rate : 3° C min⁻¹). Powder Xray diffraction measurements of SiO₂:Eu were carried out using a X-ray diffractometer equipped with a graphite monochromator (DMAX-2200PC, Rigaku). A step scan mode was employed in a 2ϑ range 10–110° with a step size of 0.02° and counting time of five second for each step. Structure refinements were carried out by the Rietveld method using the Fullprof program²⁰ with pseudo-Voïgt peak shapes and refined backgrounds. The photoluminescence (PL) spectra were obtained at room temperature using a fluorescent spectrophotometer with a 150 W Xenon lamp under an

Journal Name

operating voltage of 350 V (Fluorometer FS-2, Scinco). The reflectance spectra were recorded using UV-visible spectrophotometer (UV-2600, Shimadzu) with BaSO₄ as a reference. Fourier-transform infrared spectroscopy (FT-IR) was performed using a FT-IR spectrophotometer (IRTracer-100, Shimadzu) with the resolution range of \pm 0.5 cm⁻¹ and a KBr medium prepared with 0.5 wt% of sample. The Nano-Secondary Ion Mass Spectrometry (NanoSIMS) measurements were done using a rastering $\mathbf{Cs}^{^{\!+}}$ primary ion beam on the Cameca Ametek NanoSIMS 50L at Arizona State University. The beam current at the sample was lowered to ~0.48 pA by choosing a small diaphragm to obtain fine beam. Although the low current used for analysis, the new capillary Cs source produced a high primary beam density and high secondary ion count rates during imaging. Negative secondary ions of ²⁴Si and ¹⁶O were measured simultaneously using electron multipliers in the multi-collection mode. The measurement of NanoSIMS for all samples was performed after pre-sputtering for 5 min. All samples for NanoSIMS measurement were prepared by the following: 500 mg of sample was dispersed in 5 mL of the absolute ethanol by ultrasound sonication for 10 min. The obtained milky suspension after sonication was dripped by pipet on stainless-steel substrate (1-cm diameter) and dried at ambient conditions. This was repeated until white thick coating was obtained on the substrate. The oxidation states of the elements were analyzed by X-ray photoelectron spectroscopy (XPS, ESCALAB 250) with a monochromatic Al K_{α} X-ray source (hv = 1486.6 eV) at Busan Center of Korea Basic Science Institute (KBSI). The obtained binding energies (BEs) were calibrated with that of adventitious carbon (C 1s) core level peak at 284.6 eV as a reference. All ²⁹Si single-pulse magic angle spinning (SP MAS) spectra were acquired using a Unity INOVA 600 MHz NMR instrument (Agilent Technologies, U. S. A.) with a cross polarization (CP) MAS probe for 5 mm Zirconia rotors at room temperature, a 30° pulse corresponding to 2 μ s, a pulse repetition delay of 20 s, a spectral width of 120 kHz, and a spinning rate of 10 kHz. The chemical shifts were referenced to external tetramethylsilane at 0 ppm.

3 Results and discussion

3.1 Structural Characterization

Structure refinements of the samples were carried out using a Rietveld program. The background was fitted with a polynomial function and the peak shape was modelled using a pseudo-Voïgt function. The observed, calculated, and difference patterns from the Rietveld refinements of the X-ray diffraction data are shown in Fig. 1. The profile of undoped SiO₂ fired at 1300°C under 4% H₂-Ar atmosphere contains α cristobalite as major phase (90%) and quartz as second phase (10%). The atomic coordinates of the both structures were initially selected from data base (α -cristobalite: ICSD # 75300, α -quartz: ICSD # 647436). The relative proportion of phases, final structural parameters (lattice parameters, refined atomic positions, and isotropic temperature factors for all atoms) and reliability factors are listed in Table 1. In comparison with the

ARTICLE

Fig. 1 Rietveld refinement of the powder XRD profiles for SiO₂: $Eu_{0.002}$ (a) and undoped SiO₂ (b). The diffraction pattern is composed of the peaks from α -cristobalite as a main phase and α -quartz as a minor phase. Measured data, fitted results, expected reflection positions, and the difference between measured and fitted results are expressed as red open circles, black solid lines, black vertical lines, and blue solid lines, respectively. The peak intensities over 40 degrees in 2 θ have been magnified 10 times for clarity.

Table 1 Relative Proportion of Phases, Structural Parameters and Reliability Factors for SiO₂:Eu_{0.002} and SiO₂

Compound	SiO ₂ :Eu _{0.002}			SiO ₂ :No-Eu				
Phase		α-Cristobalite	α-Quartz	α-Cristobalite		α-Quartz		
Weight present (%)		89.2(4)	10.8(13)		90.1(5)	9.9(17)		
R _{wp} (%)		11.1			13.0			
R _{bragg}		2.63	7.60		2.89	6.69		
$R_{f}(\%)$		2.98	4.53		3.17	4.61		
χ ²		1.51			2.12			
Space group		<i>P</i> 4 ₁ 2 ₁ 2 (No. 92)	P3221 (No. 154)		P41212 (No. 92)	<i>P</i> 3 ₂ 21 (No. 154)		
Lattice	а	4.9768(2)	4.9030(5)		4.9732(3)	4.9041(6)		
Parameter (Å)	c	6.9490(4)	5.3831(8)		6.9362(4)	5.3851(9)		
Cell volume (Å ³)		172.12(14)	112.07(3)		171.55(16)	112.16(3)		
Compound	SiO ₂ :Eu _{0.002} (α-Cristobalite	te) SiO₂:No-Eu (α-Cristobalite)			SiO₂:Eu _{0.002} (α-Quartz)	SiO₂:No-Eu (α-Quartz)		
Si, 4a				Si, 3a				
x	0.2967(2)	0.2966(2)	x	0.470(2)	0.469(2)		
У	0.2967(2)	0.2966(2)	у	0	0		
z	0	0		Z	2/3	2/3		
Site occupancies	1	1		Site occupancies	1	1		
$B_{iso}(\text{\AA}^2)$	1.39(3)	1.18(3)		B_{iso} (Å ²)	0.5(1)	0.4(1)		
O, 8b				O, 6c				
х	0.2412(4)	0.2428(5)	x	0.439(2)	0.433(2)		
у	0.0985(4)	0.1012(5)	у	0.279(2)	0.276(2)		
Z	0.1756(3)	0.1757(3)	Z	0.786(2)	0.783(2)		
Site occupancies	1	1		Site occupancies	1	1		
B _{iso} (Å ²)	1.78(6)	1.36(6)		B_{iso} (Å ²)	2.1(3)	1.7(4)		

Table 2 Unit Cell Parameters and Phase Content between α -Quartz and α -Cristobalite in Silicas Fired under 4% H₂-Ar Atmosphere

Compound	α-Cristobalite (weight%)	a (Å)	c (Å)	α-Quartz (weight %)	a (Å)	c (Å)
SiO ₂ (Aldrich chemical)	-	-	-	100%	4.91202(13)	5.40345(17)
SiO ₂ (1500°C)	100%	4.97114(19)	6.9254(3)	-	-	-
SiO ₂ (1300°C)	90.03%	4.9731(3)	6.9362(4)	9.97%	4.9043(6)	5.3844(10)
SiO ₂ :Eu _{0.002} (1300°C)	89.20%	4.9767(2)	6.9491(4)	10.80%	4.9035(6)	5.38214
SiO ₂ :Eu _{0.05} (1300°C)	99.07%	4.9733(2)	6.9341(3)	0.93%	4.90(5)	5.38(9)

undoped SiO₂, the Eu-doped SiO₂ compound showed no substantial difference in the crystal structure except for the temperature factors. For instance, the isotropic temperature factors, B_{iso} of Si and O atoms are 1.18(3) Å² and 1.36(6) Å² for the α -cristobalite phase in undoped SiO₂, while those are 1.39(3) Å² and 1.78(6) Å² in doped SiO₂:Eu_{0.002}. The large temperature factors for SiO₂: Eu_{0.002} imply that the Eu doping into SiO₂ leads to the increase of structural disorder. Table 2 shows the weight percentages (%) of α -quartz and α -cristobalite as a function of firing temperature and Eu content. It is evident that the weight % of α -cristobalite is increased with increasing firing temperature and Eu content.

3.2 Photoluminescence Spectra

Fig. 2 presents the PL spectra of SiO₂:Eu_{0.01} synthesized under 4 % H₂-Ar atmosphere as a function of firing temperature. The highest excitation and emission intensity are observed in the SiO₂:Eu_{0.01} compound synthesized at 1300°C that is an optimal firing temperature. The excitation spectra of SiO₂:Eu_{0.01} compounds monitored at 438 nm, consist of broad bands between 220 nm and 420 nm, which may be ascribed to the allowed $4f^7$ - $4f^6$ 5d transitions of Eu²⁺²¹⁻²³ The emission spectra

Fig. 2 Excitation and emission spectra of SiO2:Eu0.01 as a function of firing temperature.

Fig. 3 Excitation and emission spectra of SiO₂: Eu_x^{2+} as a function of Eu content.

Fig. 4 Excitation and emission spectra of SiO₂: $Eu_{0.002}^{2+}$ as a function of NH₄Cl mole.

monitored under the 323 nm excitation, show symmetric bands centered around 438 nm, which is associated with blueemission. The excitation and emission spectra of SiO₂:Eu_x compounds synthesized at 1300°C as a function of Eu content are shown in Fig. 3. The PL maximum intensity is observed at x = 0.002, then decreased with increasing Eu concentration. The optimum concentration of Eu in the SiO₂:Eu compound is

Fig. 5 Excitation and emission spectra of SiO₂: Eu_x^{2+} with and without NH₄Cl (4 moles).

0.002, which implies that SiO₂ crystal lattice is difficult to accommodate the large amount of Eu²⁺-activator ions. It should be noted that NH4Cl is widely used as a flux and lubricant chemical in solid-state reaction because of a ralatively low melting point $(340^{\circ}C)$ and boiling point $(520^{\circ}C)$. In this work, NH₄Cl plays an important role in SiO₂:Eu compounds as a flux and lubricant which forces Eu²⁺ to enter the interstitial sites of SiO₂ matrix. As shown in Fig. 4, the PL intensity of $SiO_2:Eu_{0.002}^{2+}$ is increased With the higher mole ratio between NH₄Cl and SiO₂ (mole(NH₄Cl)/mole(SiO₂)). The maximum PL intensity is observed at the mole ratio 4. It is very noteworthy that the PL pattern of SiO₂ (No-Eu, 4 mole NH₄Cl) is similar to that of $SiO_2:Eu_{0.002}^{2+}$ except the difference of the PL intensities, indicating the blue emissions induced by the Orelated defects (without activator ions) in SiO2-related compounds¹²⁻¹⁸ as mentioned in introduction. It is very remarkable that the PL intensity of $SiO_2{:}Eu^{2+}_{0.002}$ is about 24 times as high as that of SiO_2 (No-Eu, 4 mole NH₄Cl) fired at

ARTICLE

Fig. 7 PL spectra of SiO₂:Eu²⁺_{0.002} and a commercial BaMgAl₁₀O₁₇:Eu²⁺ (BAM) phosphor (obtained from Nichia corp., Japan). The inset shows the CIE chromaticity for two phosphors depending on the excitation UV light.

1300°C under 4% H₂-Ar atmosphere, which is probably due to the Eu ions occupied into the SiO₂ matrix. Fig. 5 presents the PL spectra of $SiO_2:Eu_x^{2+}$ (x = 0.002, 0.005, and 0.010) with and without NH₄Cl addition. For SiO₂: $Eu_{0.002}^{2+}$ compound, it prominently shows that the emission intensity (at 438 nm) of the resulting materials after NH₄Cl addition is 1.4 times higher than that of the resulting materials without NH_4Cl addition. This result implies that NH₄Cl shows a considerable effect on the PL intensity and plays an important role as a flux and lubricant in SiO₂: Eu_x^{2+} compounds. Fig. 6 presents the diffuse reflectance spectra of SiO₂ and SiO₂:Eu_x²⁺ (x = 0.002 and 0.05). When Eu²⁺ ions are occupied into the SiO₂ matrix, the broad absorption bands are shown between 220 nm and 450 nm, whereas absorption bands are not shown in α -quartz and α cristobalite in the region. It might indicate the broad absorption bands between 220 nm and 450 nm are associated with the $4f \rightarrow 5d$ transition of Eu²⁺. Also, the absorption bands of $SiO_2:Eu_{0.002}^{2+}$ are still stronger than that of $SiO_2:Eu_{0.02}^{2+}$, which is well consistent with PL results as previously shown in Fig. 3. The luminescent behavior of $SiO_2:Eu_{0.002}^{2+}$ compound synthesized at 1300°C under 4% $\rm H_2\text{-}Ar$ atmosphere with the mole ratio = 4 (mole (NH_4Cl)/mole (SiO_2)) was compared with a commercial BaMgAl₁₀O₁₇:Eu²⁺ (BAM:Eu²⁺) phosphor (obtained from Nichia corp., Japan). The excitation and emission spectra of $SiO_2:Eu_{0.002}^{2+}$ and BAM:Eu²⁺ phosphor are shown in Fig. 7. The excitation and emission spectra are very similar except the difference in the PL intensity. The relative emission intensity of $SiO_2:Eu^{2+}_{0.002}$ monitored at 323 nm is about 40% compared to a commercial BAM:Eu²⁺. The Commission International de l'Eclairage (CIE) coordinates of SiO_2: $Eu^{2+}_{0.002}$ and BAM: Eu^{2+} monitored under UV light at 300 nm, are x = 0.145, y = 0.068 and x = 0.143, y = 0.065, respectively as shown in the inset of Fig. 7. According to CIE coordinates, it directly indicates that the $\text{SiO}_2{:}Eu^{2+}_{0.002}$ compound emits deep blue.

3.3 Infrared Spectroscopy

Fig. 8 Infrared spectra of SiO2-related compounds.

Fig. 8 presents the IR spectra of SiO₂-related compounds. The absorption band at 1092 cm^{-1} in the spectra of α -quartz is associated with Si-O asymmetrical stretching vibrations, those at 799 and 780 cm⁻¹ with Si–O symmetrical stretching vibrations, that at 696 cm⁻¹ with Si–O symmetrical bending vibrations, and those at 512 and 460 cm⁻¹ with Si-O asymmetrical bending vibrations.²⁴ After firing α -quartz at 1500°C, the IR spectrum of α -quartz is completely transformed into that of α -cristobalite with a notable new band at 621 cm⁻¹ corresponding to Si–O asymmetrical bending vibrations.²⁵ In SiO₂:Eu²⁺ compounds fired at 1300°C under 4% H₂-Ar atmosphere, there is no considerable wavenumber shift in IR modes except that the lower absorbance and greater broadness of IR modes compared with those of α -cristobalite. The IR modes in SiO₂ compound (without Eu) fired at 1300°C under 4% H₂-Ar atmosphere, reveals that the Eu ions occupied in SiO₂ matrix might have an effect on the SiO₂ internal modes. As a consequence of the interaction, $(Eu^{2+}...[O-Si-O]^{4-}...Eu^{2+})$, the local symmetry of SiO₂ matrix may be partially collapsed, which results in the modification of the [SiO₄] internal modes, i.e., the lower absorbance and greater broadness of IR modes because there is not enough Eu content to induce the chemical shift of the vibration modes of SiO₂:Eu compounds.²⁶ It should be noted that the variation of the IR modes by Eu ion doped in SiO₂ matrix means that there is a pseudo-covalent bond character between Eu ion and O ion sharing with SiO₄ tetrahedral units. Thus, it might indicate that Eu ions are occupied in the SiO₂ interstitial sites formed structurally, particularly, in wider ones formed under 4% H₂-Ar atmosphere.

3.4 X-ray Photoelectron and Solid NMR Spectroscopy

In order to examine the valence state of Eu ions occupied into the SiO_2 matrix, XPS analysis was performed. All the XPS spectra were fitted after a Shirley background correction. Fig. 9

Fig. 9 Wide scan XPS spectra of reference compounds, EuCl₂ and EuCl₃.

Fig. 10 High-resolution Eu 3d and 4d XPS spectra of reference compounds, EuCl_2 and $\mathsf{EuCl}_3.$

presents the wide-scan XPS spectra of EuCl₂ (Eu²⁺) and EuCl₃ (Eu³⁺) reference compounds. It should be pointed out that it is very difficult to obtain fully reduced Eu²⁺ in metal oxide-phosphor compounds based on the standard reduction potential (Eu³⁺/Eu²⁺ = -0.36 V vs. standard hydrogen electrode (SHE)),²⁷ which indicates that the reduction of Eu³⁺ to Eu²⁺ requires an annealing process at high temperature ($\geq 1000^{\circ}C$) under a reducing atmosphere, such as H₂ or H₂-Ar mixture gas. Additionally, the thermodynamically unstable Eu²⁺ ions are prone to be easily oxidized by foreign molecules, such as H₂O, O₂ etc., in particular, under X-ray irradiation in XPS measurements. As shown in the inset of Fig. 9, the fact that the new band around 128 eV is observed in EuCl₂ compound, supports the partial oxidation of Eu²⁺ to Eu³⁺. Fig. 10 presents

Journal Name

Fig. 11 High-resolution Eu 3d XPS spectra and PL emission spectra of SiO_2:Eu_{0.05}^{2+} and SiO_2:Eu_{0.05}^{3+}.

Eu 3d and Eu 4d XPS spectra of EuCl₂ and EuCl₃. The Eu 4d binding energies of EuCl₃ (top at right) are assigned to the Eu³⁺ $4d_{5/2}$ (137.3 eV) and $Eu^{3+} 4d_{3/2}$ (142.9 eV).²⁸⁻³⁰ The spin-orbital splitting value for Eu^{3+} ion is 5.6 eV, which is in good agreement with that as previously reported.28 The Eu 4d binding energies of $EuCl_2$ (bottom at right) are assigned to Eu^{24} $4d_{5/2}$ (128.4 eV), $Eu^{2+} 4d_{3/2}$ (134.2 eV), $Eu^{3+} 4d_{5/2}$ (136.7 eV), and Eu³⁺ 4d_{3/2} (142.3 eV), which is well consistent with XPS results as previously reported.³¹⁻³⁶ Notably, Jiang et al. synthesized EuCl₂ nanoprisms and nanorods and presented Eu 4d XPS spectra, as follows:³⁶ $Eu^{2+} 4d_{5/2}$ (128.2 eV), $Eu^{2+} 4d_{3/2}$ (~134 eV), Eu $^{3+}$ 4d $_{5/2}$ (~136 eV), and Eu $^{3+}$ 4d $_{3/2}$ (142.2 eV), which is in good agreement with our result. They mentioned, additionally, that Eu 4d XPS spectrum showed the clear presence of Eu^{2+} (128.2 eV and ~134 eV) although the Eu^{2+} ions on the surface were oxidized to Eu^{3+} (~136 eV and 142.2 eV). As shown in Fig. 10 (bottom at right), the spin-orbital splitting values of Eu^{3+} and Eu^{2+} ion (for $EuCl_2$) are 5.6 eV and 5.8 eV, respectively. Interestingly, the $Eu^{2+} 4d_{5/2}$ peak at 128.4 eV consists of two components with the spin-orbit splitting value of 5.8 eV, which may be attributed to the different sites of the $Eu^{2+} 4d_{5/2}$ induced by the partial oxidation of Eu^{2+} . From the XPS measurement for EuCl₂ and EuCl₃ reference compounds, it clearly shows that $EuCl_2$ (Eu^{2+}) compound is more sensitive than $EuCl_3$ (Eu^{3+}) in oxidation induced by X-ray irradiation. By the aid of the Eu 4d binding energy for EuCl₂ and EuCl₃ reference compounds, the XPS 3d binding energies of reference compounds could be precisely assigned as presented in Fig. 10. The Eu 3d binding energies of EuCl₃ reference compound (top at left) are assigned to the $Eu^{3+} 3d_{5/2}$ (1136.5eV) and $Eu^{3+} 3d_{3/2}$ (1166.1 eV) with the small amount of Eu^{2+} state at lower binding energy. On the other hand, the peaks of the Eu²⁺ 3d binding energies for EuCl₂ reference compound (bottom at left) are strongly intensified compared with those of $EuCl_3$ compound, i.e., $Eu^{2+} 3d_{5/2}$ (1126.3 eV) and

ARTICLE

Fig. 12 ²⁹Si MAS-NMR spectra of SiO₂-related compounds; (a) α-quartz, (b) α-cristobalite after firing α-quartz at 1500°C under H₂, (c) SiO₂ fired at 1300°C under H₂, (d) SiO₂:Eu²⁺_{0.002} fired at 1500°C under H₂, (e) SiO₂:Eu²⁺_{0.002} fired at 1300°C under H₂, and (f) SiO₂:Eu²⁺_{0.05} fired at 1300°C under H₂. The spinning side-bands are marked by arrows.

 Eu^{2+} 3d_{3/2} (1156.2 eV). In particular, it is reasonable that the Eu^{2+} valence state in $EuCl_2$ compound is prone to be easily oxidized under X-ray irradiation as presented in Eu 3d as well as Eu 4d XPS spectra. It should be noted that the difference in 3d binding energies between Eu^{2+} and Eu^{3+} (9.7 eV) is somewhat larger than that in 4d binding energies (8.3 eV). It is reasonable considering that the 3d electrons are closer to the nucleus than the 4d elections and thus their binding energies are more strongly affected ($\Delta B.E \propto 1/r$). In order to examine the valence state of Eu ions occupied into the interstitial sites of SiO₂, XPS measurements were performed and its results were presented in Fig. 11. As the PL spectrum (top at right) of $SiO_2:Eu_{0.05}^{2+}$ compound synthesized under 5% H₂-Ar mixture gas, shows the characteristic of Eu^{2+} , $4f^{6}5d \rightarrow 4f^{7}$ transition with a broad band between 380 nm and 520 nm corresponds to the blue emission. The Eu 3d XPS binding energies of $SiO_2:Eu_{0.05}^{2+}$ consist of 4 components, $Eu^{2+} 3d_{5/2}$ (1126.1 eV), $Eu^{3+} 3d_{5/2}$ (1135.8 eV), $Eu^{2+} 3d_{3/2}$ (1155.9 eV), $Eu^{3+} 3d_{3/2}$ (1165.4 eV). Considering the PL emission spectrum, it is evident that the Eu^{2+} ions in SiO₂: $Eu^{2+}_{0.05}$ compound is easily oxidized under Xirradiation. After thermal treatment of ray $SiO_2:Eu_{0.05}^{2+}$ compound under O_2 atmosphere at 1300°C for 3h, the PL emission spectrum (bottom at right) was obtained. As its PL behavior shows the characteristic of Eu³⁺ with a line spectrum at 616 nm corresponding to the red emission, it is evident that the Eu²⁺ ions occupied into the SiO₂ matrix are nearly oxidized to Eu³⁺. Thus, the Eu³⁺ 3d XPS spectrum (bottom at left) is predominantly obtained after thermal treatment of $SiO_2:Eu_{0.05}^{2+}$ compound under O_2 atmosphere at 1300 $^\circ\!\!\!\mathrm{C}$ for 3h. From XPS measurement, the valuable information was obtained; the valence state of Eu ions occupied into the SiO₂ matrix is predominantly Eu^{2+} , associated

ARTICLE

with the blue emission. However, XPS as a surface analysis technique, can't tell the total presence of Eu³⁺ in SiO_2 : Eu²⁺_{0.05} compound even though there exists in small amount of Eu³⁺. Thus, XPS results evidently imply that the Eu²⁺ ions stabilized in SiO₂ matrix are easily oxidized under X-ray irradiation in XPS measurements. ²⁹Si MAS-NMR spectra of SiO_2 compounds are given in Fig. 12. The chemical shifts for α quartz (a) and α -cristobalite (b, after firing α -quartz fired at 1500°C under 4% H₂/Ar) are -107.7 ppm and -109.3 ppm, respectively, which is in good agreement with those as previously reported.³⁷⁻³⁹ α -quartz (a) and α -cristobalite (b) show essentially no "side-bands" and no "chemical shifts", indicating that there are neither different Si sites nor metal cations as shown in Fig 12. α -quartz is transformed into the mixed phase (c) with 10 wt% of α -quartz and 90 wt% of α cristobalite after firing at 1300°C under 4% H₂-Ar atmosphere, and the chemical shift of the mixed phase is -109.5 ppm which is similar to that of α -cristobalite. It is very notable that in $SiO_{2}:Eu^{2+}$ compounds, "the spinning side-bands are appeared" depending on the Eu content; two weak side bands in $SiO_2: Eu^{2+}_{0.002}$ fired at 1500°Cunder 4% $H_2\text{-}Ar$ (d) and $SiO_2:Eu^{2+}_{0.002}$ fired at 1300°Cunder 4% H₂-Ar (e), and six intense ones in SiO₂: $Eu_{0.05}^{2+}$ fired at 1300°Cunder 4% H₂-Ar (f). It is well-known that the spinning side-bands are originated from the dipolar interactions between the nuclear spin and the unpaired electron spins of the paramagnetic ions,⁴⁰⁻⁴⁴ in this system between ²⁹Si spin and the unpaired electron spins of the Eu²⁺ ions. Thus, the fact that there are the spinning sidebands in MAS-NMR spectra of SiO₂:Eu²⁺ compounds, supports that the Eu²⁺ ions are occupied with a pseudo-covalent bond character in the interstitial sites of SiO₂ crystal lattice.

3.5 Hydrogen Assisted SiO₂-defects: Nano-SIMS Measurements.

It is well-known that the reducing atmosphere plays an important role in the controlling of oxygen vacancies as well as charge valences of metal ions in metal oxides. Certainly, this is the fact that the additional charges should be compensated in order to incorporate metal ions of lower valence into the interstitial sites as well as to replace Si4+ with metal ions of lower valence in SiO₂ matrix. The types of the point defect in silicon dioxide can be classified into intrinsic and extrinsic point defect. Intrinsic point defects involve vacancies caused by the missing host atoms and self-interstitials by additional host atoms at an interstitial position. Extrinsic point defects relate to foreign atom different from the host crystal. Defects in a perfect silicon dioxide could include O (or Si) vacancies, their interstitials, Si-Si (or O-O) homobonds, and under-coordinated silicons or oxygens.⁴⁵ Many authors considered hydrogen to be an intrinsic defect because it has been commonly found in silicon dioxide.⁴⁶⁻⁵⁰ Mysovsky et al.⁴⁷ argued that the oxygendeficient vacancy combined a hydrogen atom, E'_4 center consists of a hydrogen substituting for an oxygen atom in α quartz as the following reaction:

$$\equiv Si-O-Si\equiv + H \rightarrow \equiv Si-H + Si\equiv + O \text{ (interstitial)}$$
(1)

Fig. 13 O/Si signal ratios determined by TOF-SIMS depth profile in ${\rm SiO}_2\text{-related}$ compounds.

The neutral oxygen vacancy (ODC(|)) could be converted to =Si-O-H groups by thermal reaction with hydrogen molecules according to the following reaction:^{51,52}

$$\equiv \text{Si-Si} = + \text{H}_2 \rightarrow 2\{\equiv \text{Si-O-H}\}$$
(2)

The formation mechanism of hydrogenic trapped-hole species in α -quartz was proposed by Nuttall et al.,⁴⁸ which indicates that the hydrogen ions (4H⁺) incorporated into α -quartz structure substitute for Si⁴⁺ as the following reaction:

$$4{\equiv}Si-O{-}Si(defect) + 4H^{+} \rightarrow 4{\equiv}Si-O-H$$
(3)

The variation of the O/Si signal ratios of SiO₂ compounds is clearly seen depending on the firing condition as presented in Fig. 13. A sputtered depth profile of SiO₂ compounds obtained by time-of-flight secondary ion mass spectrometry (TOF-SIMS) corroborates the O-defective SiO₂ induced by hydrogen as discussed above. The O/Si signal ratio of α -quartz as received (Aldrich chemical) is the highest value, whereas those of $SiO_2 {:} \ Eu^{2+}_{0.002}$ and $SiO_2 {:} \ Eu^{2+}_{0.05}$ fired at 1300°C under H_2 atmosphere are lower than that of commercially available α quartz, indicating that the oxygen atoms are predominantly missing at high temperature under hydrogen atmosphere. Moreover, α -cristobalite obtained after firing α -quartz at 1500 °C under H₂ atmosphere shows the constant and lowest O/Si ratio. Although our Nano-SIMS analysis does not allow quantification of H content in the samples, the observed O/Si signal ratios are consistent with this formation mechanism.

3.6 Interstitial and Vacancy Mechanism of Eu^{2+} Doping in SiO_2 Matrix

The incorporation of Eu^{2+} ions into SiO_2 matrix may be explained in three different ways. **The first explanation** is that Eu atoms can replace silicon atoms forming a substitutional solid solution in a SiO₂ crystal. However, the direct substitution of Si⁴⁺ with Eu²⁺ is difficult because of the difference in the

Fig. 14 The schematic representations of the crystal structures for α -cristobalite (top) and α -quartz (bottom). Si and O atoms are represented by blue and red spheres. Structural voids are represented by grey spheres with radius of 1.25 Å (Eu²⁺ at CN = 8).

Fig. 15 XRD pattern of SiO_2:Eu_{0.01}^{3+} fired at 1300°C in O2 atmosphere. The inset shows the PL emission spectra.

ionic radii of Si⁴⁺ (0.26 Å) and Eu²⁺ (1.30 Å).⁵³ Moreover, to best of our knowledge, there has been no report on the 4coordinated Eu²⁺ (or. Eu³⁺) in metal oxides as well as organometallic complexes. **As a second explanation**, the Eu atoms can distribute in the boundary of SiO₂ grains to form microscopic regions of europium oxide. The europium oxide can react with SiO₂ grains to generate Eu-containing silica compounds such as EuSiO₃ and Eu₂SiO₄. Several authors have reported the formation of EuSiO₃ and Eu₂SiO₄ on Eu-doped silica films in the studies.⁵⁴⁻⁵⁶ Li et al. reported that Eu-doped SiO₂ films annealed in N₂ at temperature higher than 8 0 0 °C exhibited a broad emission band between 400 and 800 nm which was attributed to the formation of EuSiO₃ giving rise to ARTICLE

intense yellow luminescence.⁵⁴ In Eu-doped SiO₂ films, the broad emission peak centered at 610 nm between 500 and 750 nm was observed due to the Eu^{2+} ions stabilized in the Eu_2SiO_4 and $EuSiO_3$ crystalline structures.⁵⁶ In our Eu^{2+} -doped SiO₂ compounds, the broad emission bands centered at 440 nm between 380 and 540 nm are observed indicating blueemission. Moreover, Rietveld analyses within the Eu-doping range from 0.002 to 0.05 show that there is no trace of impurities which agree with the phase diagram of the EuO-SiO₂ system.⁵⁷ As a third explanation, we speculate that the Eu atoms can incorporate into the structural void spaces (interstitial sites). Both α -cristobalite and α -quartz have open structures as shown in Fig. 14. As the void spaces formed in α cristobalite structure are somewhat larger than those in α quartz structure, it is presumed that Eu²⁺ ions preferably occupy the interstitial sites of α -cristobalite. Compared with the ionic radius between Eu^{2+} (1.25 Å at C.N. = 8) and Eu^{3+} (1.066 Å at C.N. = 8),⁵³ Eu³⁺ ions are more favorable to the void spaces of SiO₂ matrix on condition that no other phases is formed in the EuO-SiO₂ solid-solution. However, in the Eudoped SiO₂ compound fired at 1300° C in air, the impurity phase of Eu_2SiO_5 (at the Eu-doping range of 0.01) is clearly observed in XRD pattern and this compound exhibited a faint reddish-emission attributed to the formation of Eu³⁺ ions as shown in Fig. 15, which indicates that in air atmosphere, Eu³⁺ ions cannot occupy the interstitial sites of SiO₂ matrix and but react with SiO_2 giving rise to the formation of Eu_2SiO_5 in air atmosphere within the Eu-doping ranges from 0.002 to 0.05. On the contrary, Eu²⁺ ions can enter the interstitial sites at 1300°C under 4% H₂-Ar atmosphere. Thus, it is presumed that Eu²⁺ ions can be stabilized in the interstitial sites of SiO₂ matrix through the oxygen vacancies and partial fragmentation of tetrahedron linkages caused by hydrogen assistance. It should be noted that Eu_2O_3 (without adding SiO₂) was fired at 1300°C under 4% H₂-Ar atmosphere and obtained a red-emitting Eu₂O₃ with a monoclinic structure. Based on the experimental results, Eu²⁺ doping mechanism in SiO₂ matrix could be postulated, as follows: i) the reduction of Eu₂O₃ (Eu³⁺) to EuO (Eu²⁺) at high temperature (\geq 1000°C) under hydrogen atmosphere, ii) the entrance of ${\rm Eu}^{2+}$ ions in the interstitial sites of SiO₂ matrix through the oxygen vacancies and partial fragmentation of tetrahedron linkages caused by hydrogen assistance, iii) the block of subsequent oxidation of the Eu²⁺ ions enclosed by Si-O linkages compared with the isolated Eu²⁺ species.

3.7 Theoretical Comparison of Interstitial Positions of Eu Atom in α -Cristobalite and α -Quartz: Interatomic Potential

We theoretically calculate the interatomic potentials depending on the interstitial positions of Eu atom in α -cristobalite and α -quartz, and compare their energy values. As shown in Fig. 16, α -cristobalite and α -quartz have large interstitial void spaces. When an Eu atom is located in the void spaces, the interatomic chemical forces between atoms exert. Atoms have strong repulsion forces when their distance is shorter than sum of their atomic radii. Ions have electric repulsion or attraction, depending on their charges.

Fig. 16. Eu²⁺ positions in the interstitial site of α -cristobalite (a) and α -quartz (b). Blue, red, purple dots are Si, O, Eu atoms respectively.

The former can be modeled by Lennard-Jones potential $^{\rm 58}$ and the latter can be modeled by coulomb potential. $^{\rm 58}$ The potential can be written as

$$U(\vec{r}) = \sum_{i} \varepsilon_{i} \left(\left(\frac{r_{i}}{|\vec{r} - \vec{R}_{i}|} \right)^{12} - 2 \left(\frac{r_{i}}{|\vec{r} - \vec{R}_{i}|} \right)^{6} \right) + \sum_{i} k_{e} \frac{Z_{Eu} Z_{i} e^{2}}{|\vec{r} - \vec{R}_{i}|}, \quad (4)$$

where first sum is the Lennard-Jones potential of nearby ions and second sum is the coulomb potential. Index i is related to the surrounding atoms in the crystal (ε_i : bond dissociation energy, \vec{R}_i : the location of ith atom, r_i : the minimum potential distance between Eu²⁺ and ith atom, Z_{Eu} : charge number of Eu^{2+} , Z_i : charge number of ith atom). There are two kinds of atoms around Eu, O and Si. For O, we choose ε_i as Eu-O bond dissociation energy 473 KJ/mol = 4.903 eV.⁵⁹ r_i is chosen as sum of ionic radius of Eu²⁺ (1.30 Å) and crystal radius O^{2} (1.34 Å), Z_i for O charge number is -1 from consideration of half ionic character. For Si, it does not form a bond with Eu²¹ ions. We choose r_i as sum of ionic radius of Eu²⁺ (1.30 Å) and crystal radius of Si (0.26 Å) and determine value ε_i as 4.892 eV which gives same repulsion force as Eu and O Lennard-Jones force when atomic distance is compressed to 80% of their sum of radii. Z_i for Si charge number is 4, O charge number -2 and Z_{Eu} is 2. The local minimum point of this potential in three dimension can be found numerically, by successively following the negative gradient of potential (force) which gives steepest descent. Starting from initial position, search next potential minimum in finite interval of force direction, and repeat the procedure until it converges. In α -cristobalite case, the minimum position is shown in Fig. 16. Crystal unit cell parameters are given by (a, b, c) = (4.978, 4.978, 6.948) (Å), (α , β , γ) = (90, 90, 120) (°degree) and Eu minimum position is (0.26758, 0.25590, 0.50357) in unit cell coordinate. Nearby oxygen coordinates are (0.1032, 0.2397, 0.8216), (0.7397, 0.3968, 0.5716), (0.2397, 0.1032, 0.1784), (0.3968, 0.7397, 0.4284). Their distances from Eu atom are Their distances from Eu are 2.504, 4.325, 2.769, 4.293 Å. Thus, the calculated minimum potential value is -51.47 eV. In α -quartz case, the minimum position is shown in Figure 16. Crystal unit cell

parameters are given by (a, b, c) = (4.912, 4.912, 5.404) (Å), (α , β , γ) = (90, 90, 120) (°degree) and Eu minimum position is (-0.0301, 0.0014, 0.6674) in unit cell coordinate. Nearby oxygen coordinates are (0.4136, 0.2676, 0.7857), (0.1460, -0.2676, 0.5476), (-0.4136, -0.1460, 0.8801), (-0.2676, 0.1460, 0.4524). Their distances from Eu are 2.005, 2.014, 2.008, 2.011 Å. Minimum potential value is calculated to be 221.8 eV. The results suggest that it is more difficult to put Eu atom into α quartz than α -cristobalite. In α -cristobalite case, minimum potential is negative as well as the distances between atoms at minimum point are large. Only two oxygens around 2.5 and 2.7 Å and next nearest oxygen distances are larger than 4 Å. In α quartz case potential value is positive, which implies instability. Also the nearby oxygen distances are almost identically 2 Å at minimum potential point, showing quite regular and closely packed structure. It is reasonable to infer that Interstitial positioning of Eu is more easily done in α -cristobalite case than α -quartz case.

4 Conclusions

Blue-emitting silica by Eu²⁺-activator ion occupied in the interstitial sites of SiO₂ matrix, has been successfully synthesized and characterized. The PL excitation spectra of SiO2:Eu0.01 compounds monitored at 438 nm, consist of broad bands between 220 nm and 420 nm, which may be ascribed to the allowed $4f^7 - 4f^65d$ transitions of Eu^{2+} , which is in good agreement with XPS results. The emission spectra monitored under the 323 nm excitation, show symmetric bands centered around 438 nm, which is associated with blue-emission. From FT-IR spectra of SiO₂ compounds with and without Eu²⁺activator ions, it clearly shows that the lower absorbance and greater broadness are observed in the IR modes of SiO₂:Eu²⁺ compounds compared with those of α -quartz and α cristobalite without Eu²⁺-activator ions, indicating that the Eu²⁺-activator ions are well located in the interstitial sites of SiO₂ matrix with a pseudo-covalent bond character between Eu ion and O ion sharing with SiO₄ tetrahedral units. ²⁹Si MAS-

NMR spectra corroborates the interpretation of IR results. The fact that there are the spinning side-bands in MAS-NMR spectra of $SiO_2:Eu^{2+}$ compounds, supports that the Eu^{2+} ions are occupied with a pseudo-covalent bond character in the interstitial sites of SiO₂ crystal lattice. The interatomic potentials depending on the interstitial positions of Eu atom in α -cristobalite and α -quartz are calculated using Lennard-Jones potential and coulomb potential; for α -cristobalite the minimum potential value is -51.47 eV, for α -quartz 221.8 eV, which reveals that the Eu²⁺-activator ions more preferably enter the interstitial sites of α -cristobalite than those of α quartz. Thanks to the Eu^{2+} -activator ions occupied in the SiO₂ matrix, the PL intensity of $SiO_2:Eu^{2+}_{0.002}$ compound is about 24 times as high as that of the O-defective SiO₂ compound and the relative emission intensity of $\text{SiO}_2{:}Eu^{2+}_{0.002}$ monitored at 300 nm is about 40% compared to a commercial BAM:Eu²⁺ (obtained from Nichia Co. Ltd. in Japan). This phosphor material could be a breakthrough for modeling a new phosphor and application in the solid state lighting field.

Acknowledgements

This research was financially supported by the Ministry of Education (MOE) and National Research Foundation of Korea (NRF) through the Human Resource Training Project for Regional Innovation (2014H1C1A1066859). One of the authors, S. J. Kim, acknowledges support from the National Research Foundation (NRF) of Korea (Grant No. 2009-0094046). Dr. Seen Ae Chae at the KBSI is acknowledged for carrying out NMR experiments. We would like to thank NSFs Major Research Instrumentation (NSFARRA award #0960334) and Arizona State University for acquisition and installation of the Nano-SIMS 50L.

References

- 1 N. N. Greenwood and A. Earnshaw, *Chemistry of the Elements*, Pergamon Press: Oxford, 1984.
- 2 A. F. Wells, *Structural Inorganic Chemistry*, Clarendon Press: Oxford, 1984.
- 3 IARC. IARC Monogr Eval Carcinog Risks Hum., 1997, **68**, 1, PMID:9303953.
- 4 M. E. Zolensky, P. J. Sylvester and J. B. Paces, American Mineralogist, 1988, 73, 313-323.
- 5 G. Dantelle, M. Mortier, D. Vivien and G. Patriarche, *Chem. Mater.*, 2005, **17**, 2216-2222.
- 6 S. Sivakumar, F. C. J. M. van Veggel and M. Raudsepp, J. Am. Chem. Soc., 2005, **127**, 12464-12465.
- 7 D. Starick, S. I. Golovkova and A. M. Gurvic, J. Lumin., 1988, 40841, 199-200.
- 8 F. E. Swindells, J. Electrochem. Soc., 1954, 101, 415-418.
- 9 R. Stefani, A. D. Maia, E. E. S. Teotonio, M. A. F. Monteiro, M. C. F. C. Felinto, and H. F. Brito, *J. Solid State Chem.*, 2006, **179**, 1086-1092.
- 10 X. Piao, T. Horikawa, H. Hanzawa and K. Machida, *Appl. Phys. Lett.*, 2006, **88**, 161908-161913.
- 11 W. B. Im, Y. K. Kim and D. Y. Jeon, *Chem. Mater.*, 2006, **18**, 1190-1195.
- 12 D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong and S. Q. Feng, *Appl. Phys. Lett.*, 1998, **73**, 3076-3078.

- 13 L. D. Carlos, V. de Zea. Bermudez, R. A. Sa´ Ferreira, L. Marques and M. M. Assunção, Chem. Mater., 1999, 11, 581-588.
- 14 T. Uchino, N. Kurumoto and N. Sagawa, *Phys. Rev. B.*, 2006, **73**, 233203-233206.
- 15 A. Aboshi, N. Kurumoto, T. Yamada and T. Uchino, J. Phys. Chem. C, 2007, 111, 8483-8488.
- 16 S. Banerjee and A. Datta, Langmuir, 2010, 26, 1172-1176.
- 17 S. Yang, W. Li, B. Cao, H. Zeng and W. Cai, J. Phys. Chem. C, 2011, 115, 21056-21062.
- 18 J. M. McCrate and J. G. Ekerdt, *Chem. Mater.*, 2014, **26**, 2166-2171.
- 19 T. C. Liu, H. Kominami, H. F. Greer, W. Zhou, Y. Nakanishi and R. S. Liu, *Chem. Mater.*, 2012, **24**, 3486-3492.
- 20 J. Rodriguez-Carvajal, Fullprof 2000: A Rietveld Refinement and Pattern Matching Analysis Program, April 2008, Laboratoire Léon Brillouin (CEA-CNRS).
- 21 S. Zhang, Y. Nakai, T. Tsuboi, Y. Huang and H. J. Seo, *Chem. Mater.*, 2011, **23**, 1216-1224.
- 22 W. B. Im, Y. I. Kim, H. S. Yoo and D. Y. Jeon, *Inorg. Chem.*, 2009, **48**, 557-564.
- 23 K. Inoue, N. Hirosaki, R. J. Xie and T. Takeda, *J. Phys. Chem.* C, 2009, **113**, 9392-9397.
- 24 J. Hlavay, K. Jonas, S. Elek and J. Inczedy, *Clays Clay Miner.*, 1978, **26**, 139-143.
- 25 A. M. Pires and M. R. Davolos, Chem. Mater., 2001, 13, 21-27.
- 26 D. Kim, D. Park, N. Oh, J. Kim, E. D. Jeong, S. J. Kim, S. Kim, J. C. Park, *Inorg. Chem.*, 2015, **54**, 1325-1336.
- 27 R. C. Weast, Handbook of Chemistry and Physics, CRC Press, 1990.
- 28 L. Li, G. Li, Y. Che and W. Su, Chem. Mater., 2000, 12, 2567-2574.
- 29 S. Fujihara and K. Tokumo, *Chem. Mater.*, 2005, **17**, 5587-5593.
- 30 Y. P. Du, Y. W. Zhang, L. D. Sun and C. H. Yan, J. Phys. Chem. C, 2008, 112, 12234-12241.
- 31 E. J. Cho and S. J. Oh, J. Phys. Rev. B., 1999, 59, R15 613-616.
- 32 J. Qi, T. Matsumoto, M. Tanaka and Y. Masumoto, J. Phys. D: Appl. Phys., 2000, **33**, 2074-2078.
- 33 L. Cario, P. Palvadeau, A. Lafond, C. Deudon, Y. Moëlo, B. Corraze and A. Meerschaut, *Chem. Mater.*, 2003, **15**, 943-950.
- 34 D. Y. Lu, M. Sugano, X. Y. Sun and W. H. Su, *Appl. Surf. Sci.*, 2005, **242**, 318-325.
- 35 C. Caspers, M. Müller, A. X. Gray, A. M. Kaiser, A. Gloskovskii, C. S. Fadley, W. Drube and C. M. Schneider, *Phys. Status Solidi RRL*, 2011, 5, 441-443.
- 36 W. Jiang, Z. Bian, C. Hong and C. Huang, *Inorg. Chem.*, 2011, 50, 6862-6864.
- 37 E. Lippmaa, M. Mägi, G. Engelhardt and A. R. Grimmer, J. Am. Chem. Soc., 1980, **102**, 4889-4893.
- 38 J. V. Smith and C. S. Blackwell, Nature, 1983, 303, 223-225.
- 39 K. A. Smith, R. J. Kirkpatrick, E. Oldfield and D. M. Henderson, *Am. Mineral.*, 1983, **68**, 1206-1215.
- 40 W. Huang, M. Schopfer, C. Zhang, R. C. Howell, L. Todaro, B. A. Gee, L. C. Francesconi and T. Polenova, J. Am. Chem. Soc., 2008, 130, 481-490.
- 41 S. L. Poulsen, V. Kocaba, G. L. Saoût, H. J. Jakobsen, K. L. Scrivener and J. Skibsted, *Solid State Nucl. Magn. Reson.*, 2009, **36**, 32-44.
- 42 S. Ivanova, E. Zhecheva, R. Stoyanova, D. Nihtianova, S. Wegner, P. Tzvetkova and S. Simova, J. Phys. Chem. C, 2011, 115, 25170-25182.
- 43 A. Ferreira, D. Ananias, L. D. Carlos, C. M. Morais and J. Rocha, *J. Am. Chem. Soc.*, 2003, **125**, 14573-14579.
- 44 M. B. Ley, D. B. Ravnsbæk, Y. Filinchuk, Y. S. Lee, R. Janot, Y. W. Cho, J. Skibsted and T. R. Jensen, *Chem. Mater.*, 2012, 24, 1654-1663.

This journal is © The Royal Society of Chemistry 20xx

- 45 S. Basu, Crystalline Silicon-Properties and Uses, InTech, 2011.
- 46 R. A. Weeks, Phys. Rev., 1963, 130, 570-576.
- 47 A. S. Mysovsky, P. V. Sushko, S. Mukhopadhyay, A. H. Edwards and A. L. Shluger, *Phys. Rev. B.*, 2004, **69**, 85202.
- 48 R. H. D. Nuttall and J. A Weil, *Solid State Commun.*, 1980, **33**, 99-102.
- 49 A. C. McLaren, R. F. Cook, S. T. Hyde and R. C. Tobin, *Phys. Chem. Minerals*, 1983, **9**, 79-94.
- 50 P. E. Blöchl and J. H. Stathis, *Phys. Rev. Lett.*, 1999, **83**, 372-375.
- 51 H. Imai, K. Arai, H. Imagawa, H. Hosono and Y. Abe, *Phys. Rev. B.*, 1988, **38**, 12772-12775.
- 52 H. Hosono, Y. Abe, H. Imagawa, H. Imai and K. Arai, *Phys. Rev. B.*, 1991, **44**, 12043-12045.
- 53 R. D. Shannon, Acta Crystallogr., 1976, **32**, 751-767.
- 54 D. Li, X. Zhang, L. Jin and D. Yang, *Optics Express*, 2010, **18**, 27191-27196.
- 55 J. Qi, T. Matsumoto, M. Tanaka and Y. Masumoto, *Electrochem. Solid-State Lett.*, 2000, **3**, 239-241.
- 56 L. Li, J. Zheng, Y. Zuo, B. Cheng and Q. Wang, *Nanoscale Res Lett.*, 2013, **8**, 194.
- 57 M. W. Shafer, J. Appl. Phys., 1965, 36, 1145-1151.
- 58 P. Atkins, J. Paula, *Physical Cehmistry*, 8th edition, Oxford University Press, 2006.
- 59 Y. Luo, *Comprehensive handbook of chemical bonding energies*, CRC Press, 2007.