RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This *Accepted Manuscript* will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical quidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Cite this: DOI: 10.1039/c0xx00000x

ARTICLE TYPE

A turn-on fluorescent probe for hydrogen sulfide and its application in living cells

Miao Zhao,*^a***Hua Li,***^b* **Hui Li,***^b***Qinglong Qiao,***^a* **Cheng Cao,***^a***Zhaochao Xu***^a***, ***

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

⁵**DOI: 10.1039/b000000x**

Hydrogen sulfide (H2S) is an important endogenous signalling molecule in cellular physiology and pathology. Accordingly, sensitive, selective and reliable methods for H2S detection are in high demand. Fluorescence-based methods thus have received great attentions in recent years. Herein we describe the design, synthesis and application of a probe for H2S detection based on the reduction of azide to amine. This probe is highly sensitive and selective toward H₂S over biothiols and other biologically relevant species. Finally, the prob 10 was successfully applied for H2S fluorescent imaging in living cells.

Introduction

Hydrogen sulfide (H2S) has been known as a toxic pollutant for many years. However, it now emerges as the third most important gasotransmitter following nitric oxide (NO) and carbon monoxide $_{15}$ (CO).^{1,2} The endogenous H₂S is biosynthesized from cysteine and homocysteine by three enzymes: cystathionine-γ-synthase (CBS), cystathionine-β-lyase (CSE), and 3-mercaptopyruvate sulfur transferase $(3-MST)^{3,4}$ The significance of H₂S has been validated in various physiological processes, such as vasodilation,5,6 20 antioxidation, anti-apoptosis and anti-

- inflammation.^{7,8} H₂S has been revealed to relax vascular smooth muscle, induce vasodilation of isolated blood vessels, and reduce blood pressure.⁹⁻¹¹ Additionally, H₂S also performs as an antioxidant or a scavenger of reactive oxygen and nitrogen 25 species in cells.¹² And the abnormal H₂S level is believed to be
- related with some diseases like Alzheimer's disease,¹³ Down's syndrome, 14 diabetes¹⁵ and liver cirrhosis.¹⁶ Thus, visualization of H2S in living cells seems to be great important and helpful.

Fluorescence bioimaging technology is one of the most 30 attractive molecular imaging methods for *in vivo* detection of biomolecules by its several advantages, such as high sensitivity, excellent selectivity, rapid response, non-invasiveness, and aptness for living cells, tissues, and living model animals.17-20 As we know, H2S is a reductant as well as a nucleophilic agent,

- 35 which can specifically react with some probes. We classify these probes according to the reaction types with H2S. a) H2S reductive reactions: reducing azides or nitro to amines. The pioneering reduction of azide to amine in fluorescent probes were reported by Chang²¹ and Wang²² in nearly the same time. Since then,
- 40 several probes have been developed based on this concept by changing the fluorophores.²³⁻²⁹ b) H₂S nucleophilic reactions: Michael addition reaction, and tandem nucleophilic reaction. Xian constructed a H2S probe through a nucleophilic substitution reaction between H2S and the disulfidemoiety.30 He reported a 45 probe which sensing H2S in cells through the tandem nucleophilic

reaction of H2S with the aldehyde and α,β-unsaturated acrylate methyl ester.³¹ Lin constructed new NIR probes based c... thiolysis of dinitrophenyl ether.^{32,33} c) copper-sulfide precipitation reaction. Nagano reported a fluorescent probe by 50 utilizing azamacrocyclic copper(II) complex for H₂S detection.³⁴ Shen constructed a red fluorescent probe based phenanthrenefused dipyrromethene copper(II) complex.35

In this paper, we develop a new turn-on fluorescent probe for sensing H2S based on NBD fluorophore. The probe can be easily 55 synthesized from 4-amino-7-nitro-2, 1, 3-benzoxadiazole (NBD-NH2) (Scheme 1). When introducing the electron withdrawing group carbamate, the electron density of NBD-NH2 was efficiently decreased, which resulted in a considerably turn-off effect of fluorescence intensity compared to NBD-NH2. While 60 the azide group reduced to amino by H₂S, the *p*-aminobenzy moiety undergo a self-immolate through an intramolecular 1, 6 elimination to release NBD-NH2, and the fluorescence would be recovered. The probe exhibits high fluorescence enhancement, relatively fast response and excellent selectivity toward H2S. 65 Finally, the probe was successfully applied to image H2S in

living HT-29 cells.

This journal is © The Royal Society of Chemistry [year] *[journal]*, [year], **[vol]**, 00–00 | **1**

70

Experimental section

Materials and methods

Unless otherwise noted, materials were obtained from Aldrich and were used without further purification. The synthesis of 5 compound 4-amino-7-nitro-2, 1, 3-benzoxadiazole (NBD-NH2) (**3**) was according to the published procedure.36 Melting points were measured using a Büchi 530 melting point apparatus. ¹H NMR and 13C NMR spectra were recorded using Bruker 400 MHz and 100 MHz, UV-Vis absorption spectra were obtained on

10 Agilent Cary 60 UV-Vis Spectrophotometer. Fluorescence emission spectra were obtained using Cary Eclipse Fluorescence Spectrophotometer.

Synthesis and characterization of probe 1

To a mixture of $Na₂CO₃$ (636 mg, 6.0 mmol, 3.0 eq) and 15 triphosgene (700 mg 2.4 mmol, 1.2 eq) in THF (10 mL), a solution of **3** (360 mg, 2.0 mmol) in THF (5 mL) was added dropwise in an ice bath for 1 h. Then the solution was stirred for additional 6 h at room temperature. The reaction solution was then filtered. Compound **2** (357 mg, 2,4 mmol, 1.2 eq) was added

- 20 to the filtrate, and the solution was stirred at room temperature for 6 h. The solvent was evaporated and the crude product was purified by silica gel column chromatography ($PE:DCM = 1:1$) to afford the final compound **1** as a light yellow solid (220 mg, 31 %); M.p. 164-166 oC. 1H NMR (400 MHz, CDCl3) *δ* 8.56 (d, *J*
- 25 = 8.4 Hz, 1H), 8.15 (d, *J* = 8.4 Hz, 1H), 8.03 (s, 1H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.07 (d, *J* = 8.4 Hz, 2H), 5.29 (s, 2H). 13C NMR (100 MHz, CDCl3) *δ* 151.8, 144.8, 143.0, 141.0, 134.0, 133.7, 131.2, 130.6, 130.4, 119.4, 111.1, 68.2. HRMS (ESI) calcd for C14H10N7O5 [MH+] 356.0743, found 356.0747.

³⁰**Culture of HT-29 cells and fluorescent imaging**

HT-29 cells were cultured in Dulbecco's modified Eagle's medium (DMEM, Invitrogen) supplemented with 10% FBS (fetal bovine serum) in an atmosphere of 5% CO₂ and 95% air at 37 °C. The cells were seeded in 24-well flat-bottomed plates and then

 $\frac{1}{35}$ incubated for 48 h at 37 °C under 5% CO₂. **1** (5 μ M) was then added to the cells and incubated for 30 min. Then the cells were washed three times with PBS. After incubating with 20 μ M H₂S, fluorescence imaging was observed under a confocal microscopy (Olympus FV1000) with a $60 \times$ objective lens.

⁴⁰**Results and discussion**

Characterization of fluorescent probe 1 for H2S recognition

Absorbance and fluorescence studies in aqueous solution $(CH₃CN:PBS = 9 : 1, pH = 7.4)$ were performed firstly. The changes of the absorption spectra in the absence and presence of

- 45 NaHS (a commonly used hydrogen sulfide source) (0-20 eq) were displayed in Fig. 1. The probe **1** showed an absorption band at 520 nm. When we added NaHS to the solution of probe **1**, the absorbance at 520 nm decreased sharply to its limiting value, while an absorption band at 470 nm developed, which was visible
- 50 to the naked eye with a clear colour change from pink to yellow. Additionally, if the concentration of NaHS reaches 20 equiv., the reaction can be completely finished in minutes.

Fig. 1. UV-Vis absorption spectra of 10 μ M probe 1 in the presence of 0-20 equiv of H_2S in aqueous solution (CH₃CN:PBS = 9:1, 20 Mm PBS, pH $55 = 7.4$). Inset: cuvette images of probe 1 before and after addition of H_2S taken under ambient light.

The emission spectra and fluorescence titration experiments of probe **1** with H2S were then recorded in aqueous solution (CH3CN:PBS = 9:1, pH = 7.4) (Fig. 2). The free probe **1** 60 displayed quite weak fluorescence. When H2S was added progressively from 0 to 20 equiv to the solution of probe **1**, the probe was converted efficiently to fluorescent NBD-NH2. And the fluorescence intensity of the emission band at 550 nm increased significantly. From Fig. 2b, it was found that if the 65 concentration of H2S was over 20 equiv, the reaction can be finished in minutes. Therefore, the time-dependent fluorescence responses were next detected with 20 equiv of H2S from 0 to 55 min, and the results showed that the reaction was completed within 50 min (Fig. 2c-2d).

Fig. 2. a) Fluorescent emission spectra of 10μ M probe 1 in the presence of 0-20 equiv of H_2S in aqueous solution (CH₃CN:PBS = 9:1, pH = 7.4) (NaHS was dissolved in water in the concentration of 1 mM). Excitation at 470 nm. b) Fluorescence intensity of 10 *μ*M probe **1** in the presence of 75 0-20 equiv of H2S. c) Time dependence of fluorescence profiles of probe **1** (10 μ M) with 20 equiv H₂S. d) Time dependence of fluorescence intensity of probe **1** (10 μ M) at 550 nm with 20 equiv H₂S.

In addition, the formation of compound NBD-NH₂ was confirmed by 1H-NMR. The cleavage reaction of probe **1** with 20

2 *Journal Name***, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year]**

equiv H2S revealed the characteristic NMR peaks almost the same as the NBD-NH2 (Fig. 3). The transformation of **1** to NBD-

NH2 was also confirmed by TLC experiments.

Fig 3. Partial ¹H NMR spectra of 1, NBD-NH₂ and the reaction mixture of $5\,$ **1** with H₂S in CD₃CN.

The selectivity of the fluorescent response of **1** with various anions, sulfur-containing inorganic salts and biothiols including cysteine, homo-cysteine and glutathione were then conducted. The addition of 50 equiv. of F, Cl, Br, I, $CO₃²$, HCO₃, OAc, 10 NO₃, NO₂, OH, citric acid, hydrogen citrate, dihydrogen citrate, N₃, PO₄³, HPO₄², H₂PO₄, P₂O₇⁴, SCN, SO₃², HSO₃, SO_4^2 , HSO₄ SO_3^2 , S₂O₄², S₂O₅² produced only a nominal change in the fluorescence spectra of **1**. In addition, both biothiols (50 eq Cys, Hcys and GSH, the main competitive species in

15 biological systems) and reducing conditions ascorbate acid (50 eq.) showed no response to probe **1**. By contrast, only H2S shows a dramatic fluorescent enhancement, suggesting very high selectivity of **1** towards H2S (Fig. 4).

Fig. 4. Fluorescence responses of 10 µM **1** to various analytes in aqueous 20 solution (CH₃CN:PBS = 9:1, pH = 7.4). Excitation at 470 nm. Bars represent the final fluorescence intensity of **1** with 0.5 mM analytes over the original emission of free 1. 1) free probe 1; 2) F^* , 3) Cl^* , 4) Br^* , 5) I^* , 6) $CO₃²$, 7) HCO₃, 8) OAc, 9) NO₃, 10) NO₂, 11) OH, 12) citric acid, 13) hydrogen citrate, 14) dihydrogen citrate, 15) N_3 , 16) PO_4^{3} , 17) HPO_4^{2} ,

25 18) H_2PO_4 , 19) $P_2O_7^{4}$, 20) SCN⁻, 21) SO₃², 22) HSO₃⁻, 23) SO₄², 24) HSO_4 , 25) $S_2O_3^{2}$, 26) $S_2O_4^{2}$, 27) $S_2O_5^{2}$, 28) Cys, 29) GSH, 30) Hcy, 31) Ascorbic acid, 32) HS- .

We also performed the competition experiments in the presence of biothiols, ascorbate acid and H2O2. In fact, when H2S

30 and these analytes coexisted, almost the same fluorescence enhancement was observed as that only treated with H2S (Fig. 5).

Fig. 5. Fluorescence response of **1** (10 µM) to NaHS (200 µM) and other reactive species, Cys (0.5 mM), GSH (0.5 mM), Hcy (0.5 mM), AC (0.5 35 mM), $H_2O_2 (0.5$ mM).

Encouraged by the above results, we next sought to apply probe **1** to image H2S in living cells. Analysis of human colon cancer biopsies and patient-matched normal margin mucosa revealed the selective up-regulation of the H2S-producing enzyme 40 cystathionine-*β*-synthase (CBS) in colon cancer, resulting in an increased rate of H2S production. Then, HT-29 cells was selected to incubate with probe **1**. The cytotoxicity of probe **1** was first examined toward HT-29 cells by a MTT assay (Fig S6). The results showed that >90% HT-29 cells survived after 24 h (5.0) ⁴⁵μM probe **1** incubation), demonstrating that **1** was of low toxicity toward cultured cell lines. When incubated with 5 µM **1** for 30 min at 37 °C, the cells were washed with PBS ($pH = 7.4$) to remove excess of **1**. The HT-29 cells exhibited almost no fluorescence as shown in the confocal image Fig. 6a, indicating ₅₀ that biothiols and other biological species showed no interference. **RSCRIPTED CONTRACT CONT**

While after incubating with 20 μ M NaHS for 20 min, the cells displayed enhanced green fluorescence (Fig. 6b). Another 20 min later, a higher turn-on fluorescence response was observed (Fig. 6c). All these experiments indicated that the probe **1** has the 55 potential biological application for imaging H2S in living cells.

Fig. 6 Images of H2S detection in HT-29 cells incubated with **1** (5 μM) at 37 °C. a) HT-29 Cells were incubated with 1 for 30 min; After which 20μ M H₂S was added, further incubation for 20 min (b) and 40 min (c); d) merged images of c) and bright field.

⁶⁰**Conclusion**

In summary, we have reported a reaction-type fluorescel probe **1** for detection of H2S in aqueous solution based on a specific analyte-induced cleavage of carbamate. This new probe

JEADY

can be easily prepared and works effectively at physiological pH, which shows high selectivity for H₂S over other biological thiols (such as Cys, Hcys and GSH). Concomitantly, the solution colour changes from pink to yellow. This probe can also detect H2S in

5 living cells. The successful application of our probe to detect cellular H2S will help us to study the biological role of H2S and encourage the appearance of new H2S probes suitable for cell imaging.

Acknowledgment

10 We thank financial supports from the National Natural Science Foundation of China (21422606, 21276251, 21402191), Ministry of Human Resources and Social Security of PRC, the 100 talents program funded by Chinese Academy of Sciences.

Notes and references

*^a*15 *Key Laboratory of Separation Science for Analytical Chemistry of CAS, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.*

b Hebei Vocational & Technical College of Building Materials, Hebei, China.

20 † Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

‡Footnotes should appear here.

Corresponding Author

- ²⁵*E-Mail: zcxu@dicp.ac.cn;Tel: +86-411-84379648. Fax: +86-411- 84379648*
- 1. H. Kimura, *Amino Acids*, 2011, **41**, 113-121.
- 2. T. Morita, M. A. Perrella, M.-E. Lee and S. Kourembanas, *Proc. Natl. Acad Sci. U. S. A*, 1995, **92**, 1475-1479.
- 30 3. M. J. Wang, W. J. Cai and Y. C. Zhu, *Clin. Exp. Pharmacol. Physiol.*, 2010, **37**, 764-771.
- 4. G. Yang, L. Wu, B. Jiang, W. Yang, J. Qi, K. Cao, Q. Meng, A. K. Mustafa, W. Mu and S. Zhang, *Science*, 2008, **322**, 587- 590.
- 35 5. W. Zhao, J. Zhang, Y. Lu and R. Wang, *EMBO. J.*, 2001, **20**, 6008-6016.
- 6. D. J. Lefer, *Proc. Natl Acad Sci. U. S. A*, 2007, **104**, 17907- 17908.
- 7. J. W. Calvert, S. Jha, S. Gundewar, J. W. Elrod, A. Ramachandran, C. B. Pattillo, C. G. Kevil and D. J. Lefer, *Circ. Res.*, 2009, **105**, 365-374.
- 8. R. C. Zanardo, V. Brancaleone, E. Distrutti, S. Fiorucci, G. Cirino and J. L. Wallace, *FASE. J.*, 2006, **20**, 2118-2120.
- 9. A. Papapetropoulos, A. Pyriochou, Z. Altaany, G. Yang, A. 45 Marazioti, Z. Zhou, M. G. Jeschke, L. K. Branski, D. N. Herndon and R. Wang, *Proc. Natl Acad Sci. U. S. A*, 2009, **106**, 21972-21977.
- 10. G. Yang, L. Wu and R. Wang, *FASEB. J.*, 2006, **20**, 553-555.
- 11. L. Li, M. Bhatia, Y. Z. Zhu, Y. C. Zhu, R. D. Ramnath, Z. J.
- 50 Wang, F. B. M. Anuar, M. Whiteman, M. Salto-Tellez and P. K. Moore, *FASEB. J.*, 2005, **19**, 1196-1198.
- 12. M. Whiteman, J. S. Armstrong, S. H. Chu, S. Jia Ling, B. S. Wong, N. S. Cheung, B. Halliwell and P. K. Moore, *J. Neuro. Chem.*, 2004, **90**, 765-768.
- 55 13. K. Eto, T. Asada, K. Arima, T. Makifuchi and H. Kimura, *Biochem. Biophys. Res. Commun.*, 2002, **293**, 1485-1488.
- 14. P. Kamoun, M. C. Belardinelli, A. Chabli, K. Lallouchi and B. Chadefaux‐Vekemans, *Am. J. Med. Genet. Part A*, 2003, **116**, 310-311.
- 60 15. W. Yang, G. Yang, X. Jia, L. Wu and R. Wang, *J. Physiol.,* 2005, **569**, 519-531.
	-
- 16. S. Fiorucci, E. Antonelli, A. Mencarelli, S. Orlandi, B. Renga, G. Rizzo, E. Distrutti, V. Shah and A. Morelli, *Hepatology*, 2005, **42**, 539-548.
- 65 17. Z. Xu, J. Yoon and D. R. Spring, *Chem. Soc. Rev.*, 2010, **39**, 1996-2006.
	- 18. T. Ueno and T. Nagano, *Nat. Methods*, 2011, **8**, 642-645. 19. J. Chan, S. C. Dodani and C. J. Chang, *Nat. Chem.*, 2012, **4**, 973-984.
- 70 20. Y. Tang, D. Lee, J. Wang, G. Li, J. Yu, W. Lin and J. Yoon, *Chem. Soc. Rev.*, 2015, **44**, 5003-5015.
	- 21. A. R. Lippert, E. J. New and C. J. Chang, *J. Am. Chem. Soc.*, 2011, **133**, 10078-10080.
- 22. H. Peng, Y. Cheng, C. Dai, A. L. King, B. L. Predmore, D. J. 75 Lefer and B. Wang, *Angew. Chem. Int. Ed.*, 2011, **50**, 9672- 9675.
	- 23. Q. Qiao, M. Zhao, H. Lang, D. Mao, J. Cui and Z. Xu, *RSC Adv.*, 2014, **4**, 25790-25794.
	- 24. S. K. Das, C. S. Lim, S. Y. Yang, J. H. Han and B. R. Cho, ⁸⁰*Chem. Commun.*, 2012, **48**, 8395-8397.
	- 25. L. A. Montoya and M. D. Pluth, *Chem. Commun.*, 2012, **48**, 4767-4769.
	- 26. Q. Wan, Y. Song, Z. Li, X. Gao and H. Ma, *Chem. Commun.*, 2013, **49**, 502-504.
- 85 27. F. Yu, P. Li, P. Song, B. Wang, J. Zhao and K. Han, *Chem. Commun.*, 2012, **48**, 2852-2854.
	- 28. K. Zheng, W. Lin and L. Tan, *Org. Biomol. Chem.*, 2012, **10**, 9683-9688.
	- 29. L. He, W. Lin, Q. Xu and H. Wei, *Chem. Commun.*,2015, **51**, 90 1510-1513.
	- 30. C. Liu, J. Pan, S. Li, Y. Zhao, L. Y. Wu, C. E. Berkman, A. R. Whorton and M. Xian, *Angew. Chem. Int. Ed.*, 2011, **50**, 10327-10329.
- 31. Y. Qian, J. Karpus, O. Kabil, S.-Y. Zhang, H.-L. Zhu, R. 95 Banerjee, J. Zhao and C. He, *Nat. Commun.*, 2011, **2**, 495-501. **RSC Advances Accepted Manuscript**
	- 32. X. Cao, W. Lin, K. Zheng and L. He, *Chem. Commun.*, 2012, **48**, 10529-10531.
	- 33. H. Chen, W. Lin, H. Cui and W. Jiang, *Chem. Eur. J.*, 2015, **21**, 733-745.
- 100 34. K. Sasakura, K. Hanaoka, N. Shibuya, Y. Mikami, Y. Kimura, T. Komatsu, T. Ueno, T. Terai, H. Kimura and T. Nagano, *J. Am. Chem. Soc.*, 2011, **133**, 18003-18005.
	- 35. X. Qu, C. Li, H. Chen, J. Mack, Z. Guo and Z. Shen, *Chem. Commun.*, 2013, **49**, 7510-7512.
- 105 36. W. Jiang, Q. Fu, H. Fan, J. Ho and W. Wang, *Angew. Chem. Int. Ed.*, 2007, **46**, 8445-8448.

444 Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year]