This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Labile Dioxy-Functionalised Zwitterionic Imidazolinium Salt: Access to Zwitterionic and Neutral Imidazolidin-2-ylidene Derivatives and \(\pi\)-Acceptor Properties of Imidazolidine-2-selones

Vivek Gupta, Vedhagiri Karthik and Ganapathi Anantharaman*†

The dioxy-functionalized zwitterionic imidazolinium salt (3) is synthesised by the condensation of \(N_{N'}\)-dimethylformamidine with glyoxal in the presence of ammonium tetrafluoroborate. The nucleophilicity of the carbene carbon is ascertained using the in situ generated anionic NHC from 3 with different electrophiles. Further, 3 consists of a labile anionic five membered \(C_2\)O8 at the backbone position of imidazolinium unit which can be tailored to prepare neutral NHC chalcogen compounds, containing symmetrical and unsymmetrical oxo-functionalisation at the backbone. Further, the \(\pi\)-acceptor properties of NHCs were evaluated using \(\text{Se}^{77}\) NMR in their respective imidazolidine-2-selones.

Introduction

The widespread use of N-heterocyclic carbenes (NHCs) as ligands for transition-metal ions and its use as catalyst for carrying organic transformation led to the quest for electronically modulated NHCs which culminated interest in synthesis of various N- and C4/5- substituted NHCs and their complexation with several metal ions.\(^1\) In addition, the non-metal containing compounds of NHCs such as borylenes, silylenes, phosphinidines, thiones, selenones, etc. have also been reported, of which the phosphinidenes and selenones derivatives have found application in determining \(\pi\)-acceptor properties of NHCs.\(^2,3\) Besides, imidazole based thio-/seleno-ureas are known for its use in treating hyperthyroidism.\(^26\) Additionally, these compounds have been used as ligands for the synthesis of different metal complexes.\(^4\)

Among the NHCs, the synthesis of saturated NHCs has received considerable attention owing to their enhanced Lewis basicity which enables them to exhibit higher reactivity in the organometallic catalysis as compared to their unsaturated counterparts.\(^5,6\) It was also observed that ruthenium complex of backbone substituted saturated NHCs showed higher conversion with low catalyst loading with respect to backbone unsubstituted analogues in the ring closing metathesis which highlights the importance of backbone functionalisation in catalysis.\(^5,6\) Although the imidazolium salts containing backbone alkyl or aryl substitution are known, substitution with the heteroatom containing functional group remains rare. Hermann and co-workers reported the osmylation of Mo-NHC complex to afford the backbone oxo functionalized bimetallic complex.\(^3,6\) Later, boron containing imidazolium/imidazolinium salts and their metal complexes as well as its utility in the dihydrogen activation and hydrogenation of alkenes were reported.\(^7\) Then after, the synthesis of NHC precursor containing oxo-functionalities at backbone was reported by Ganter’s group and others.\(^4\) Among them, the carbene derived from 1 showed a strong electrophilic and greater \(\pi\)-acceptor carbene character.\(^8\) In addition, the carbene is utilised as halodehydrating reagents, in ammonia activation, [2+1] cycloaddition with alkyne and styrene (chart 1).\(^8\) Even though boron containing pendant groups attached to endocyclic nitrogen or at the backbone position in an imidazolium/imidazolinium salts or as a part of inorganic framework in five/six membered NHC and its precursor are known,\(^9\) imidazolium salts with backbone functional group containing a substituted boron moiety remain elusive.

Chart 1. Various known substituted imidazolium salts and present work.

Recently, we have reported the synthesis and structural characterizations of backbone mono-/bis-functionalised imidazolium salts, containing carboxylic acid/silyl-/phosphino-/thio-substituents, for the synthesis of normal and mesoionic carbenes.

\(^{†}\)Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur – 208016, India E-mail, ganapath@iitk.ac.in

\(^{a}\)Electronic Supplementary Information (ESI) available: Additional figures and X-ray crystallographic data in CIF format have been deposited with the Cambridge Structural Database. CCDC 1401392 (2), 1063837 (3), 1063842 (5a), 1407615 (5b), 1063838 (6a), 1063839 (6b), 1063840 (7a), 1063841 (7b) and 1063843 (9a).
In continuation, we have extended our studies to synthesize the backbone oxy–substituted imidazol(in)ium salts. In this paper, we describe the synthesis and reactivity of zwitterionic imidazolinium salt (3) with backbone dioxy backbone attached to BF₂ moiety. In addition, we also report the π-acceptor characters of various symmetrical (6, 7) and unsymmetrical (9) oxy-functionalised imidazolinium compounds.

Results and discussion

Previously, various groups reported the condensation of urea/thiourea and glyoxal to afford 4,5-dihydroxy imidazolidine-2-one/thione compounds. Our methodology began with the understanding of the cyclisation of formamidine with glyoxal or substituted glyoxal to introduce oxygen-donor functionalisation at the backbone of imidazol(in)ium salts. Earlier, Ganter and co-workers reported the synthesis of the oxalamide backbone containing 1 using oxalyl chloride as precursor and formation of Wanzlick dimer from 1. However, the reaction of an in situ generated carbene from 1 using LiHMDS with elemental sulphur led to the formation of disulphide derivative (2) rather than 1,3-dimethyl-2-thioxoimidazolidine-4,5-dione, a product obtained under similar condition using NaHMDS as base (Scheme 1). Due to the poor solubility of 2 in common organic solvents the spectroscopic characterization in solution could not be carried out. Hence the structure of 2 was studied by single crystal X-ray diffraction method. The molecular structure of 2 consists of two five membered imidazolinium ring connected through the disulphide bond at C-2 position (Fig. S1 and Table S1 for crystallographic data in the ESI†). The C1-S1 bond distance in 2 (1.844(3) Å) is slightly longer than the C-S single bond distance (1.736 (3) Å) of cationic imidazolium disulphide. Also, a shorter S-S bond distance (2.031(1) Å) is observed than those of similarly known compounds (2.1015(10) Å).

In contrast to the above reaction, the condensation of N,N'-dimesitylformamidine with glyoxal in the presence of ammonium tetrafluoroborate afforded a colourless solid (3) (Scheme 1). The identity of 3 was established by ¹H NMR spectra, in which the protons attached to C4/5 and NCN carbon centres appear at 5.99 ppm (doublet) and 8.94 ppm (singlet) respectively, which are typical chemical shift values reported for imidazol(in)ium salts. In addition, ¹⁹F NMR spectrum shows two peaks at two different chemical shifts (-142.1 ppm and -145.4 ppm) which could be assigned to two non-equivalent fluorine atoms (ABX, X = ¹¹B) and the ¹¹B NMR spectrum consists of a singlet at 5.26 ppm (ESI†). These observations support the chelation of BF₂ moiety with the oxygen atoms appended on the imidazolinium ring which was further unambiguously confirmed through X-ray diffraction analysis. The molecular structure of 3 (Fig. 1 and Table S1 for crystallographic data ESI†) indicates that average N1–C1 bond distance [1.314 (18) Å] and N–C–N bond angles (114.1(2)°) measured were in accord with those of previously reported imidazolinium salts. 3 was remarkably stable to air- and moisture and its integrity is also confirmed by ESI-MS analysis (see in the ESI†).
was envisaged to occur via a concerted route through an intermediate 4,5-dihydroxy substituted imidazolinium cation before the formation of functionalized imidazolinium zwitterionic salt (3) (Scheme 2).

![Scheme 2. Proposed mechanism for the formation of 3.](image)

Scheme 2. Proposed mechanism for the formation of 3.

Derivatization of 3 at carbene center with electrophiles: The nucleophilicity of 4 is manifested in its reactivity towards various electrophiles such as S-methyl methanethiosulphonate and chlorodiphenylphosphine to afford the respective compounds (5a–5b) which was thoroughly characterized. The characteristic disappearance of proton attached to the NCN carbon centre and shielding of the C4/5-H of imidazole ring relative to 3 in the 1H NMR spectra are consistent with those observed for similarly known compounds. Further, 31P NMR of 5b indicates a large shielding effect for the C2 substituted diphenylphosphine (-3.28 ppm) against the starting material Ph$_2$PCl (80 ppm) and comparable to that of [SIMesPPh$_2$][(B(C$_6$H$_4$)$_3$)$_2$] (-1.5 ppm). However, in both the cases (5a and 5b) the 15B-NMR resonances remain largely unaltered compared to 3. The base peak corresponding to m/z 413.1873 and 551.2432 for adducts 5a and 5b respectively in their ESI-MS spectrum further supports their formation. In addition the structure of 5a and 5b were crystallographically characterized in which the C-P bond distance (1.865(3) Å) is similar to that of the only other crystallographically characterized compound [SIMesPPh$_2$][(B(C$_6$H$_4$)$_3$)$_2$] (Fig.2), (Fig.S2; Table S1 and Table S2 for crystallographic data ESI†). Reaction of 4 with elemental iodine affords zwitterionic adducts 5c, reveals the electrophilic nature of corresponding carbene. Formation of 5c was confirmed through the spectroscopic, spectrometric and analytical methods.

The carbenic nature as well as its π-acceptor property was studied using thiones/selenones obtained from 4. Reaction of 3 with elemental sulfur or selenium in presence of excess of potassium bis(trimethylsilyl)amide followed by stepwise addition of ammonium chloride and water afforded the hydrolyzed product (6a or 6b), instead of ammonium salt of anionic thiourea of 4 as observed by Lavigne and co-worker for anionic NHC containing malonate backbone, which was ascertained through the spectroscopic, spectrometric studies and by X-ray crystallography. The molecular structure of 6a or 6b consists of five membered imidazolinium ring which adopts an ’envelope’ conformation and the two hydroxyl groups in the backbone of the ring lie trans to each other (Fig. 3), (Fig. S3 and Table 1 for bond lengths and angles; Table S2 for crystallographic data ESI†). Interestingly, when phenylboronic acid was used in place of ammonium chloride/water it results in the formation of 7a or 7b. The molecular structure of 7a and 7b (Fig. 4 and Fig. S4; Table 2 and Table S3) adopts a bowl shape structures with both the oxygen atoms attached to the boron are on the same plane. In 1H NMR spectra, the C-4/5 protons in 6 or 7 appear as singlet that is consistent with the molecular structures.

Determination of the π-acceptor property of NHCs using 77Se NMR of imidazole-2-selenone/imidazolidine-2-selenone compound was determined first reported by Ganter and co-workers. Subsequently, Nolan and co-workers studied the π-acceptor properties of wide range of NHCs using PhSeSePh as standard. Utilizing the latter method, the 77Se NMR of 7b shows a deshielded signal at 194 ppm as against 169 ppm observed for 6b which indicates greater π-accepting nature of 7b. Unlike in the other

Fig. 2 ORTEP diagram showing 50% probability thermal ellipsoids and selected atom labels for 5b. Hydrogen atoms and one molecule have been omitted for clarity. Selected bond lengths (Å) and angles (deg): C(1)-P(1) 1.865(3), C(1)-N(1) 1.326(4), C(1)-N(2) 1.334(3), C(2)-N(1) 1.492(3), C(3)-N(2) 1.500(3), C(2)-C(3) 1.542(4), C(2)-O(1) 1.392(3), C(3)-O(2) 1.390(3), N(1)-C(1)-N(2) 111.7(2).

Fig. 3 ORTEP diagram showing 50% probability thermal ellipsoids and selected atom labels for 6a. Hydrogen atoms and one ethyl acetate molecule have been omitted for clarity.

Fig. 4 ORTEP diagram showing 50% probability thermal ellipsoids and selected atom labels for 7a. Hydrogen atoms and one ethyl acetate molecule have been omitted for clarity.
reported structures of thiones and selenones of NHCs, the effect of \(\pi \)-acceptor character of carbene and the effect of backbone functionalisation is clearly noticed in these structures.\(^{3a-3c}\) The Bond lengths of these compounds indicate a stronger C=X (X=S (7a); Se (7b)) and a slightly longer C(2)(3)(N(1)/1(2)) (backbone) relative to 6a or 6b was observed (Table 1 and 2). Comparison of these values indicates that the C=X bond distances in 7a and 7b are slightly shorter than those of 1,3-dimesitylimidazoline-2-thiones/selenone and it is longer as compared to those of 1,3-dimesityl-2-thiooxo(selenoxo)imidazolidine-4,5-dione. Similar thiones/selenone and it is longer as compared to those of 1,3-dimesitylimidazoline-2-thione/selenone.\(^{7a}\)

3a These comparisons and correlation with the \(^{77}\)Se NMR of these compounds suggest that the carbene center in 6 and 7 have appreciable \(\pi \)-acceptor character and between the two, the greater \(\pi \)-acceptor character is observed for 7. Compound 7a and 7b have the potential to form adducts with a variety of donors (4-dimethylaminopyridine, diazabicyclo-(2.2.2)-octane etc.) and show interesting photophysical properties and can act as synths for supramolecular compounds besides being used as optical sensors for Lewis bases.\(^{13}\) Also aryl boronic esters are important starting materials for cross coupling reactions and imidazole containing boronic esters still remain elusive.\(^{13b}\)

Table 1 Selected bond lengths [Å] and angles (°) for compound 6a, 7a and 9a.

<table>
<thead>
<tr>
<th></th>
<th>6a</th>
<th>7a</th>
<th>9a</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)-S(1)</td>
<td>1.682(2)</td>
<td>C(1)-S(1)</td>
<td>1.644(4)</td>
</tr>
<tr>
<td>C(1)-N(1)</td>
<td>1.357(3)</td>
<td>C(1)-N(1)</td>
<td>1.364(4)</td>
</tr>
<tr>
<td>C(1)-N(2)</td>
<td>1.352(3)</td>
<td>C(1)-N(2)</td>
<td>1.364(4)</td>
</tr>
<tr>
<td>C(2)-N(1)</td>
<td>1.471(3)</td>
<td>C(3)-N(1)</td>
<td>1.440(4)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.531(3)</td>
<td>C(2)-C(3)</td>
<td>1.529(5)</td>
</tr>
<tr>
<td>C(2)-O(1)</td>
<td>1.403(4)</td>
<td>C(3)-O(1)</td>
<td>1.399(4)</td>
</tr>
<tr>
<td>C(3)-O(2)</td>
<td>1.376(5)</td>
<td>B(1)-O(1)</td>
<td>1.376(5)</td>
</tr>
<tr>
<td>N(2)-C(1)-N(1)</td>
<td>108.8(2)</td>
<td>B(1)-O(2)</td>
<td>1.376(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(2)-C(1)-N(1)</td>
<td>108.5(3)</td>
</tr>
</tbody>
</table>

Table 2 Selected bond lengths [Å] and angles (°) for compound 6b and 7b

<table>
<thead>
<tr>
<th></th>
<th>6b</th>
<th>7b</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)-Se(1)</td>
<td>1.834(3)</td>
<td>C(1)-Se(1)</td>
</tr>
<tr>
<td>C(1)-N(1)</td>
<td>1.335(3)</td>
<td>C(1)-N(1)</td>
</tr>
<tr>
<td>C(1)-N(2)</td>
<td>1.345(3)</td>
<td>C(1)-N(2)</td>
</tr>
<tr>
<td>C(2)-N(2)</td>
<td>1.464(3)</td>
<td>C(2)-N(2)</td>
</tr>
<tr>
<td>C(3)-N(1)</td>
<td>1.459(3)</td>
<td>C(3)-N(1)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.528(4)</td>
<td>C(2)-C(3)</td>
</tr>
<tr>
<td>C(2)-O(1)</td>
<td>1.403(3)</td>
<td>C(2)-O(1)</td>
</tr>
<tr>
<td>C(3)-O(2)</td>
<td>1.387(3)</td>
<td>C(3)-O(2)</td>
</tr>
<tr>
<td>N(2)-C(1)-N(1)</td>
<td>109.4(2)</td>
<td>B(1)-O(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(2)-C(1)-N(1)</td>
</tr>
</tbody>
</table>

Synthesis of unsymmetrically substituted oxy-imidazolinium salt and their derivatives with chalcogens:

Finally, the reaction to introduce unsymmetric O-substitution at the backbone centre was attempted. Accordingly, the reaction of 3 with trimethyloxonium tetrafluoroborate followed by addition of water afforded the unsymmetrical functionalised imidazolinium salt (8) in high yield (80%). Due to unsymmetrical substitution, the C/H of imidazole ring appears as two different doublets at 5.72 ppm (C/H) and 6.23 ppm (C/H) respectively in \(^{1}H\) NMR spectrum. The carbene and \(\pi \)-acceptor character of 8 was discerned using the thione and selenone derivatives (9a and 9b). The \(^{77}\)Se NMR of 9b (167 ppm) shows a larger downfield shift compared to 1,3-dimesitylimidazoline-2-selenone (110 ppm) which suggests the stronger \(\pi \)-acceptor character of carbene in 9b but it is slightly upfielded with respect to 6b (169 ppm) hence having comparable \(\pi \)-acceptor properties. Also, 9a was crystallographically characterized (Fig. 5 and Table 1 for bond lengths and angles; and Table S3 for crystallographic data ESI†). Comparison of bonding parameters with 6a indicates a slightly shorter bond distance of C=S in 9a, but the value is comparable with 1,3-dimesitylimidazoline-2-thione.\(^{13a}\)

Fig. 5 ORTEP diagram showing 50% probability thermal ellipsoids and selected atom labels for 9a. Hydrogen atoms and one ethyl acetate molecule have been omitted for clarity.

Conclusions

In conclusion, a zwitterionic 4,5-dioxy functionalised imidazolinium salt (3) was synthesised using simple and readily available starting reagents which involves intramolecular cyclisation between glyoxal and formamide in presence of ammonium tetrafluoroborate. The nucleophilicity of anionic 4,5-dioxy functionalised NHC (4) was evaluated with various electrophiles. The lability of the backbone diox-y-functionalised C\(_5\)O\(_2\)B ring in 3 was utilised to prepare dihydroxy/hydroxymethoxy functionalized imidazoline-2-thione/selenone. Besides a synthetically important boronic ester at the backbone positions were synthesised with an in situ generated carbene 4. Further, the \(\pi \)-acceptor properties of NHCs in 6b, 7b and 9b were evaluated using \(^{77}\)Se NMR of which 7b shows a greater \(\pi \)-acceptor character. Also, a first example of unsymmetrically substituted O-functionalised imidazolinium salt and corresponding chalcogen NHC derivatives is reported. Moreover the current study offers a possible tailoring of the backbone oxy-functionalization with different organic substituents which can significantly alter the electronic properties of NHCs and hence its influence in catalysis.
Experimental Sections

General Procedures

All of the reactions and manipulations were carried out under an atmosphere of dry nitrogen using standard Schlenk line techniques unless otherwise mentioned. Solvents were dried according to the standard literature procedures, and they were freshly distilled under nitrogen prior to use. All other reagents were used as received. Glassware was dried in an oven maintained at 140 °C overnight prior to use. Chemicals such as potassium bis(trimethylsilyl)amide, (KHMD, 0.5 M in toluene), ammonium tetraflouroborate, trimethylxonium tetrafluoroborate, 2,4,6-trimethyliniline, S-methyl methanethiosulfonate and diphenylphosphine chloride were purchased from Sigma-Aldrich or iodine and HMDS from sd fine-chem Limited and used as received. Non-hydrogen atoms were treated with a riding model. ASPHADIC was prepared according to the literature procedures.

Instrumentation

1H NMR, 13C NMR, 19F NMR and 77Se NMR spectra were obtained on a JEOL-DELTA 400 MHz and 500 MHz spectrometers. The spectra were recorded CDCl3, CD3CN and DMSO-d6 as solvents. 1H and 13C NMR Chemical shifts were referenced with respect to tetramethylsilane (TMS). 77Se NMR spectra are reported relative to SeM2 and are referenced to external PhSeSePh (δ77 = 463 ppm). Infrared spectra were recorded as KBr pellets on a Perkin Elmer Series-II spectrometer. Elemental analyses were performed with a Perkin Elmer Series-II CHNS/O analyzer 2400. Melting points reported are uncorrected.

X-ray Crystallography

The crystal data were collected on a Bruker SMART APEX CCD diffractometer (for compound 2 and 6a) and Bruker D8-Quest-Photon diffractometer (for compound 3, 5a, 5b, 6b, 7a, 7b and 9a). Data were collected using graphite-monochromated MoKa radiation (λ = 0.71073 Å) at 100 K. All of the structures were solved by direct methods using SHELXTL-97a and refined by full matrix least-squares on F2. All of the hydrogen atoms were included in idealized positions and a riding model was used. Non-hydrogen atoms were refined with anisotropic displacement parameters. Disordered solvent molecules in compound 5a and 6b were treated by PLATON/SQUEEZE procedure.a

Synthesis of Compound 1. This title compound was prepared by a slight modification of previously reported procedure of Galter and co-workers.a Accordingly, a stirred solution of N,N'-bis(2,4,6-trimethylphenyl)formamidine (1.64 g, 8.58 mmol) in THF (40 mL), oxalyl chloride (0.61 mL, 7.02 mmol) was added at 0 °C. The mixture was warmed to room temperature and the stirring was continued for 4 h. Removal of volatiles under vacuum and washing the residue with dry hexane afforded the title compound as a colourless solid. Yield: 1.94 g (90%).

Synthesis of Compound 2. To a mixture (0.370 g, 1 mmol) and LiHMDS (0.201 g, 1.2 mmol) in Schlenk flask was added THF (40 mL) and cooled to -78 °C. After 5 min of stirring, elemental sulphur (0.068 g, 2.1 mmol) was added to it and the solution was stirred for 1 h at this temperature. The resulting mixture was slowly allowed to warm to room temperature and the stirring was continued further for 2 h. Removal of all volatiles under vacuum gave a residue which was purified by column chromatography (SiO2, hexane/dichloromethane: 1/1 to 1/2) to afford the title compound as yellow solid. Single crystals suitable for X-ray diffraction studies were grown by slow evaporation of methanol/acetonitrile/DMSO (2/2/1) solvent mixture of 2 h at room temperature. Yield: 0.12 g (32 %).

Synthesis of Compound 3. To a mixture of N,N'-dimethylformamidine (0.561 g, 2 mmol) and ammonium tetraflouroborate (0.252 g, 2.4 mmol) in toluene (30 mL), glyoxal (0.60 mL, 4 mmol, 40% glyoxal in water) was added in drop wise at room temperature. The reaction mixture was heated at 80 °C for 24 h which resulted in the formation of a brown coloured precipitate. The precipitate was filtered through frit, washed twice with diethyl ether (20 mL) and followed by washing with a solvent mixture of THF/diethyl ether (20 mL) to yield 3 as a colourless solid. Single crystals of 3 suitable for X-ray diffraction were obtained by slow evaporation of saturated solution of 3 in DMSO. Yield: 0.54 g (70 %).

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 5

RSC Advances

RSC Advances Accepted Manuscript
mixture was formed, to which S-methyl methanethiosulfonate (0.06 mL, 0.6 mmol) was added at 0 °C and allowed to warm to room temperature and further stirred for 3 h. The volatiles were removed and the resulting residue was washed with diethyl ether to afford an orange coloured residue which was dissolved in acetonitrile (10 mL) and filtered through a small pad of celite. The filtrate was concentrated and the resulting residue was washed with diethyl ether to afford a pale yellow residue which was dissolved in acetonitrile (10 mL) and filtered through a small pad of celite. The filtrate was concentrated and the resulting crude product was purified by column chromatography (SiO₂, dichloromethane followed by methanol/dichloromethane: 2/98) to yield 5a as an off white solid. Single crystals suitable for X-ray diffraction studies were grown by slow evaporation of ethylacetate/DMSO (10/1) solvent mixture of 5a at room temperature. Yield: 0.09 g, (54 %). Mp: 112-116 °C (decomp.). Anal. Calcld for C₂₃H₂₅BF₄O₃S⁺(CH₃)₂SO: C, 56.47; H, 6.52; N, 5.49. Found: C, 57.65; H, 6.26; N, 5.13. ¹H NMR (CDCl₃, 500 MHz): δ 1.73 (s, 3H, SCH₂), 2.27-2.44 (m, 18H, CH₂Mes) 5.88 (s, 2H, CH im₄,5), 7.04 (s, 4H, CH im₄,5). ¹³C NMR (CDCl₃, 125 MHz): δ 13.2, 17.2 (CH₃Mes), 17.7 (CH₃Mes), 20.1 (CH₂Mes), 92.5 (CH im₄,5), 129.7, 135.8, 138.6, 140.7, 167.4 (N2C-SCH₂). ¹⁹F NMR (CDCl₃, 376 MHz) δ -144.09 (m, 1F, BF₂), -146.99 (m, 1F, BF₂). IR (KBr, cm⁻¹): 2921 (m), 2954 (w), 2922 (w), 1609 (m), 1583 (vs), 1531 (vs), 1479 (m), 1452 (m), 1362 (m), 1285 (w), 1267 (w), 1173 (s), 1082 (vs), 880 (w), 852 (w), 579 (w), 550 (w) cm⁻¹. ESI-MS: calcld 413.1865, found 413.1873 (M-F)⁻.

Synthesis of compound 5b. Compound 5b was prepared by using a procedure similar to that for compound 5a. Compound 3 (0.154 g, 0.4 mmol), KHMDS (0.8 mL, 0.4 mmol), potassium iodide (0.152 g, 0.6 mmol), and THF (20 mL) were used. After evaporation of all volatiles, the crude product was purified by column chromatography (SiO₂, dichloromethane followed by methanol/dichloromethane: 2/98) to yield 5c as a pale yellow solid. Yield: 0.13 g, (64%). Mp: 198-202 °C (decomp.). Anal. Calcld for C₁₁H₁₃BF₄N₂O₂: C, 49.25; H, 4.72; N, 5.47. Found: C, 49.58; H, 5.15; N, 4.45. ¹H NMR (CDCl₃, 500 MHz): δ 2.20 (s, 6H, CH₃Mes), 2.32 (s, 6H, CH₃Mes), 2.39 (s, 6H, CH₃Mes), 5.87 (s, 2H, CH im₄,5), 7.07 (s, 4H, CH im₄,5). ¹³C NMR (CDCl₃, 100 MHz) δ: 17.2 (CH₃Mes), 17.8 (CH₃Mes), 20.3 (CH₃Mes), 92.7 (CH im₄,5), 129.6, 129.9, 132.8, 135.7, 138.1, 140.3, 146.3. ¹⁹F NMR (CDCl₃, 128 MHz; δ ppm): 5.23 (br, 1F, BF₂). ESI-MS: calcld 493.0954, found 493.0953 (M+F)⁻.

Synthesis of compound 6a. To a mixture of 3 (0.154 g, 0.4 mmol) and elemental sulfur (0.019 g, 0.6 mmol) in Schlenk flask was added THF (20 mL) and cooled to 0 °C. To it, KHMDS (2 mL, 0.96 mmol) was added at 0 °C and stirred for 15 min. During this period a yellow-orange coloured mixture was obtained which was allowed to warm to room temperature with continuous stirring for 3 h. Ammonium chloride (0.043 g, 0.8 mmol) was added as solid to the mixture followed by addition of water (0.4 mL) and stirred for 30 min. All volatiles were removed under vacuum, the residue was extracted with dichloromethane and filtered through celite. The filtrate was concentrated to dryness and the crude product was purified by column chromatography (SiO₂, hexane/ethyl acetate: 1/1) to yield 6a as a pale yellow coloured solid. Single crystals suitable for X-ray diffraction were grown by slow evaporation of ethyl acetate/hexane (1/1) mixture of 6a at room temperature. Yield: 0.011 g (74 %). Mp: 190-194 °C (decomp.). Anal. Calcld for C₁₂H₁₃BF₄O₂S: C, 68.08; H, 7.07; N, 7.56. Found: C, 67.79; H, 6.92; N, 7.22. ¹H NMR (CDCl₃, 500 MHz): δ 2.17 (s, 6H, CH₃Mes), 2.26 (s, 6H, CH₃Mes), 2.33 (s, 6H, CH₃Mes), 5.42 (s, 2H, CH im₄,5), 6.92 (m, 4H, CH im₄,5). ¹³C NMR (CDCl₃, 125 MHz): δ 17.9 (CH₃Mes), 18.6 (CH₂Mes), 21.2 (CH₂Mes), 81.7 (CH im₄,5), 129.4, 132.1, 132.0, 138.5, 180.1 (C=O). IR (KBr, cm⁻¹): 3140 (br, m), 2919 (m), 2855 (w), 1655 (w), 1610 (w), 1484 (vs), 1455 (vs), 1397 (s), 1373 (w), 1300 (vs), 1253 (s), 1122 (vs), 1091 (s), 1051 (m), 1032 (m), 883 (w), 850 (s), 734 (w), 678 (w), 621 (w), 579 (w), 520 (w), 439 (w) cm⁻¹. ESI-MS: calcld 371.1788, found 371.1790 (M+H)+.

Synthesis of compound 6b. Compound 6b was prepared by using a procedure similar to that for compound 6a. Compound 3 (0.154 g, 0.4 mmol), KHMDS (0.8 mL, 0.4 mmol), iodine (0.152 g, 0.6 mmol) and THF (20 mL) were used. After evaporation of all volatiles, the crude product was purified by column chromatography (SiO₂, dichloromethane followed by methanol/dichloromethane: 2/98) to yield 6b as a pale yellow coloured solid. Single crystals suitable for X-ray diffraction were grown by slow evaporation of ethyl acetate/hexane (1/1) mixture of 6b at room temperature. Yield: 0.10 g (60 %). Mp: 206-210 °C (decomp.). Anal. Calcld for C₁₂H₁₃BF₄O₂Se: C, 60.43; H, 6.28; N, 6.71. Found: C, 60.32;
H, 6.19; N, 6.57. ¹H NMR (CDCl₃, 500 MHz): δ 2.25 (s, 6H, CH₃Mes), 2.30 (s, 6H, CH₃Mes), 2.40 (s, 6H, CH₃Mes), 5.35 (s, 2H, CH im-4,5), 6.97 (m, 4H, CH mes). ¹³C NMR (CDCl₃, 125 MHz): δ 17.7, 19.0, 21.2, 82.3, 129.7, 132.5, 135.8, 139.2, 181.8 (C=Se). ⁷⁷Se NMR (CDCl₃, 76 MHz): δ 169.4 (C=Se). IR (KBr, cm⁻¹): 3219(br, s), 2919 (m), 2856 (w), 1742 (w), 1609 (w), 1485 (s), 1457 (s), 1394 (m), 1376 (m), 1290 (vs), 1202 (w), 1167 (w), 1077 (vs), 1058 (s), 1036 (s), 979 (w), 865 (w), 850 (w), 732 (w), 665 (w), 578 (w), 433 (w) cm⁻¹. ESI-MS: calcd 419.1232, found 419.1231 (M+H⁺)⁺.

Synthesis of compound 7a. A mixture of 3 (0.154 g, 0.4 mmol) and elemental sulfur (0.019 g, 0.6 mmol) in Schlenk flask was added THF (20 ml) and cooled to 0 °C. To it, KHMDS (3 ml, 1.44 mmol) was added at 0 °C and stirred for 15 min. During this period a yellow-orange coloured mixture was obtained which was allowed to warm to room temperature and further stirred for 3 h. To this reaction mixture, phenyl boronic acid (0.059 g, 0.48 mmol) was added, stirred for 1 h and the volatiles were removed. The residue was extracted with dichloromethane and filtered through a celite. The filtrate was concentrated to dryness, to obtain the crude product which was purified by column chromatography (SiO₂, hexane/ethyl acetate: 5/1) to yield 7a as a colourless solid. Single crystals suitable for X-ray diffraction were grown by slow evaporation of ethyl acetate/hexane (1/2) solvent mixture of compound 7a at room temperature. Yield: 0.12 g (66%). Mp: 260-262 °C (decomp.). Anal. Calc. for C₂₁H₂₅BNO₅Se: C, 71.05; H, 6.40; N, 6.14. Found: C, 70.69; H, 6.23; N, 5.92. ¹H NMR (CDCl₃, 500 MHz): δ 2.31 (m, 18H, CH₃Mes), 6.21 (s, 2H, CH im-4,5), 7.02 (m, 4H, CH Mes), 7.42 (t, 2H, CH p-3m), 7.55 (t, 1H, CH p-5m), 7.84 (d, 2H, CH p-3m). ¹³C NMR (CDCl₃, 125 MHz): δ 17.9 (CH₃Mes), 18.6 (CH₃Mes), 21.2 (CH₃Se), 91.3 (CH im-4,5), 128.2, 129.6, 129.9, 132.3, 133.4, 135.6, 138.8, 139.1, 181.2 (C=Se). IR (KBr, cm⁻¹): 2964 (w), 2918 (w), 2854 (w), 1603(m), 1485 (s), 1442 (s), 1421 (s), 1396 (s), 1365 (m), 1346 (m), 1310 (vs), 1299 (vs), 1259 (s), 1236 (m), 1183 (w), 1149 (w), 1086 (vs), 1028 (s), 1011 (w), 900 (w), 849 (w), 801 (w), 758 (w), 736 (w), 696 (vs), 657 (w), 640 (m), 618 (w), 579 (w), 569 (w), 552 (w), 465(w) cm⁻¹. ESI-MS: calcd 457.2116, found 457.2120 (M+H⁺)⁺.

Synthesis of compound 7b. Compound 7b was prepared by using a procedure similar to that for compound 7a. Compound 3 (0.154 g, 0.4 mmol), selenium (0.047 g, 0.6 mmol), phenyl boronic acid (0.05 g, 0.48 mmol) and dry THF (20 ml) were used. After evaporation of all volatiles, the crude product was purified by column chromatography (SiO₂, hexane/ethyl acetate: 3/1) to yield 7b as an off-white solid. Single crystals suitable for X-ray diffraction were grown by slow evaporation of chloroform solution of 7b at room temperature. Yield: 0.05 g (25%). Mp: 198-200 °C (decomp.). Anal. Calc. for C₂₁H₂₅BNO₅Se: C, 64.43; H, 5.81; N, 5.57. Found: C, 63.85; H, 5.69; N, 5.48. ¹H NMR (CDCl₃, 500 MHz): δ 2.33 (m, 18H, CH₃Mes), 6.17 (s, 2H, CH im-4,5), 7.02 (m, 4H, CH Mes), 7.42 (t, 2H, CH p-3m), 7.56 (t, 1H, CH p-5m), 7.84 (d, 2H, CH p-3m). ¹³C NMR (CDCl₃, 125 MHz): δ 18.0 (CH₃Mes), 18.8 (CH₃Mes), 21.3 (CH₃Mes), 92.2 (CH im-4,5), 128.0, 128.3, 129.7, 130.0, 132.8, 135.4, 138.5, 139.3, 182.9 (C=Se). ⁷⁷Se NMR (CDCl₃, 76 MHz): δ 194.4 (C=Se). IR (KBr, cm⁻¹): 3079 (w), 2959 (s), 2923 (vs), 2853 (s), 1712 (w), 1603 (m), 1610 (w), 1486 (s), 1449 (s), 1408 (s), 1393 (s), 1375 (vs), 1363 (vs), 1338 (m), 1306 (s), 1291 (vs), 1260 (s), 1250 (s), 1183 (w), 1091 (vs), 1091 (s), 1064 (s), 1030 (m), 1012 (m), 997 (w), 900 (w), 847 (m), 801 (w), 759 (w), 728 (w), 692 (vs), 687 (vs), 650 (m), 634 (m), 596 (w), 576 (w), 551 (w), 531 (w), 429 (w), 410 (w) cm⁻¹. ESI-MS: calcd 505.1660, found 505.1604 (M+H⁺)⁺.

Synthesis of compound 8. To a mixture of 3 (0.386 g, 1 mmol) and trimethylsilyl tetrafluoroborate (0.178 g, 1.2 mmol) in Schlenk flask was added dichloromethane (40 ml) and refluxed for 10 h. After cooling to room temperature, water (0.02 ml) was added and stirred for 15 min. The reaction mixture was filtered through a pad of celite and filtrate was concentrated to dryness under vacuum and the resulting residue was washed with diethyl ether to afford a colourless solid. Yield: 0.40 g (80 %). Mp: 78-82 °C. Due to the hygroscopic nature of 8, elemental analysis could not be carried out. ¹H NMR (CDCl₃, 500 MHz): δ 2.25 (m, 18H, CH₃Mes), 3.40 (s, 3H, OCH₃), 5.72 (d, J = 5.15 Hz, 1H, CH im-4,5OCH₃), 6.23 (d, J = 5.15 Hz, 1H, CH im-5,6OCH₃), 6.94 (m, 4H, CH Mes), 7.87 (s, 1H, NCH₃). ¹³C NMR (CDCl₃, 125 MHz): δ 17.7 (CH₃Mes), 17.8 (CH₃Mes), 18.5 (CH₃Se), 21.1 (CH₃Se), 61.1 (OCH₃), 85.3, 92.1, 127.8, 128.8, 129.9, 130.1, 130.3, 135.9, 136.7, 141.7, 151.7 (NCH₃). IR (KBr, cm⁻¹): 3246 (br), 2923 (w), 1626 (vs), 1483 (w), 1464 (w), 1376 (w), 1249 (m), 1110 (s), 1083 (s), 1037 (s), 854 (w), 624 (w), 572 (w), 533 (w), 521 (w), 412 (w) cm⁻¹. ESI-MS: calcd 353.2224, found 353.2228 (M+H⁻)⁻.
(w), 682 (w), 581 (w) cm\(^{-1}\). ESI-MS: calcd 385.1944, found 385.1952 (M+H\(^+\)).

Synthesis of compound 9b. Compound 9b was prepared by using a procedure similar to that for compound 9a. Compound 8 (0.817 g, 1.86 mmol), KHMDS (9 mL, 4.5 mmol), selenium (0.220 g, 2.79 mmol) and dry THF (80 mL) were used. After evaporation of all volatiles, the crude product was purified by column chromatography (SiO\(_2\), hexane /ethyl acetate: 5/1) to yield 9b as a pale yellow coloured solid. Yield: 0.54 g (67%). Mp : 156-158 \(^\circ\)C.

Notes and references

Labile Dioxy-Functionalised Zwitterionic Imidazolinium Salt: Access to Zwitterionic and Neutral Imidazolidin-2-ylidene Derivatives and π-Acceptor Properties of Imidazolidine-2-selones

Vivek Gupta, Vedhagiri Karthik and Ganapathi Anantharaman*[a]

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur – 208016, India.

A new method for the synthesis of symmetrical and unsymmetrical oxy-functionalised imidazolium salt (3 and 8) and their derivatives with different electrophiles, and chalcogens are reported. Further, the effect of backbone functional group derivatization on the π-acceptor property of NHCs is evaluated using 77Se NMR in their respective imidazolin-2-selones.

CORRESPONDING AUTHOR FOOTNOTE: * To whom correspondence should be addressed.

E-mail: garaman@iitk.ac.in, phone +91-512-2597517, fax +91-512-2596806