

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

2

3

4

5

6

7

8

9

10

11

12

13

Abstract

Active biocatalyst such as microorganisms or enzymes liberate electron while electron donors are consumed in biological fuel cells. Biological fuel cells are a novel technology which produces bioelectrochemical power using various materials such as complex organic waste or natural organic matter in the anaerobic anode condition. Recently, great attentions have been paid to biological fuel cells due to their mild operating conditions and using variety of biodegradable substrates as fuel. Sediment Microbial Fuel cell (SMFC) is a kind of Microbial Fuel Cell (MFC) that can produce electrical current by sediment's organic matter content and using bacterial metabolism. SMFCs have been developed in the past decade to provide a renewable power source and organic matter removal. SMFC differs from other MFCs due to the essentially complete anoxic condition on the anode and membrane less structure. To further improve SMFC technology, this paper focuses on SMFC's limitation and challenges and collects latest surveys in this field.

Keywords: Sediment Microbial Fuel cell, Mechanism, Application, Challenges and Scale up.

15

1. Introduction

Energy is needed to preserve our life. Different kind of energy is formed and used in 16 different countries. These energy is dissipated into the atmosphereas and disrupt the 17 normal atmospheric circulation pattern which cause changes in Earth's atmosphere, 18 temperature, greenhouse effect and etc¹. Fossil energy is the basic engine for growth in 19 many economies. Energy consumption is related to economic growth 2 . So in recent years, 20 energy consumption has grown exponentially in developing economies 3 . As can be seen in 21 Fig.1, most of the energy consumption in the world in 2012 was non-renewable energy. 22 For example according to U.S. energy information administration, only 8% of energy 23 consumption in 2010 in the USA came from renewable energy sources verses 9% from 24

5

nuclear energy and others from non-renewable energy sources. Although energy source is 1 shifted from fossil fuels to renewable energy sources, oil and gas still are the major 2 primary energy sources to power the world's industries. So the demand for new renewable 3 energy sources still remains. 4

Figure 1. World consumption of primary energy, 2012

Needs of energy are improving the world and traditional sources of energy such as fossil 6 fuels have several disadvantages. Alternative sources of energy are required. Most of the 7 energy sources that is using in the world are non-renewable energy. Thiskind of energy 8 sourcest is finishing and utilization of them cause some problems like emission of 9 greenhouse pollutants, including SOx, COx, NOx, CxHy, soot, ash, droplets of tars, and 10 other organic compounds, which are released into the atmosphere as a result of their 11 combustion. Also fossil fuels are inefficient to prepare energy requirements due to 12 pollution and finite supplies ³⁻⁵. So the researchers in the world are working to find new 13 energy platform to sufficient energy without CO_2 emissions and greenhouses problems ^{5, 6}. 14 So many countries all over the world have made an effort to solve energy crisis by turning 15 the eyes into the renewable energy sources such as solar energy or energy deriving from 16 wind or water. One of renewable alternative energy source is fuel cell which has attracted 17 lots of attention to generate energy. Fuel cells have several advantages such as: no 18 emissions of environmental polluting gases (such as SOx, NOx, CO₂, CO), higher 19 efficiency, no existence of the mobile parts and, as a result, lack of sonic pollution, etc. ^{7,8} 20 In contrast, high costs as well as mass generation are the only disadvantages of these new 21 energy sources ^{7,9}. There are several kinds of fuel cells. One of most interesting fuel cells 22 is microbial fuel cell (MFC). MFCs were discovered by Potter. In 1911, Potter observed 23 electrical current generated by bacteria. Until early 1990s, few studied were achieved in 24

3

this field ¹⁰. Over the last 20 years and especially this last decade, we observe so rapid 1 development in MFCs technologies ^{11, 12}.

Figure2. Schematic diagram of a microbial fuel cell.

MFCs technologies represent a novel energy harvesting technology and energy transducer 4 comprises an anaerobic anode and an aerobic cathode and typically a cation exchange membrane. 5 The two electrodes are connected via a conductive wire ^{11, 13-15}. Figure 2 shows essential concept 6 of MFC. Microorganisms or active biocatalysts break down organic matters in their surrounding 7 environment^{6, 16, 17}. Some of MFCs need artificial electron mediators for transfer of produced 8 electron by biocatalyst from substrate to anode electrode ¹⁷⁻²⁰. H⁺ or other cations pass through the 9 anodic chamber to cathode chamber by proton exchange membrane. The resultant electrons from 10 organic matter degradation transferred through cathode via external circuit and reduce oxygen 11 according to reaction 1^{11, 13, 16, 21}: 12

$$0_2 + 4e^- + 4H^+ \to 2H_20 \tag{1}$$

MFCs are to harvest electricity from different substrates ^{6, 19, 22, 23}. In addition to liquid phase 13 substrates, solid phase substrates such as sediments, sludge and contaminated soil can be fueled by 14 solid state microbial fuel cells ²⁴.

Sediments in aquatic environment are potentially long-term source of water contamination. Soil 16 and sediments are derived from plant and animal detritus, settlement of dead bacteria and 17 plankton, fecal matter and anthropogenic organic materials²⁵. Sediments' organic carbon content 18 generally ranges from 0.4 to 2.2 wt.%²⁶. Thus, sediments' organic carbon content may be seen as 19 a sufficient energy resource in some locations. Many high cost and energy consumption 20 physicochemical methods have been practiced for sediment remediation ²⁷. But these organic 21 carbon content can be consumed by *exoelectrogens* directly transporting electrons outside of the 22 cell. Sediment bioremediation by sediment microbial fuel cells (SMFCs) recently developed due 23

1

2

3

4

5

6

to its cost-effectiveness and environmental benignity²⁷. SMFC is a simple configuration of MFC, which generate electricity from aquatic environment.

SMFCs are bioelectricity production technique for low-power application. SMFCs enhance organic matter removal (oxidation) from submerged soil at the anode along with energy production. In fact, SMFCs are membrane free MFCs and its unique property of removing organic compounds from the sediment, attracted significant attention recently.

SMFCs consist of an anode electrode embedded in an anaerobic sediment and connected through 7 an electrical circuit to a cathode electrode suspended in overlying water ^{28, 29} (Figure.4). Unlike 8 conventional MFCs, SMFCs do not require protons to be transferred by dissolved oxygen gradient 9 along the water depth and membranes ³⁰⁻³². SMFC differs from other MFCs in that the anode is 10 essentially under complete anoxic condition ¹⁰. Inspired by the experiments of Reimers and 11 Tender, the first functional SMFCs were created about 10 years ago. ^{25, 33, 34}. 12

Marine, river, fresh water, rice paddy and other aquatic sediments rich in organic matter have been 13 used in various surveys ^{35, 36}. Marine microbial fuel cell (MMFC) and benthic Microbial fuel cell 14 (BMFC) are also known as SMFC. 15

16

17

RSC Advances Accepted Manuscript

Figure3. Schematic set up of Sediment Microbial Fuel Cell

SMFCs are special kinds of MFCs which generate bioelectricity by using an active microorganism 18 in the sediments. Although electrical current produced by bacteria was observed by Potter in 1911 19 37 , limited feasible results were obtained in this subject by the next 50 years 38 . At the beginning of 20 the year 1990, the attraction of fuel cells became stronger and the field of MFCs and SMFCs 21 initiated to improve ³⁹. The steep slope of MFC progress began in 1999 when it was discovered 22 that mediator was not a required component ^{40, 41}. But the interests on SMFC are increased in 23 recent year. Up to now, limited researches have been done on SMFC's scale up. In general, the 24 most significant investigations on sediment microbial fuel cell have been conducted by Tian-Shun 25

Song ^{24, 29, 42-44}, Chun-Chong Fu ⁴⁵⁻⁴⁸ and Seok Won Hong ^{25, 49-51}. Recently, there has been a rise 1 in the number of published articles on this subject with the United States of America being the 2 major source of such publications. Published articles on SMFCs. The number of articles in the 3 field of SMFC from 2006 to 2014 is presented in figure 4 by typing the key word "sediment 4 Microbial Fuel Cell" in the Scopus search. Within recent years and throughout the world are 5 shown in Figure 4 and Figure 5 respectively. Published articles on SMFCs within recent years and 6 throughout the world are shown in Figure and Figure 5 respectively. 7

Figure 4. Published articles on SMFCs within recent years.

Figure 4 shows the number of articles that have been published by different countries. Also figures
5 presented different countries are working on SMFCs. From figure 5, you can understand that all
areas in the world have interest to work in this renewable research area.

Figure 5. Published article on SMFCs throughout the world.

2. Mechanism:

Microorganisms and substrate plays important role on SMFCs performances. Figure 6, illustrates 14 the role of microorganisms in SMFCs with a number of main reactions which are determined to 15 occur at the anode and cathode. The anode biofilm is enriched in two types of sedimentary 16 microorganisms: Geobacteracea family (most similar to Desulfuromonas acetoxidans) and 17 Desulfobulbus or Desulfucapsa genera. Geobacteracea oxidizes acetate in the sediment directly 18 reducing the anode, while *Desulfobulbus* or *Desulfucapsa* genera oxidize anode generated S^0 to 19 $SO_4^{2-52-54}$. Acetate is provided by organic matter fermentation by other anaerobic microorganisms 20 in sediment (e.g., clostridium). Another reaction occurred at the anode is the oxidation of S^{2-} to S^{0} . 21 When organic matter is oxidized, O₂, MnO₂, Fe₂O₃ and SO₄²⁻ reduce orderly between sediment 22 surface layer and anode. With increasing sediment depth, each layer accumulates more and more 23 potent reductants ⁵²⁻⁵⁵. So, as illustrated in Figure 6, produced electrons by active biocatalyst can 24

8

12

6

7

be delivered to the anodes from 1) microbes enriched on the anode surfaces, or 2) from dissolved 1 and solid-phase forms of reduced ions contained in the sediment (e.g., sulfides in marine 2 sediment)⁵⁰. Some of MFCs need electron mediators to transfer produced electrons to anode 3 surface ^{17, 18, 20, 56} and also proton exchange membrane for transfer generated protons to cathode 4 chamber ^{57, 58}. But SMFCs do not need proton exchange membrane and also electron mediators. 5

Figure 6. Microorganism's roles and main reactions in SMFCs ^{59, 60}.

3. Advantages

SMFCs have a number of functional advantages compared to other energy sources. These include direct conversion of organic matter into current at a high efficiency, working under a wide range of environmental conditions including low operating temperatures ^{34, 35}, low cost ⁶¹, less frequent 10 maintenance requirements (e.g. periodic replacement) ⁵³, simple construction, wide and cheap fuel 11 resources ³⁴, easily placed in remote locations ⁶² and no generation of toxic components ⁶³. On the 12 other hand, SMFCs have some limitations such as: nonlinear scaling up, low operating voltage, 13 low cell potential ^{53, 62, 64} and failure to provide continuous power ⁶⁵.

4. Application:

Two broad applications are expressed for sediment microbial fuel cells within the literatures: 1) 16 providing renewable power sources for instruments deployed in marine, river, lake, freshwater, 17 ocean and etc. for long-term monitoring; 2) removal of organic matters in sediments. In the 18 following, each of these applications is explained separately. 19

4.1. Renewable power source

One of the main applications of SMFCs is to provide a power source for wireless equipment used 21 for environmental monitoring, oceanographic studies, and military tactical surveillance where 22 real-time data acquisition from remote locations is required $^{35, 65}$ (Table.1). These instruments have 23

15

no cable connection with the surface, so that they need to a kind of power supply such as batteries. However, batteries are associated with limited calendar lifetimes though requiring high cost of periodic replacement, especially in deep water ³⁴. These challenges can be overcome by application of SMFC as a power source. SMFCs can empower various wireless sensors including those identifying temperature, salinity, tidal patterns, the presence of algae and other life forms, migration patterns of fish and other marine wildlife, organic contamination from oil production, metallic compounds from other industrial processes ⁵⁵, pH, humidity, aquatic life, invasive species ³⁰, an also biological oxygen demand (BOD) biosensors, and a dissolved oxygen (DO) sensor ⁶⁶.

Table1. SMFCs was used as power supplier at different practical application.

4.2.Organic matter removal

Organic- rich sediments, as an important component of aquatic environments, can be considered as an abundant potential source of renewable energy. But drainage of industrial wastewater and municipal sewage has infected the surface layer of sediments by pollutants such as organic matter, nitrogen, and phosphors²⁹, resulting in water-quality issues and even methane emission. Furthermore, these compounds are toxic for organisms in carcinogenic and mutagenic potential ⁶⁹. One way to remove these compounds is to reduce them as a fuel in SMFCs. There is a linear relationship between the generated current and removal efficiency of organic matter from sediments ^{43, 51}. A comparison of the removal efficiency of organic matter and power density by SMFC for different types of carbon sources is shown in Table 2.

 Table2. Removal efficiency of organic matter and power density by SMFC for different types of carbon sources
 22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

23

RSC Advances Accepted Manuscript

8

9

Electrical sources operation can be evaluated by their provided current, voltage, power density and 1 current density. The current can be calculated using Ohm's law ($I = V/R_{ext}$), where I represents the 2 current in amperes, V represents the potential difference between two electrodes in volts, and R 3 represents the external resistance measured in ohms ¹⁰. Voltage can be calculated by open circulate 4 voltage (OCV) and internal resistance (R_{int}) (V=OCV-I R_{int}). Internal resistance is associated with 5 ohmic losses (R_o), activation losses (R_a), and mass transfer losses (R_{mt}); giving the equation 6 number 2 ⁷⁷: 7

$$R_{\rm int} = R_0 + R_a + R_{mt} \tag{2}$$

Power generation is our other major purpose for SMFCs. The power output is calculated via:

$$P = VI \text{ or } P = \frac{I^2}{R}$$
(3)

It is common to normalize power production by the surface area of the anode, A, or total 10 reactor volume, V, so that the normalized power density produced would be ¹⁰: 11

$$P = \frac{I^2}{A.R}$$

$$P = \frac{I^2}{v.R}$$
(4)
(5)

6. Challenges in SMFCs

A significant portion of investigations performed on SMFCs was concerned with improving their 13 electricity generation capacity in a longer timeframe. As shown in Table 3, the investigations were 14 mostly focused on the anode, cathode, sediments, overlying water, equipment configuration and 15 operational conditions, each of which will be discussed in the following. 16

17

Table3. Classification of all investigation in SMFCs.

1

2

3

4

5

6

7

8

9

10

11

12

13

23

Moreover, SMFC produce bioelectricity and remediates contaminated in sediments simultaneousl. In spite of low electricity generation from SMFC, it has been demonstrated that this system is used successfully to power low-power electronic devices in aquatic ecosystem. Nevertheless, SMFC technology is facing many challenges to be a reliable renewable energy source and research in this field of fuel cell must be continued to improve SMFC performances.

6.1. Anode

Microorganisms metabolize available organic matters in sediments and release electrons (e⁻) through electron acceptor known as anode ⁷⁸. Anode reduction is done by microorganisms colonized on the anode surface ⁵². Anode material, geometry and surface modifications are the key parameters in optimizing the harvested electricity from sediments. These parameters affect microbial adhesion to anode surface, electron transfer and substrate oxidation ³⁶.

Anode material is required to be of high conductivity, environmental stability and good redox 14 reversibility ⁴⁸. Current and power densities for different anode materials and geometry are shown 15 in Table 4. Graphite, stainless steel and carbon are common material used in SMFCs. Maximum 16 power and current densities for graphite tank are 100 mW/m² and 3500 mA/m², respectively [74]. 17

Surface modification alters surface contact angle and wettability of the anode by introducing 18 several hydrophilic groups onto the electrode surface 42 which results in higher and better adhesion 19 of bacteria $^{46, 79}$. Several investigated anode modifications are shown in Table 5. As can be 20 observed, power density is significantly increased with Fe/ferric oxide in some cases such as 21 electrolytic deposition of graphite. 22

Table 4. Current and power densities for different anode materials and geometry.

Table 5. Different anode modifications proposed in the literature.

6.2.Cathode

In SMFCs, electrons (e⁻) harvested from sediments flow from anode to cathode through an external circuit, reducing oxygen in overlying water. Similar to the anode, cathode material and geometry are important factors in SMFCs operation. Electron transfer efficiency and oxygen reduction rate of cathode material are important factors ⁸⁴. Current and power densities for different cathode material and geometry are shown in Table 6 where maximum power and current density are obtained from Polyaniline graphene nano-sheets.

Table 6. Current and power densities for different cathode materials and geometry.

Microorganisms can catalyze reduction of oxygen in the cathode by growing a biofilm on this electrode. Biological oxygen reducing cathodes are called bio-cathodes. Advantages of this system are its low cost, self-replenishment, better sustainability and no mediator involved ^{11, 36, 87}. Mixed culture microorganism ⁸⁷, oxygenic phototrophs ¹¹ and iron oxidizing bacteria ⁸⁸ are several biofilms used as bio-cathode.

6.3. Sediment

As mentioned before, the electrons in SMFCs are provided by the bacterial degradation of the 18 organic matter, so that SMFCs power output can be improved by using higher organic matter 19 contents 26 . In this regard, several researchers increased sediment organic matter (SOM) by 20 addition of substrates such as glucose, cellulose, chitin $^{26, 44, 89}$, acetate $^{35, 90}$, biomass 24 , and milk 21 81 .

Plant microbial fuel cell (PMFC) (first reported in 2008) also can provide organic matter ⁹¹. In PMFCs, plants grow within sediments, producing carbohydrates via the photosynthetic processes (Figure 7-B). Some percentage of the produced carbohydrates is absorbed by the roots structure ⁹². Microorganisms in the rhizosphere break down these carbohydrates and produce electron. A scheme of the plant-MFC is shown in Figure 7-B. Growing plants in sediments can also solve the mass transfer limitations for electron donors to reach the anode in SMFCs ⁴⁴. Several plants used in PMFCs are presented in Table 7.

Table 7. Several plants used in PMFCs.

1

2

3

4

5

6

7

15

23

Microalgae and some bacteria such as *cyanobacteria* 90 contribute to increase SOM via 10 photosynthesis 97 (Figure 7-A). This technology is called sediment-type photoMFC, where 11 electricity generation exhibits an inverse relationship with illumination, because of the negative 12 effect of the oxygen accumulation via photosynthesis $^{97, 98}$. This problem can be overcome by 13 using color filters or increasing the thickness of the sediment 98 . 14

Figure 7. A) sediment-type photo-MFC; B) Plant microbial fuel cell ⁹⁷.

Sediment bed conductivity is the other important factor affects the efficiency of power generation 16 in SMFCs. Adding conductive materials to sediment may improve the conductivity of the 17 sediment by serve as electron conduits between bacterial cells and anodes ^{32, 99}. Graphite flakes ³² 18 and colloidal iron oxyhydroxide ⁹⁹ are such conductive material can be used for enhancing 19 performance of SMFC. 20

The operating pH in the sediment bed ⁷⁰, different pretreatment methods for sediments ²⁹ and also 21 affects the efficiency of power generation. 22

6.4. Overlying water

1

2

3

4

5

6

7

8

9

21

22

23

24

Nature, origin, flow conditions, characteristics, functional activities, total dissolved solid, pH and temperature of water bodies play crucial roles in power generation ^{51, 78}. For example stagnant water bodies showed higher power generation compared with running water bodies ⁷⁸. But dissolved oxygen (DO) is the most significant factor. Oxygen is utilized as an electron acceptor ⁶³. Therefore DO is another important factor of SMFCs ^{50, 86}. Researchers' findings indicate that different methods can be used for increasing DO in water. These methods are summarized in Table.8.

Table 8. Different methods proposed to increase DO in water.

In rotating cathode technology, rotation of the cathode disks also increases the dissolved oxygen in 10 the overlying water (Figure.8-C). No external energy input will be required when disk drives are 11 rotated by natural water currents ³¹. In floating-SMFC (Figure.8-B), cathode is floated on the 12 water surface, so as a part of its surface is exposed to air. This technology overlaps with aircathode method in which the cathode is placed at the air–water interface (Figure.8-A). On the 14 other hand, algae such as *Chlorella vulgarisis* fix CO₂ during photosynthesis, releasing oxygen as 15 a byproduct ⁸⁶ and saturating water by oxygen. 16

Part of produced oxygen in plant-MFC is released to rhizosphere by roots. So, rhizosphere can act 17 as an oxygen source provided one cathode is placed in the sediment part of the SMFC ⁸⁸. 18

DO is also a function of temperature so that it increases with decreasing temperature, leading to an 19 increased power generation efficiency at cold seep ocean. 20

Figure 8. Schematic of A) an air- cathode; B) a floating cathode; C) a rotating cathode technology ;and D) biocathode

6.5. Equipment configuration

Power generation is affected by several additional factors related to SMFCs configuration. These factors include electrode spacing, water depth, depth of embedded anode, anode chamber, cathode arrangement and etc.

When the electrode spacing is increased, ohmic losses increase, decreasing the amount of current generated from SMFCs ⁵⁰. To minimize these ohmic losses, a new type of floating SMFC with a constant inter-electrode spacing can be used ⁵¹. Increasing water and embedded anode depths also contribute to an increase in electrode spacing ^{105, 106}, while increasing anode depth enhance the internal resistances of SMCs ¹⁰⁷.On the other hand, at different depths of sediment, certain substrate and microorganisms are active, enhancing anode performance at greater depths ¹⁰⁷. Therefore, anode embedded depth should be determined locally.

A major challenge in SMFCs is anode passivation ⁷⁷. Passivation is the inhibition of the 12 dissolution reaction caused by the formation of non-dissolving films. Anode passivation results in 13 lost production capacity, increased power costs, and decreased cathode quality. In 2007, Nielsen et 14 al. avoided this problem by a chambered SMFC design in which the anode is placed in a semi-15 enclosed chamber that rests securely on the seafloor (Figure 8) 16 . By using a one-way check 16 valve, water will solely outflow from underlying sediment into the chamber and not in opposite 17 direction. This water is nutrient-rich and depleted of oxygen due to oxygen consumption by 18 microbes present within the sediment 16 . 19

According to Ohm's law, an increase in current generation should be observe by decreasing 20 external resistance ⁷⁸. External resistance may also affect power density, so that the power density 21 increases with external resistance. Therefore, the highest power density and produced current may 22 not be achieved at the same external resistance; so as our ultimate goal is to determine an optimum 23 value of external resistance. 24

2

3

4

5

6

7

8

9

10

3

4

5

6

7

8

9

Effect of electrode surface area ratio 50 and various electrode arrangements $^{30, 44, 78, 108}$ were also 1 investigated in articles.

7. Scale Up

Up to now, unless by storing the energy and using it intermittently, there is no MFC (including SMFCs) capable of produce Watt-level power ¹⁰⁹. Power management systems (PMS) can be used to overcome low power generation issue by cyclic charging and discharging of a capacitor which converts a low potential into a high one ⁶⁴. A major component of a PMS is shown in Figure 9. In recently literatures, different PMSs have been developed for SMFCs ^{30, 62, 64, 65, 67, 109}.

Figure 9. Major necessary components of a power management system.

It is obvious that a scalable-technology SMFC that enables Watt-level power generation will be 10 more useful. A number of approaches to scale SMFCs up include: 1) connecting multiple MFCs in 11 series; and 2) increasing the surface area of the electrodes equivalent to connecting multiple MFCs 12 in parallel ^{110, 111, 112}. The first alternative is impossible because all the electrodes are immersed in 13 the same solution. On the other hand, it is impossible to scale an SMFC up by increasing the 14 surface area of the electrodes due to the resultant sharp decline in current density ¹⁰⁹. Indeed, the 15 surface area needs to be increased by almost 100-fold to merely double the power output; this is 16 clearly problematic ¹¹⁰. In 2014, Ewing et al. made it possible to scale up SMFCs by using 17 smaller-sized individually operated SMFCs connected to a power management system. In this 18 system, electrodes are electrically isolated (Figure. 10). 19

Figure 10. Scaled-up SMFC for practical application .

21

20

8. Summary and future development

RSC Advances Accepted Manuscript

4

5

6

7

8

9

10

11

12

13

In this article, an overview was made on sediment type microbial fuel cells including issues such 1 as new material for use in anode and cathode, sediment and overlying water properties, types of 2 equipment configuration and etc. 3

It seems that fossil fuels may not supply increasing energy demand of the future, so as it is essential to find sustainable and renewable sources of energy. The results of recent studies suggest that SMFCs will be of practical use in bioenergy production and waste removal from sediments in the future. SMFCs need to provide more power output at lower costs to be considered as practically and commercially affordable. In this respect, nano-materials are examples of current research lines. However, to move this technology from laboratory trial to field application, all discussed challenges in this review need to be further considered before wide application of SMFCs can be realized. In order to further develop SMFC technology, it is suggested to evaluate energy collecting methods, develop PMS and scale-up technologies, use cost-effective materials, process monitoring and control, etc.

Until recently, most developed SMFCs were not designed for sediment remediation. For the 14 remediation application, power output is not the major goal. In this issue, simulating sediment 15 bioremediation, in-situ bioremediation processes, environmental, ecological and social 16 consideration and using a moderate input of external energy (renewable energy sources) to 17 improve bioremediation must be studied in future. Also most recent studies have been done on 18 non-complex material in sediment/soil. So, bioremediation of complex materials in sediments 19 should be considered hereinafter. 20

Further to date, most studies have been done on laboratory scale SMFCs. In near future, 21 investigators face new challenges in transition from laboratory to aquatic environments such as: 22 SMFCs setup installation in aquatic sediments, passivation of electrode material by 23 electrochemical deposition, the corrosion of electrode material and connection, the SMFCs setup 24

destruction by current flow and fish gazing and etc. On the other hand, electrode materials (such 1 as nanomaterials which are used increasingly) and electrochemical reactions effects on 2 surrounding environment and ecological system must be considered. Challenges in SMFCs will be 3 overcome by the cooperation of different disciplines. 4

References

- 1. G. Akhmat, K. Zaman, T. Shukui and F. Sajjad, Renewable and Sustainable Energy Reviews, 2014, **36**, 123-134.
- 2. A. Tardast, M. Rahimnejad, G. Najafpour, A. Ghoreyshi, G. C. Premier, G. Bakeri and S.-E. Oh, Fuel, 2014, 117, 697-703.
- 3. M. Rahimnejad, A. A. Ghorevshi, G. Najafpour and T. Jafary, Applied Energy, 2011, 88, 3999-4004.
- 4. A. E. Franks and K. P. Nevin, *Energies*, 2010, 3, 899-919.
- W. R. W. Daud, G. Najafpour and M. Rahimnejad, Iranica Journal of Energy & Environment, 5. 2011, 2, 262-273.
- 6. M. Rahimnejad, M. Ghasemi, G. D. Najafpour, M. Ismail, A. W. Mohammad, A. A. Ghoreyshi and S. H. A. Hassan, *Electrochimica Acta*, 2012, **85**, 700-706.
- 7. S. Peighambardoust, S. Rowshanzamir and M. Amiadi, International Journal of Hydrogen Energy, 2010, 35, 9349-9384.
- 8. P. Izadi, M. Rahimnejad and A. Ghorevshi, *Biotechnology and applied biochemistry*, 2015.
- 9. M. Rahimnejad, A. Ghoreyshi, G. Najafpour, H. Younesi and M. Shakeri, International Journal of Hydrogen Energy, 2012.
- 10. B. E. Logan, Microbial fuel cell, Wiley, 2008.
- X. A. Walter, J. Greenman and I. A. Ieropoulos, *Algal Research*, 2013, **2**, 183-187. 11.
- 12. S. Fatemi, A. Ghoreyshi, G. Najafpour and M. Rahimnejad, *culture*, 2, 2.
- Y. Yang, G. Sun and M. Xu, Journal of Chemical Technology & Biotechnology, 2011, 86, 625-13. 632.
- 14. A. Tardast, M. Rahimnejad, G. Najafpour, A. Ghoreyshi, G. C. Premier, G. Bakeri and S.-E. Oh, Fuel, 2014, 117, Part A, 697-703.
- M. Ghasemi, W. R. W. Daud, M. Rahimnejad, M. Rezavi, A. Fatemi, Y. Jafari, M. Somalu and A. 15. Manzour, International journal of hydrogen energy, 2013, 38, 9533-9540.
- 16. J. J. Guzman, K. G. Cooke, M. O. Gay, S. E. Radachowsky, P. R. Girguis and M. A. Chiu, Proceedings of the SPIE, 2010, 7666.
- 17. N. Mokhtarian, W. Wan Ramli, M. Rahimnejad and G. Najafpour, World Applied Sciences Journal, 2012, 18, 559-567.
- 18. M. Rahimnejad, G. Najafpour, A. Ghoreyshi, M. Shakeri and H. Zare, International journal of hydrogen energy, 2011, 36, 13335-13341.
- 19. M. Rahimnejad, G. Bakeri, G. Najafpour, M. Ghasemi and S.-E. Oh, Biofuel Research Journal, 2014.
- 20. M. Rahimnejad, G. D. Najafpour, A. A. Ghoreyshi, F. Talebnia, G. C. Premier, G. Bakeri, J. R. Kim and S.-E. Oh, Journal of Microbiology, 2012, 50, 575-580.
- 21. M. Rahimnejad, T. Jafary, F. Haghparast, G. D. Najafpour and A. A. Ghorevshi Turkish Journal of Engineering and Environmental Sciences, 2011, 34, 289-292.

5

6

RSC Advances Accepted Manuscript

- 22. M. Rahimnejad, A. Adhami, S. Darvari, A. Zirepour and S.-E. Oh, *Alexandria Engineering Journal*, 2015.
- 23. M. Rahimnejad, M. Ghasemi, G. Najafpour, A. Ghoreyshi, G. Bakeri, S. K. Hassani Nejad and F. Talebnia, *American Journal of Biochemistry & Biotechnology*, 2012, **8**.
- 24. T.-S. Song, D.-B. Wang, S. Han, X.-y. Wu and C. C. Zhou, *International Journal of Hydrogen* Energy, 2014, **39**, 1056-1062.
- 25. S. W. Hong, H. S. Kim and T. H. Chung, Environmental Pollution, 2010, 158, 185-191.
- 26. F. Rezaei, T. L. Richard, R. A. Brennan and B. E. Logan, *Environmental Science & Technology*, 2007, **41**, 4053-4058.
- 27. Wen-Wei Li and H.-Q. Yu, *Biotechnology Advances*, January–February 2015, 33, 1-12.
- 28. S.-E. Oh, J. Y. Yoon, A. Gurung and D.-J. Kim, Bioresource Technology, 2014, 165, 21-26.
- 29. T.-S. Song and H.-L. Jiang, *Bioresource Technology*, 2011, **102**, 10465-10470.
- 30. F. Zhang, L. Tian and Z. He, Journal of Power Sources, 2011, 196, 9568-9573.
- 31. Z. He, H. Shao and L. T. Angenent, *Biosensors and Bioelectronics*, 2007, 22, 3252-3255.
- 32. M. Lenin Babu and S. Venkata Mohan, *Bioresource Technology*, 2012, **110**, 206-213.
- C. E. Reimers, L. M. Tender, S. Fertig and W. Wang, *Environmental Science & Technology*, 2000, 35, 192-195.
- 34. Y. Gong, S. E. Radachowsky, M. Wolf, M. E. Nielsen, P. R. Girguis and C. E. Reimers, *Environmental Science & Technology*, 2011, **45**, 5047-5053.
- 35. N. J. Sacco, E. L. M. Figuerola, G. Pataccini, M. C. Bonetto, L. Erijman and E. Cortón, *Bioresource Technology*, 2012, **126**, 328-335.
- 36. A. Wang, H. Cheng, N. Ren, D. Cui, N. Lin and W. Wu, Front. Environ. Sci. Eng., 2012, 6, 569-574.
- 37. M. C. Potter, Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 1911, 84, 260-276.
- 38. K. Lewis, Bacteriological Reviews, 1966, 30, 101.
- 39. R. M. Allen and H. P. Bennetto, *Applied Biochemistry and Biotechnology*, 1993, **39**, 27-40.
- 40. B. H. Kim, D. H. Park, P. K. Shin, I. S. Chang and H. J. Kim, *Journal*, 1999.
- 41. H. Kim, M. Hyun, I. Chang and B. H. Kim, J. Microbiol. Biotechnol, 1999, 9, 365-367.
- 42. T.-s. Song, W.-m. Tan, X.-y. Wu and C. C. Zhou, *Journal of Chemical Technology & Biotechnology*, 2012, **87**, 1436-1440.
- 43. T.-S. Song, Z.-S. Yan, Z.-W. Zhao and H.-L. Jiang, *Journal of Chemical Technology & Biotechnology*, 2010, **85**, 1489-1493.
- 44. T.-S. Song, Z.-S. Yan, Z.-W. Zhao and H.-L. Jiang, *Bioprocess Biosyst Eng*, 2011, **34**, 621-627.
- 45. C.-C. Fu, T.-C. Hung, W.-T. Wu, T.-C. Wen and C.-H. Su, *Biochemical Engineering Journal*, 2010, **52**, 175-180.
- 46. Y. Fu, Q. Xu, X. Zai, Y. Liu and Z. Lu, *Applied Surface Science*, 2014, **289**, 472-477.
- 47. Y. Fu, J. Yu, Y. Zhang and Y. Meng, *Applied Surface Science*, 2014, **317**, 84-89.
- 48. Y. Fu, Z. Zhao, J. Liu, K. Li, Q. Xu and S. Zhang, *Sci. China Chem.*, 2011, **54**, 844-849.
- 49. S. Hong, I. Chang, Y. Choi, B. Kim and T. Chung, *Bioprocess Biosyst Eng*, 2009, **32**, 389-395.
- 50. S. W. Hong, I. S. Chang, Y. S. Choi and T. H. Chung, *Bioresource Technology*, 2009, **100**, 3029-3035.
- 51. S.-W. Hong, H.-J. Kim, Y.-S. Choi and T.-H. Chung, *Bulletin of the Korean Chemical Society*, 2008, **29**, 2189-2194.
- 52. D. A. Lowy, L. M. Tender, J. G. Zeikus, D. H. Park and D. R. Lovley, *Biosensors and Bioelectronics*, 2006, 21, 2058-2063.
- 53. L. M. Tender, S. A. Gray, E. Groveman, D. A. Lowy, P. Kauffman, J. Melhado, R. C. Tyce, D. Flynn, R. Petrecca and J. Dobarro, *Journal of Power Sources*, 2008, **179**, 571-575.
- 54. M. E. Nielsen, C. E. Reimers, H. K. White, S. Sharma and P. R. Girguis, *Energy & Environmental Science*, 2008, **1**.
- 55. K. Scott, I. Cotlarciuc, D. Hall, J. B. Lakeman and D. Browning, *J Appl Electrochem*, 2008, **38**, 1313-1319.
- 56. M. Rahimnejad, N. Mokhtarian, G. Najafpour, A. Ghoreyshi and W. Dahud, 2009.
- 57. M. Ghasemi, W. R. W. Daud, S. H. Hassan, S.-E. Oh, M. Ismail, M. Rahimnejad and J. M. Jahim, *Journal of Alloys and Compounds*, 2013, **580**, 245-255.

- 58. G. Najafpour, M. Rahimnejad, N. Mokhtarian, W. R. W. Daud and A. Ghoreyshi, *World Applied Sciences Journal*, 2010, **8**, 1-5.
- 59. D. A. Lowy and L. M. Tender, *Journal of Power Sources*, 2008, 185, 70-75.
- 60. D. R. Lovley, Nat Rev Micro, 2006, 4, 497-508.
- 61. Y. Huang, Z. He, J. Kan, A. K. Manohar, K. H. Nealson and F. Mansfeld, *Bioresource Technology*, 2012, **114**, 308-313.
- 62. Y. R. J. Thomas, M. Picot, A. Carer, O. Berder, O. Sentieys and F. Barrière, *Journal of Power Sources*, 2013, **241**, 703-708.
- 63. R. Renslow, C. Donovan, M. Shim, J. Babauta, S. Nannapaneni, J. Schenk and H. Beyenal, *Physical Chemistry Chemical Physics*, 2011, **13**, 21573-21584.
- 64. C. Donovan, A. Dewan, D. Heo, Z. Lewandowski and H. Beyenal, *Journal of Power Sources*, 2013, 233, 79-85.
- 65. C. Donovan, A. Dewan, D. Heo and H. Beyenal, *Environmental Science & Technology*, 2008, **42**, 8591-8596.
- 66. D. Majumder, J. P. Maity, C.-Y. Chen, C.-C. Chen, T.-C. Yang, Y.-F. Chang, D.-W. Hsu and H.-R. Chen, *International Journal of Hydrogen Energy*, 2014, **39**, 21215-21222.
- 67. C. Donovan, A. Dewan, H. Peng, D. Heo and H. Beyenal, *Journal of Power Sources*, 2011, **196**, 1171-1177.
- 68. M. E. Nielsen, Doctoral, Oregon state university, 2008.
- 69. Z. Yan, N. Song, H. Cai, J.-H. Tay and H. Jiang, Journal of Hazardous Materials, 2012.
- 70. T. K. Sajana, M. M. Ghangrekar and A. Mitra, *Aquacultural Engineering*, 2014, **61**, 17-26.
- 71. D.-Y. Huang, S.-G. Zhou, Q. Chen, B. Zhao, Y. Yuan and L. Zhuang, *Chemical Engineering Journal*, 2011, **172**, 647-653.
- 72. N. Touch, T. Hibino, Y. Nagatsu and K. Tachiuchi, *Bioresource Technology*, 2014, 158, 225-230.
- 73. J. M. Morris and S. Jin, Journal of Hazardous Materials 2012, 213-214, 474-477.
- 74. T. K. Sajana, M. M. Ghangrekar and A. Mitra, *Aquacultural Engineering*, 2013, 57, 101-107.
- 75. Y. Zhang and I. Angelidaki, *Water Research*, 2012, **46**, 6445-6453.
- 76. T.-S. Song, H.-Y. Cai, Z.-S. Yan, Z.-W. Zhao and H.-L. Jiang, *Bioresource Technology*, 2012.
- 77. M. E. Nielsen, C. E. Reimers and H. A. Stecher, *Environmental Science & Technology*, 2007, **41**, 7895-7900.
- 78. S. V. Mohan, S. Srikanth, S. V. Raghuvulu, G. Mohanakrishna, A. K. Kumar and P. N. Sarma, *Bioresource Technology*, 2009, **100**, 2240–2246.
- 79. F. Y.-B. LU Zhi-Kai, XU Qian, LIU Yuan-Yuan, ZHANG Ye-Long, *Journal of Inorganic Materials*, 2013, **28**, 278-282.
- L. D. Schamphelaire, P. Boeckx and W. Verstraete, *Appl Microbiol Biotechnol*, 2010, 87, 1675– 1687.
- 81. C. Dumas, A. Mollica, D. Féron, R. Basseguy, L. Etcheverry and A. Bergel, *Bioresource Technology*, 2008, **99**, 8887-8894.
- 82. C. Dumas, A. Mollica, D. Féron, R. Basséguy, L. Etcheverry and A. Bergel, *Electrochimica Acta*, 2007, **53**, 468-473.
- 83. L. Zhi-Kai, F. Yu-Bin, X. Qian, L. Yuan-Yuan and Z. Ye-Long, *Journal of Inorganic Materials* 2013, **28**, 278-282.
- 84. Y. Ren, D. Pan, X. Li, F. Fu, Y. Zhao and X. Wang, *Journal of Chemical Technology & Biotechnology*, 2013, **88**, 1946-1950.
- 85. K. Scott, I. Cotlarciuc, I. Head, K. P. Katuri, D. Hall, J. B. Lakeman and D. Browning, *Journal of Chemical Technology & Biotechnology*, 2008, **83**, 1244-1254.
- 86. D.-B. Wang, T.-S. Song, T. Guo, Q. Zeng and J. Xie, *International Journal of Hydrogen Energy*, 2014, **39**, 13224-13230.
- K. Wetser, E. Sudirjo, C. J. N. Buisman and D. P. B. T. B. Strik, *Applied Energy*, 2015, 137, 151-157.
- 88. Z. Chen, Y.-c. Huang, J.-h. Liang, F. Zhao and Y.-g. Zhu, *Bioresource Technology*, 2012, **108**, 55-59.
- 89. T. K. Sajana, M. M. Ghangrekar and A. Mitra, *Bioresource Technology*, 2014, 155, 84-90.
- 90. J. Zhao, X.-F. Li, Y.-P. Ren, X.-H. Wang and C. Jian, *Journal of Chemical Technology & Biotechnology*, 2012, **87**, 1567-1573.

- 91. M. Helder, D. P. B. T. B. Strik, R. A. Timmers, S. M. T. Raes, H. V. M. Hamelers and C. J. N. Buisman, *Biomass and Bioenergy*, 2013, **51**, 1-7.
- 92. Y. Hubenova and M. Mitov, *Bioelectrochemistry*, 2014, DOI: <u>http://dx.doi.org/10.1016/j.bioelechem.2014.07.007</u>.
- 93. N. Kaku, N. Yonezawa, Y. Kodama and K. Watanabe, *Appl Microbiol Biotechnol*, 2008, **79**, 43-49.
- 94. Y. Hubenova and M. Mitov, *Bioelectrochemistry*, 2012, **87**, 185-191.
- 95. R. A. Timmers, D. P. B. T. B. Strik, H. V. M. Hamelers and C. J. N. Buisman, *Biomass and Bioenergy*, 2013, **51**, 60-67.
- 96. M. Helder, D. P. B. T. B. Strik, H. V. M. Hamelers, A. J. Kuhn, C. Blok and C. J. N. Buisman, *Bioresource Technology*, 2010, **101**, 3541–3547.
- 97. M. Rosenbaum, Z. He and L. T. Angenent, *Current Opinion in Biotechnology*, 2010, 21, 259-264.
- 98. Z. He, J. Kan, F. Mansfeld, L. T. Angenent and K. H. Nealson, *Environmental Science & Technology*, 2009, **43**, 1648-1654.
- 99. Y.-L. Zhou, Y. Yang, M. Chen, Z.-W. Zhao and H.-L. Jiang, *Bioresource Technology*, 2014, **159**, 232-239.
- 100. D. Suor, J. Ma, Z. Wang, Y. Li, J. Tang and Z. Wu, *Chemical Engineering Journal*, 2014, **248**, 415-421.
- Z. Chen, Y.-c. Huang, J.-h. Liang, F. Zhao and Y.-g. Zhu, *Bioresource Technology* 2012, 108 55– 59.
- 102. Y. Yuan, S. Zhou and L. Zhuang, *J Soils Sediments*, 2010, **10**, 1427-1433.
- 103. C. E. REIMERS, P. GIRGUIS, H. A. STECHER, L. M. TENDER, N. RYCKELYNCK and P. WHALING, *Geobiology*, 2006, 4, 123–136.
- 104. J. M. Pisciotta, Z. Zaybak, D. F. Call, J.-Y. Nam and B. E. Logan, *Applied and environmental microbiology*, 2012, **78**, 5212-5219.
- 105. H. Deng, Y. C. Wu, F. Zhang, Z. C. Huang, Z. Chen, H. J. Xu and F. Zhao, *Pedosphere*, 2014, 24, 330-338.
- 106. B. Erable, R. Lacroix, L. Etcheverry, D. Féron, M. L. Delia and A. Bergel, *Bioresource Technology*, 2013, **142**, 510-516.
- 107. J. An, B. Kim, J. Nam, H. Y. Ng and I. S. Chang, *Bioresource Technology*, 2013, 127, 138-142.
- 108. U. Karra, G. Huang, R. Umaz, C. Tenaglier, L. Wang and B. Li, *Bioresource Technology* 2013, 144, 477-484.
- 109. T. Ewing, P. T. Ha, J. T. Babauta, N. T. Tang, D. Heo and H. Beyenal, *Journal of Power Sources*, 2014, **272**, 311-319.
- 110. A. Dewan, H. Beyenal and Z. Lewandowski, *Environmental Science & Technology*, 2008, 42, 7643-7648.
- 111. M. Rahimnejad, G. Nnajafpour and Z. Najafgholi, *Journal of RenewableEnergy and Environment*, 2015, **2**, 49-55.

112. M. Rahimnejad, Z. Najafgholi, *Korean Journal of Chemical Engineering*, DOI: 10.1007/s11814-015-0123-x

20

1

2

3

4

	1
List of tables:	2
Table1. SMFCs was used as power supplier at different practical application	3
Table2. Removal efficiency of organic matter and power density by SMFC for different types of carbon	4
Table3. Classification of all investigation in SMFCs.	5
Table 4. Current and power densities for different anode materials and geometry.	6
Table 5. Different anode modifications proposed in the literature.	7
Table 6. Current and power densities for different cathode materials and geometry.	8
Table 7. Several plants used in PMFCs.	9
Table 8. Different methods proposed to increase DO in water.	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

	1
List of figures:	2
Figure 1. World consumption of primary energy, 2012	3
Figure2. Schematic diagram of a microbial fuel cell.	4
Figure3. Schematic set up of Sediment Microbial Fuel Cell	5
Figure 4. Published articles on SMFCs within recent years.	6
Figure5. Published article on SMFCs throughout the world.	7
Figure6. Microorganism's roles and main reactions in SMFCs	8
Figure7. A) sediment-type photo-MFC; B) Plant microbial fuel cell	9
Figure 8. Schematic of A) an air- cathode; B) a floating cathode; C) a rotating cathode technology ;and D) biocathode	10 11
Figure 9. Major necessary components of a power management system.	12
Figure 10. Scaled-up SMFC for practical application	13
	14
	15
	16
	17

Table1.

Instrument	Power requirement	Reference
	(mw)	
Meteorological buoy	18	53
Acoustic Modem	3	34
Tele-communication system	300	62
Temperature sensor	2.2	30
remote sensor	2500	67
submersible ultrasonic receiver	15	64
Turbidity meter	42	68
Acoustic receiver	28	68
Wirless temperature probe	49.5	68

Type of fuel	Removal effic	iency (%)	Power density (mW/m ²)	References
	Max COD (g/m ² d)	3.99	4.52	70
Aquaculture water	Max TN (g/m ² d)	0.21	4.52	
	Phenanthrene	99.47 ± 0.15		69
Fresh water sediments	Pyrene	$94.79~\pm~0.63$	-	
Waterlogged Soil	Phenol	90.01	29.45	71
Tidal river sludge	Carbon removal	9.6 ± 1.1	7.5 ± 0.3	72
Fresh water sediment	Carbon removal	29 ± 1	-	25
Hydrocarbon contaminated sediments	Carbon removal	24 ± 4	6.3 ±0.2	73
Aquaculture pond water	COD	84.4	0.241	74
	Nitrate	62	42	75
Lake sediment	Nitrite	77	42	
Fresh water lake	COD	95.5	86.7	76
Lake sediment	COD	76.2	72	76
River sediment	Organic matter remove	29	1000	36
Fresh water sediment	COD	28.3 ± 1.9	3.15 ±0.07	43

Table3.

Overall Classification	Partial Classification
	Material
Anode	Geometry
	Surface Modification
	Material
	Geometry
Cathode	Bio-cathode
	Sediment Organic Matter (SOM) availability
	Pre-treatment
Sediment	Conductivity
	рн
	Mass Transfer
	Conductivity
	TDS
	Dissolved Oxygen (DO)
	pH
Overlying water	Flow Pattern
	Nature
	Substrate
	Electrode Spacing
	Electrode Surface area ratio
	Water depth
	Anode Chamber
Equipment Configuration	Depth of Embedded Anode
	Electrode Configuration
	Parallel SMFCs
Operational condition	Temperature
operational condition	remperature

Anode Material	Anode geometry	Current density (mA/m ²)	Power density (mW/m ²)	References
Graphite	plate	3	-	51
1	felt	10	-	51
	felt		33.5 ± 1.5	42
	felt	-	45	80
	tank	3500	100	81
	rode	23.72	19.57 ± 0.35	35
	disk	5.39	8.72 ± 1.39	35
Stainless steel	grid	8200	_	50
	-	100	10	81
	plate	140	23	82
activated carbon	fiber felt	110	10.6	42
carbon	sponge	100	55	55
	Cloth	50	19-27.5	55
	fiber	5.0	4.5	55
	Reticulated vitreous (RVC)	0.8	0.2	55

I aDIC T .

Material	Modification	Power density (mW/m ²)	References
	anthraquinone-1,6-disulfonic acid (AQDS)	98	52
	1,4-naphthoquinone (NQ)	-	52
Cranhita	hydroxyl and carboxyl groups	358.1	83
Graphite	Electrolytic deposition with Fe/ferric oxide	740	46
	sulfide oxidizing Sb(V)	-	59
	Oxidize	-	59
Coromia granhita			
composite	Mn^{2+} and Ni^{2+}	105	52
composite		100	
	Fe_3O_4 and Ni^{2+}	-	52
	Fe_3O_4	-	52
Graphite paste	sulfonated polyaniline powder with a PTFE solution	129.1	48
	Sulfonated polyaniline/vanadate composite powder with a PTFE solution	187.1	48
	anthraquinone-1,6-disulfonic	_	59
Glassy carbon	acid (AQDS)	-	50
	sulfide oxidizing Sb(V)	-	59
	oxidize	-	59

Table 6.

Cathode Material	Cathode geometry	Current density (mA/m ²)	Power density (mW/m ²)	References
	felt	-	23.6	42
1.4	disk		7	85
graphite	Thick felt (porous)	45.4	2.00 ± 0.11	49
	Thin felt (porous)	37.6	2.00 ± 0.11	49
	Plate (non-porous)	13.9	1.25 ± 0.15	49
stainless steel	plate	140	23	82
	round	-	1.0	44
Activated carbon	granule	-	3.5	44
rich valed earbon	8		0.0	85
	Cloth	80	55	
	Paper		0.2	85
Carbon	reticulated vitreous (RVC)		12	85
	sponge		38	85
	Nanotube [#]		38	86
Co- TMPP *	-		32	85
Fe–Co TMPP	-	160	62	85
platinised carbon (Pt/C)	-		8	85
PANI-GNS**	Nano sheet	479.8	99	84

algae-assisted cathode

* tetramethoxyphenyl porphyrin ** Polyaniline graphene nanosheets

Used Plant	Power density (mW/m ²)	Current density (mA/m ²)	References
Rice paddy field	6	-	93
Spartina anglica at roof top	88	-	91
Duckweed (Lemna minuta)	380 ± 19	1620 ± 100	94
Duckweed (Lemna valdiviana)	-	226 ± 11	92
rice paddy rhizosphere	1.3	-	88
<i>Glvceria maxima</i>	12	-	95
grass species Sparting anglica	679	2080	87
Spartina anglica	21	31	96
Arundinella anomala	10	39	96
Arundo donax	not stable electricity production	-	96

Table 7.

Table 8.

DO increasing method	References
Rotating Cathode	31, 100
Floating Cathode	36, 61
Air Cathode	66, 73, 101, 102
Cold Seep Sediments	54, 103
Algae assisted cathode	86
Plant rhizosphere	88
Bio cathode	8, 104

75x65mm (300 x 300 DPI)

93x56mm (300 x 300 DPI)

81x49mm (300 x 300 DPI)

61x29mm (300 x 300 DPI)

70x58mm (300 x 300 DPI)

102x45mm (300 x 300 DPI)

106x46mm (300 x 300 DPI)

79x52mm (300 x 300 DPI)

76x34mm (300 x 300 DPI)

96x89mm (300 x 300 DPI)

174x127mm (300 x 300 DPI)