

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Graphic Abstract

The illustration for the constructed electrochemical immunosensor and the signal amplification strategy.

1	Immunosensor for prostate-specific antigen using $Au/Pd@flower$ -like SnO ₂ as
2	platform and Au@mesoporous carbon as signal amplification
3	
4	Long Yang ^{a, 1} , Hui Zhao ^{b, 1} , Guogang Deng ^a , Xin Ran ^a , Yucong Li ^a , Xiaoguang Xie ^a ,
5	Can-Peng Li ^{a,*}
6	
7	
8	^a School of Chemical Science and Technology, Yunnan University, Kunming 650091,
9	PR China.
10	^b Laboratory for Conservation and Utilization of Bio-resource, Yunnan University,
11	Kunming 650091, PR China.
12	
13	
14	
15	
16	
17	
18	
19	¹ These authors contributed equally to this work.
20	* Corresponding author.
21	Fax or Tel: 86-871-65031119. E-mail: lcppp1974@sina.com (CP. Li)
22	

Page 3 of 29

RSC Advances

23	Abstract: In the present work, a sandwich-type electrochemical immunosensor for
24	ultrasensitive determination of prostate-specific antigen (PSA) was designed by using
25	Au/Pd@SnO2 as sensing platform and gold@mesoporous carbon nanocomposites
26	(Au@CMK-3) as signal amplification. In this work, Au@CMK-3 was prepared for
27	immobilizing plentiful of redox probe-methylene blue (MB), horseradish peroxidase
28	(HRP), and secondary antibodies (Ab2), leading to the formation of
29	Au@CMK-3-MB-Ab2-HRP bioconjugate. Furthermore, Au/Pd@SnO ₂ was utilized as
30	the biosensor platform to immobilize the primary antibodies (Ab1) leading a further
31	enhancement in the sensitivity of immunosensor. With the synergistic effects among
32	the Au/Pd@SnO ₂ platform, the Au@CMK-3 nanocarrier, the ultrafine Pd NPs
33	electrocatalyst, and HRP enzymatic reactions, almost double amplified detection
34	signal was achieved in the presence of H ₂ O ₂ , so as to improve the detection limit of
35	the proposed immunosensor effectively. The constructed immunosensor exhibited
36	desirable performance for determination of PSA with a wide linearity in the range
37	from 0.01 to 100 ng mL ^{-1} and a relatively low detection limit of 3 pg mL ^{-1} . The
38	proposed immunosensor was also used to determine PSA in human serum with
39	satisfactory results, implying potential applications in immunoassays.

40

41 **1. Introduction**

Immunosensors based on antibody–antigen binding are one of the most widely
used sensors to detect disease related substances, which are known as biomarkers, in
clinical diagnostics. ¹ Highly sensitive detection and accurate analysis of biomarker

45	molecules in human fluid samples are essential for early detection, treatment and
46	management of cancer. ² Prostate cancer is a common malignancy and is one of the
47	top 10 leading causes of cancer deaths in the male population. ³ Prostate specific
48	antigen (PSA) is the best serum marker currently available for the preoperative
49	diagnosis and screening of prostate cancer. ⁴ It is well known that the PSA
50	concentration for a normal person ranges from 0 to 4 ng mL ^{-1} . ⁵
51	The conventional methods for cancer biomarker detection are enzyme-linked
52	immunosorbent assay (ELISA), fluorescence, electrophoretic, chemiluminescence,
53	and mass spectrometric immunoassays. However, these conventional methods take
54	place at dedicated centralized laboratories using large, automated analyzers, requiring
55	sample transportation, increased waiting times and increased administration and
56	medical costs, so simple ways to provide affordable and reliable measurement are
57	important. ⁴ Due to its inherent simplicity, low cost, high sensitivity, and
58	miniaturization, the electrochemical immunoassay and immunosensor technique have
59	attracted considerable interest. ⁶ Especially, sandwich-type immunoassay protocol is
60	regarded as a more sensitive platform. ⁷ The sandwich type immunoassay with simple
61	instrumentation and easy signal quantification is the predominant analytical technique
62	for tumor markers detection.
63	In order to improve the amount of immobilization of biomolecules and enhance
64	the sensitivity of the detection method, various signal amplification strategies have
65	been developed, such as rolling circle amplification, enzyme labeling amplification,
66	and polymerase chain reaction. ⁸ Among these strategies, nanomaterial-based

67	strategies have potential in realizing ultrasensitive biological detection due to the
68	versatile properties of nanomaterials. ⁹ Based on this concept, many researchers
69	choose some carbon materials such as carbon nanotubes, ^{4,8,10} carbon nanohorns, ¹¹
70	graphene, ¹²⁻¹⁴ mesoporous carbons, ^{15,16} and fullerene ¹⁷ as efficient carriers. Among
71	these carbon materials, mesoporous carbon is an excellent material for applications in
72	catalysis, sensing and energy storage due to its unique features, such as good
73	electrical conductivity, good biocompatibility, excellent adsorption properties, large
74	specific surface area, high pore volume, and tunable porosity. ¹⁶ In addition,
75	mesoporous materials with excellent performances are especially desirable for
76	efficient immobilization of biomolecules. ⁹ Among mesoporous carbon materials,
77	CMK-3 has attracted much attention because of its highly ordered 2D hexagonal
78	structure with excellent textural characteristics. ¹⁸
79	Enzyme labeling amplification has been widely used during the past few decades
80	because of its high selectivity and sensitivity. However, the practical applications of
81	such a natural enzyme-based strategy are limited due to complicated immobilization
82	procedures, especially environmental instability, and high cost. To overcome these
83	limitations, a lot of nanomaterials such as noble metal, metal oxide, and noble
84	metal@metal oxide nanostructures have been explored as additional electrochemical
85	catalysts or artificial mimetic enzymes to fabricate more sensitive electrochemical
86	immunosensors. ^{8,19-24} Nanostructured metal oxide semiconductors possesses high
87	surface area, nontoxicity, good biocompatibility, sensitivity, and chemical stability
88	that can easily be modified for immobilization of biomolecules for biosensor

89	applications. 25 As a kind of metal oxide nanomaterials, flower-like SnO ₂
90	nanostructures with desirable properties such as good chemical stability, high catalytic
91	activity, low cost, and environmental friendliness have been reported. ²⁶ However,
92	electrochemical immunosensors based on flower-like SnO2 have received little
93	attention.
94	It has been reported that some metal NPs including platinum NPs, gold NPs, silver
95	NPs, and palladium NPs exhibit intrinsic peroxidase-like activity, ⁹ providing
96	promising opportunities for the development of the signal amplification strategy.
97	Among these metal NPs, palladium NPs are considered as one of the most promising
98	candidates because of their lower cost and superior catalytic activity. ²⁷ Moreover,
99	noble metals with ultrafine sizes have attracted substantial attention because their
100	large surface areas and high number of edge and corner atoms significantly enhance
101	the catalytic properties of noble metal nanocomposites. However, surface energies
102	increase with decreasing noble metal particle size, leading to serious aggregation of
103	small particles. To overcome this aggregation, the metal particles must be anchored to
104	suitable supports. Thus, the flower-like nanostructures of SnO_2 could provide a large
105	specific surface area, potentially making them excellent candidates for the growth and
106	anchorage of numerous palladium NPs. Therefore, the Pd@flower-like SnO_2
107	nanocomposites as natural peroxidase mimics were fabricated in this work for signal
108	amplification. The synthesis of excellent noble metal@metal oxide nanomaterials as
109	electrochemical catalysts or peroxidase mimicking enzymes is an important issue.
110	Thus, in the present work, we synthesized highly dispersed palladium@flower-like tin

111	dioxide (Pd@flower-like SnO ₂) and gold@mesoporous carbon (Au@CMK-3)
112	nanomaterials. In addition, to achieve further signal amplification based on enzymatic
113	catalytic reactions, enzyme, such as horseradish peroxidase (HRP), has been widely
114	used in the fields of electrochemical immunosensors. ⁹
115	Herein, the proposed electrochemical immunosensor for PSA detection approach
116	is expected to be highly sensitive due to the use of the Au@CMK-3 nanocomposite as
117	a nanocarrier, Au/Pd@flower-like SnO ₂ nanocomposite as platform, the ultrafine Pd
118	NPs supported on flower-like SnO ₂ as an electrocatalyst, and signal amplification
119	based on HRP enzymatic reactions. Firstly, flower-like SnO ₂ was synthesized by the
120	hydrothermal method without using any capping agent. Monodispersed ultrafine
121	palladium nanoparticles (Pd NPs) with a uniform size of ~3.5 nm were successfully
122	anchored on the flower-like SnO ₂ surface via a chemical reduction method. Au NPs
123	were subsequently electrodeposited onto the surface of $Pd@flower-like SnO_2$
124	nanocomposite for immobilizing plentiful of the primary antibodies (Ab1). Secondly,
125	uniform and highly dispersed Au NPs were anchored onto CMK-3 via a chemical
126	reduction method to obtain the Au@CMK-3 nanocomposite with large surface areas
127	and more active sites, which was used as nanocarriers for highly dense
128	immobilization of redox-active probe methylene blue (MB), secondary antibodies
129	(Ab2), and HRP molecules. In addition, the ultrafine Pd NPs supported on flower-like
130	SnO ₂ exhibit intrinsic peroxidase-like activity in the presence of H ₂ O ₂ , allowing
131	significant amplification of the electrochemical signal and improving the sensitivity of
132	the PSA immunosensor. Moreover, signal amplification was further enhanced by the

RSC Advances Accepted Manuscript

133	excellent electrocatalytic activity of abundant HRP immobilized on Au@CMK-3.
134	Thus, the proposed immunosensor showed high sensitivity for quantitative PSA
135	detection. As illustrated in Scheme 1, the proposed protocol for monitoring PSA
136	involves the preparation of a secondary Au@CMK-3-MB-Ab2-HRP bioconjugate
137	(Ab2 bioconjugate), the stepwise modification of the proposed PSA immunosensor,
138	and the principle of the electrochemical signal amplification.
139	
140	2. Materials and methods
141	2.1. Chemicals and materials
142	Anti-PSA antibodies, PSA, and free PSA (f-PSA) were purchased from Biocell Co.
143	(Zhengzhou, China). CMK-3 (specific surface area, pore diameter, and pore volume
144	are 1431 m ² g ⁻¹ , 3.8 nm, and 1.51 cm ³ g ⁻¹ , respectively) was purchased from Nanjing
145	XFNANO Materials Tech Co., Ltd. (Nanjing, China). HAuCl ₄ , PdCl ₂ , and HRP were
146	obtained from Sigma Chemical Co. (St. Louis, MO, USA). OVA was purified from
147	egg in our laboratory. ²⁸ All other reagents were of analytical grade. Phosphate buffer
148	(PBS, 0.1 M, pH 7.0) was used as working solution. All aqueous solutions were
149	prepared with deionized water (DW, 18 M Ω cm).
150	
151	2.2. Synthesis of flower-like SnO ₂ nanocrystals
152	Flower-like SnO ₂ nanostructures were synthesized by the hydrothermal method
153	according to the method of Zhang et al. ²⁶ with minor modification. In a typical

reaction: 1.296 g NaOH, 1.052 g SnCl₄·5H₂O, 0.68 g Na₂SO₄·5H₂O and 40 mL of 154

175

RSC Advances

155	DW were put in a beaker. After stirring for about 5 min, 40 mL of absolute ethanol
156	was added into the reaction mixture to obtain a white translucent suspended solution,
157	which was then transferred into a 100 mL Teflon-lined autoclave. The vessel was
158	sealed and put in a furnace preheated to 180 °C. After reacting for 24 h, the vessel was
159	taken out and let cool down to room temperature naturally. The blue product was
160	washed with DW and ethanol for three times.
161	
162	2.3. Synthesis of Pd@flower-like SnO ₂ nanohybrid
163	The Pd@flower-like SnO_2 nanohybrid was prepared as follows: flower-like SnO_2
164	(30.0 mg), polyethylene glycol 400 (0.1 mL), sodium citrate (0.01 M, 1.0 mL), and
165	$PdCl_2$ aqueous solution (0.01 M, 0.5 mL) were dispersed into 10.0 mL of DW via
166	sonication, and then the mixture was stirred with a magnetic stirrer for 0.5 h at room
167	temperature. Three milliliter of 15.0 mM sodium borohydride solution was added
168	dropwise and stirred for 0.5 h and shaken for an additional 3.5 h. After centrifuging
169	and washing with DW for three times, the resulting $Pd@flower-like SnO_2$ nanohybrid
170	was obtained by freeze-drying.
171	
172	2.4. Synthesis of Au@CMK-3 nanohybrid
173	The Au@CMK-3 nanohybrid was prepared as follows: CMK-3 (10.0 mg),
174	polyethylene glycol 400 (0.1 mL), sodium citrate (0.01 M, 1.0 mL), and HAuCl ₄

and then the mixture was stirred with a magnetic stirrer for 0.5 h at room temperature.

aqueous solution (0.01 M, 0.25 mL) were dispersed into 5.0 mL of DW via sonication,

177	Two milliliter of 25.0 mM ascorbic acid solution was added dropwise and stirred for
178	0.5 h and shaken for an additional 2.0 h. After centrifuging and washing with DW for
179	three times, the resulting Au@CMK-3 nanohybrid was obtained by freeze-drying.
180	
181	2.5. Materials characterizations
182	The morphologies of the prepared samples were characterized by a QUNT200
183	scanning electron microscopy (SEM, USA) equipped with an energy dispersive X-ray
184	spectrometry (EDX) and a JEM 2100 transmission electron microscopy (TEM, Japan).
185	X-ray diffraction spectra were obtained by using a Rigaku TTR III X-ray
186	diffractometer (XRD, Japan).
187	
188	2.6. Preparation of Au@CMK-3-MB-Ab2-HRP bioconjugate (Ab2 bioconjugate)
188 189	2.6. Preparation of Au@CMK-3-MB-Ab2-HRP bioconjugate (Ab2 bioconjugate) Initially, 2.0 mL of 1.0 mg mL ⁻¹ MB aqueous solutions were added into 5.0 mL of
188 189 190	 2.6. Preparation of Au@CMK-3-MB-Ab2-HRP bioconjugate (Ab2 bioconjugate) Initially, 2.0 mL of 1.0 mg mL⁻¹ MB aqueous solutions were added into 5.0 mL of 1.0 mg mL⁻¹ Au@CMK-3 aqueous solutions and stirred at 4 °C for 24 h. After excess
188 189 190 191	 2.6. Preparation of Au@CMK-3-MB-Ab2-HRP bioconjugate (Ab2 bioconjugate) Initially, 2.0 mL of 1.0 mg mL⁻¹ MB aqueous solutions were added into 5.0 mL of 1.0 mg mL⁻¹ Au@CMK-3 aqueous solutions and stirred at 4 °C for 24 h. After excess MB was removed by centrifugation and washing with DW three times, the resulting
188 189 190 191 192	 2.6. Preparation of Au@CMK-3-MB-Ab2-HRP bioconjugate (Ab2 bioconjugate) Initially, 2.0 mL of 1.0 mg mL⁻¹ MB aqueous solutions were added into 5.0 mL of 1.0 mg mL⁻¹ Au@CMK-3 aqueous solutions and stirred at 4 °C for 24 h. After excess MB was removed by centrifugation and washing with DW three times, the resulting Au@CMK-3-MB nanocomposite was re-dispersed in 2.0 mL of 0.1 M pH 7.0 PBS
188 189 190 191 192 193	 2.6. Preparation of Au@CMK-3-MB-Ab2-HRP bioconjugate (Ab2 bioconjugate) Initially, 2.0 mL of 1.0 mg mL⁻¹ MB aqueous solutions were added into 5.0 mL of 1.0 mg mL⁻¹ Au@CMK-3 aqueous solutions and stirred at 4 °C for 24 h. After excess MB was removed by centrifugation and washing with DW three times, the resulting Au@CMK-3-MB nanocomposite was re-dispersed in 2.0 mL of 0.1 M pH 7.0 PBS and stored at 4 °C before use. Secondly, 100 µL of 1.0 mg mL⁻¹ anti-PSA was added
188 189 190 191 192 193 194	 2.6. Preparation of Au@CMK-3-MB-Ab2-HRP bioconjugate (Ab2 bioconjugate) Initially, 2.0 mL of 1.0 mg mL⁻¹ MB aqueous solutions were added into 5.0 mL of 1.0 mg mL⁻¹ Au@CMK-3 aqueous solutions and stirred at 4 °C for 24 h. After excess MB was removed by centrifugation and washing with DW three times, the resulting Au@CMK-3-MB nanocomposite was re-dispersed in 2.0 mL of 0.1 M pH 7.0 PBS and stored at 4 °C before use. Secondly, 100 µL of 1.0 mg mL⁻¹ anti-PSA was added dropwise into the Au@CMK-3-MB mixture under continuous stirring gently at 4 °C
188 189 190 191 192 193 194 195	 2.6. Preparation of Au@CMK-3-MB-Ab2-HRP bioconjugate (Ab2 bioconjugate) Initially, 2.0 mL of 1.0 mg mL⁻¹ MB aqueous solutions were added into 5.0 mL of 1.0 mg mL⁻¹ Au@CMK-3 aqueous solutions and stirred at 4 °C for 24 h. After excess MB was removed by centrifugation and washing with DW three times, the resulting Au@CMK-3-MB nanocomposite was re-dispersed in 2.0 mL of 0.1 M pH 7.0 PBS and stored at 4 °C before use. Secondly, 100 µL of 1.0 mg mL⁻¹ anti-PSA was added dropwise into the Au@CMK-3-MB mixture under continuous stirring gently at 4 °C for 12 h. Thirdly, 100 µL of 1.0 mg mL⁻¹ HRP was then added into the above mixture
 188 189 190 191 192 193 194 195 196 	 2.6. Preparation of Au@CMK-3-MB-Ab2-HRP bioconjugate (Ab2 bioconjugate) Initially, 2.0 mL of 1.0 mg mL⁻¹ MB aqueous solutions were added into 5.0 mL of 1.0 mg mL⁻¹ Au@CMK-3 aqueous solutions and stirred at 4 °C for 24 h. After excess MB was removed by centrifugation and washing with DW three times, the resulting Au@CMK-3-MB nanocomposite was re-dispersed in 2.0 mL of 0.1 M pH 7.0 PBS and stored at 4 °C before use. Secondly, 100 µL of 1.0 mg mL⁻¹ anti-PSA was added dropwise into the Au@CMK-3-MB mixture under continuous stirring gently at 4 °C for 12 h. Thirdly, 100 µL of 1.0 mg mL⁻¹ HRP was then added into the above mixture and stirred for another 12 h. Finally, the Au@CMK-3-MB-Ab2-HRP bioconjugate
188 189 190 191 192 193 194 195 196 197	 2.6. Preparation of Au@CMK-3-MB-Ab2-HRP bioconjugate (Ab2 bioconjugate) Initially, 2.0 mL of 1.0 mg mL⁻¹ MB aqueous solutions were added into 5.0 mL of 1.0 mg mL⁻¹ Au@CMK-3 aqueous solutions and stirred at 4 °C for 24 h. After excess MB was removed by centrifugation and washing with DW three times, the resulting Au@CMK-3-MB nanocomposite was re-dispersed in 2.0 mL of 0.1 M pH 7.0 PBS and stored at 4 °C before use. Secondly, 100 µL of 1.0 mg mL⁻¹ anti-PSA was added dropwise into the Au@CMK-3-MB mixture under continuous stirring gently at 4 °C for 12 h. Thirdly, 100 µL of 1.0 mg mL⁻¹ HRP was then added into the above mixture and stirred for another 12 h. Finally, the Au@CMK-3-MB-Ab2-HRP bioconjugate was obtained by further centrifugation and re-dispersed in 1.0 mL pH 7.0 PBS for

1	9	9

200	2.7. Fabrication process of the immunosensor
201	Prior to the preparation procedure, glassy carbon electrode (GCE, 3 mm in
202	diameter) was polished with 0.3 and 0.05 $\mu m Al_2O_3$ powder respectively and
203	subsequently sonicated in ethanol and DW to remove the physically adsorbed
204	substance and dried at in air. To prepare the Pd@SnO ₂ modified electrode, 6 μ L of 1.0
205	mg mL ⁻¹ Pd@flower-like SnO ₂ dispersed by aqueous solution was dropped onto the
206	electrode surface and dried at room temperature. In order to capture the primary Ab1,
207	Au NPs were electrodeposited on the surface of the Pd@SnO ₂ modified electrode in
208	0.5 mM HAuCl ₄ aqueous solution under the potential -0.2 V for 400 s. Subsequently,
209	the Au-Pd@SnO ₂ modified electrode was submerged into a solution of 10 μ g mL ⁻¹
210	anti-PSA (Ab1) at 4 °C for 12 h to yield Ab1/Au/Pd@SnO ₂ /GCE. Finally, to block
211	possible remaining active sites and eliminate the risk of nonspecific binding, 0.25
212	wt% OVA dissolved by 0.1 M pH 7.0 PBS was coated on the electrode and incubated
213	for 40 min at room temperature. Ultimately, the OVA/Ab1/Au/Pd@SnO2 modified
214	GCE was obtained and stored at 4 °C when not in use. After each modification step,
215	the modified electrode was cleaned with 0.1 M pH 7.0 PBS to remove the physically
216	absorbed species. The stepwise assembly of the proposed immunosensor is illustrated
217	in Scheme 1.

218

2.8. Electrochemical measurements 219

Differential pulse voltammetry (DPV) and electrochemical impedance 220

RSC Advances Accepted Manuscript

221	spectroscopy (EIS) experiments were performed with a CHI 660E Electrochemical
222	Workstation from Shanghai Chenhua Instrument (Shanghai, China) and conducted
223	using a three-electrode system, with the modified GCE as working electrode, a
224	platinum wire as the counter electrode, a saturated calomel electrode as the reference
225	electrode. All the measurements were carried out at room temperature. Based on
226	sandwich-type immunoassay format, the immunosensor was first incubated with 20
227	μ L PSA with various concentrations in 0.1 M pH 7.0 PBS for 1 h at room temperature
228	then incubated with 20 μ L Ab2 bioconjugates for another 1.0 h at room temperature.
229	Each assembling procedure was followed by a careful rinse to remove excess
230	materials in the electrode surface. DPV response was recorded in 0.1 M pH 7.0 PBS
231	containing 2.0 mM H_2O_2 with a potential range of 0.1 to -0.6 V, modulation
232	amplitude of 0.05 V, pulse width of 0.05 s, and sample width of 0.0167s. Additionally,
233	electrochemical characterization of the immunosensor using DPV and EIS
234	investigation were performed in 0.1 M pH 7.0 PBS containing 2 mM $[Fe(CN)_6]^{3-/4-}$
235	and 0.1 M KCl. DPV responses were recorded in the potential range of 0.5 to -0.1 V
236	with a pulse amplitude of 0.05 V and a pulse width of 0.05 s, and sample width of
237	0.0167s. EIS was tested at the potential of 0.1 V in the frequency range of $10^{-1} \sim 10^5$
238	Hz with an amplitude of 5 mV.
239	

240 **3. Results and discussion**

241 3.1. Characterization of Au-Pd@flower-like SnO₂ and Au@CMK-3

242 The morphologies and microstructures of flower-like SnO₂ and Pd@flower-like

243	SnO ₂ were investigated by SEM and TEM observation. Fig. 1A illustrates typical
244	SEM image of the synthesized flower-like SnO ₂ , indicating the flower-shaped
245	structure like snow cone with size of approximately 3 μm consisting of dense SnO_2
246	nanorods with typical length around 1 μ m and diameter of 200 nm. The unique
247	morphology of Pd@flower-like SnO ₂ is also characterized by TEM and HR-TEM for
248	100,000 and 800,000 magnification as illustrated in Fig. 1B and C, respectively. The
249	most striking feature is that the Pd NPs with a uniform size \sim 3.5 nm are fairly well
250	monodispersed on the surface of flower-like SnO ₂ . It should be noted that the
251	ultradispersed and ultrafine Pd NPs supported on flower-like SnO ₂ may be favorable
252	for the reduction of H_2O_2 due to its excellent and intrinsic peroxidase-like
253	electrocatalytic activity. 9 The crystal structures of flower-like SnO ₂ and
254	Pd@flower-like SnO ₂ were investigated through XRD, as shown in Fig. S1. All the
255	peaks can be indexed to the tetragonal phase of SnO_2 (JCPDS 41-1445), and no peaks
256	of impurities are detected, indicating that the SnO ₂ samples are pure and well
257	crystallized. ²⁶ The major diffracted peaks of Pd@flower-like SnO ₂ are the same as
258	those of as-prepared SnO ₂ . The sharp diffraction peaks from both samples suggest a
259	high crystallinity of our synthesized Pd@flower-like SnO2 and SnO2 nanocrystals.
260	However, it should be noted that no peaks attributed to Pd are detected, which might
261	be due to the low amount. ^{29, 30} The Pd loading is determined by ICP: 1.6 wt% in our
262	study. Lower Pd loading is usually adopted because Pd is a noble metal of high cost.
263	The EDX analysis of Au-Pd@flower-like SnO ₂ nanocomposites were obtained as
264	illustrated in Fig. 1D. It can be clearly noticed that the Pd and Au loading are 1.39

u		
t		
•		
		ipt
5.		SCL
l		Sn
5		Jar
		D
У		ote
		Ce
		AC
		6 O
		nce
		Va
		0

RSC A

265	wt% and 3.41 wt%, respectively. The 15.85 wt% C element is detected by the EDX
266	analysis, which must be the carbon element in the electrode. Thus, the real Pd and Au
267	loading should be 1.65 wt% and 4.05 wt% when the carbon element was excluded. If
268	is clear to find that the Pd loading determined by ICP is approximately in accordance
269	with the results of EDX and XRD. Besides, we can also conclude that 4.05 wt% Au
270	NPs were electrodeposited onto the surface of Pd@flower-like SnO ₂ nanocomposites
271	TEM images of Au@CMK-3 at different magnifications (E for 15,000 magnification
272	and F for 100,000 magnification) were also obtained as shown in Fig. 1E and F. It is
273	interesting to notice that uniform and highly dispersed Au NPs were anchored onto
274	CMK-3. The uniform and highly dispersed Au NPs on the surface of CMK-3 are very
275	useful for immobilization of large amount of secondary antibodies and HRP
276	molecules, which are especially important for the successful formation of the Ab2
277	bioconjugate in this assay. Also, the ordered mesoporous structure of the CMK-3
278	could be clearly observed from Fig. 1F, which is responsible for the adsorption of
279	large amounts of redox-active probe MB.
280	

3.2. Feasibility of the immunosensor

The feasibility of the proposed PSA immunosensor was explored with different modified surfaces by DPV responses for 10 ng mL⁻¹ PSA. As can be seen from **Fig. 2A**, almost no detectable electrochemical signal is observed for the immunosensor incubated with PSA (curve a) due to the absence of the redox mediator MB. The capture of the secondary Au@CMK-3-MB-Ab2-HRP bioconjugate caused an increase

287	in current response because of the formation of the immunoreaction complex and
288	attachment of redox-active probe MB (curve b). A considerable increase in current
289	response (curve c) was observed after addition of 2.0 mM H_2O_2 in 0.1 M pH 7.0 PBS
290	since the catalytic ability of ultrafine Pd NPs supported on flower-like SnO_2 and large
291	amount of HRP in Ab2 bioconjugate greatly enhanced the typical electrocatalysis of
292	H ₂ O ₂ reduction. These results clearly indicate the dramatic signal amplification
293	capability of our proposed strategy.
294	
295	3.3. Electrochemical characterization of immunosensor
296	DPV and EIS which can indicate the change of surface area, resistance and carried
297	charge could provide additional information about electrode surface modification.
298	Thus, the assembly process of modified electrode could be monitored using DPV and
299	EIS techniques. Fig. 2B represents the DPV of different modified electrodes during
300	the stepwise fabrication. The bare GCE exhibited an reduction peak (curve a) of
301	ferricyanide ions. When Pd@SnO ₂ composite was modified on the GCE, an increased
302	peak current (curve b) was obtained, as a result of the high surface area the
303	flower-like SnO_2 for improving the effective area of electrode and the high
304	conductivity of Pd NPs for facilitation of electron transfer. After electrodeposition of
305	Au NPs, the peak current response (curve c) increased drastically. The significantly
306	enhanced current response could be attributed to the fact that Au NPs with excellent
307	conductivity and large surface area could amplify the electrochemical signal. When
308	anti-PSA (Ab1) was assembled onto the electrode via Au-S affinity, there was an

Ö
U
C
<u> </u>
\mathbf{O}
0
Ť
Ö
D
0
-
0
a'
X
U
U
()
C)
Ň

309	obvious decrease of the current response (curve d), which suggested that large
310	amount of antibody had been successfully immobilized on the electrode surface. The
311	reason for the decrease of the current response is that anti-PSA as protein
312	biomacromolecules hindered the tunnel of electron shuttle. Non-conductive OVA as
313	the blocking agent made the peak current decrease again (curve e). The incubation of
314	PSA (10 ng mL ^{-1}) led to further decrease of peak current (curve f), attributing to the
315	formation of immunocomplex on electrode surface which increased steric hindrance
316	and blocked electron transfer. Inspiringly, the incubation of the Ab2 bioconjugate
317	increased the peak current of the immunosensor remarkably (curve g). The reason
318	might be attributed to the fact that the CMK-3 possess high surface areas and
319	mesoporous structure, which can absorb abundant of ferricyanide ions on the aurface
320	of the electrode. Additionally, the Au@CMk-3 composites have high conductivity and
321	good electron transfer efficiency, which facilitated the electron communication
322	between the solution and the base electrode. Moreover, EIS has been proven to be one
323	of the most powerful tools for characterizing the interface properties of the modified
324	immunosensors. The impedance spectra include a semicircle portion and a linear
325	portion. The semicircle portion at higher frequencies corresponds to the
326	electron-transfer limited process, and the linear portion at lower frequencies
327	represents the diffusion-limited process. The semicircle diameter equals the
328	electron-transfer resistance. Fig. 2C shows the Nyquist diagrams of EIS upon the
329	stepwise modification process. It was observed that the EIS of $Pd@SnO_2$ composite
330	modified electrode (curve b) decreased compared with the bare GCE (curve a),

331	indicating that the synthesized $Pd@flower-like SnO_2$ composite had a high electronic
332	conductivity, and favored for electron communication between the solution and the
333	electrode. After Au NPs were electrodeposited of on Pd@flower-like SnO2 composite,
334	a much lower resistance (curve c) was obtained than the former, suggesting that Au
335	NPs was highly beneficial to the electron transfer. However, when the electrode was
336	conjugated with Ab1, the resistance increased obviously (curve d), which suggested
337	that the Ab1 was successfully immobilized on the surface and formed an additional
338	barrier and blocked the electron exchange between the redox probe and the electrode.
339	After OVA was immobilized onto the electrode surface, the resistance increased again
340	(curve e), which was caused by the nonconductive properties of biomacromolecule.
341	Then, the resistance increased further (curve f) when PSA was recognized onto the
342	electrode, indicating that the formed immunocomplex blocked the electron transfer. At
343	last, when the secondary Au@CMK-3-MB-Ab2-HRP bioconjugate interacted with
344	PSA (curve g), interestingly the resistance decreased significantly, indicating that the
345	synthesized Au@CMK-3-MB-Ab2-HRP bioconjugate possess high conductivity and
346	good electron transfer efficiency, although the protein adsorption layer acted as barrier
347	to the interfacial electron transfer. The EIS results were in accordance with those
348	obtained from DPV measurements as mentioned above, which demonstrated the
349	successful fabrication of the immunosensor.
350	

351 **3.4. Calibration curve of immunosensor**

352 Under optimized experimental conditions, the analytical performance of the

353	proposed immunosensor incubated with different concentrations of PSA was assessed
354	using DPV in 0.1 M pH 7.0 PBS containing 2.0 mM H_2O_2 . Usually, the Pd NP with
355	peroxidase-like activity was located on the Ab2 conjugate in some electrochemical
356	immunosensors. However, in this work, it was supported on flower-like SnO_2 and
357	used as platform as this approach is relatively uncomplicated although it caused a
358	little bit of background current. Similar work was also reported as the HRP was
359	located on the platform. ⁹ From Fig. 2D, it can be seen that DPV peaks exhibited clear
360	dependence on the concentrations of target PSA because elevated PSA concentrations
361	from 0.01 to 100 ng mL ^{-1} led to increases in current responses, which suggested the
362	capture of more secondary Ab2 bioconjugate and abundant immobilization of the
363	redox mediator MB on the electrode surface. As shown in Fig. 2E, the resulting
364	calibration plots displayed a good linear relationship between the current response and
365	the logarithm of PSA concentration ranging from 0.01 to 100 ng mL ^{-1} , and a detection
366	limit of 3 pg mL ^{-1} could be estimated using the 3σ rule. The corresponding regression
367	equation was I (μ A) = -9.82 log <i>c</i> - 28.38 with a correlation coefficient of 0.9983.
368	Compared with other sensors reported previously, the proposed immunosensor
369	exhibited a satisfactory detection limit and linear range. The characteristics of other
370	PSA sensors are summarized in Table 1. It revealed that the proposed PSA
371	immunosensor exhibited high sensitivity, which was attributed to both the
372	electrocatalysis of ultrafine Pd NPs supported on flower-like SnO ₂ and abundant HRP
373	in Ab2 bioconjugate toward H_2O_2 reduction, and high loading of redox-active probe
374	MB based on CMK-3 with large surface areas and mesoporous structure.

376 **3.5. Selectivity, reproducibility, and stability**

377	The selectivity of the proposed immunosensor was evaluated by challenging it
378	against other potential interferents in 0.1 M pH 7.0 PBS with 2.0 mM H_2O_2 , and the
379	results are shown in Fig. 2F. As can be seen, with an excess (100-fold) amount of
380	nontarget analytes, PSA (1 ng mL ^{-1}) against BSA (100 ng mL ^{-1}), glucose (100 ng
381	mL^{-1}), f-PSA (100 ng mL^{-1}), dramatic increases in DPV response of 1 ng mL^{-1} PSA
382	were observed. Moreover, the presence of a mixture of 1 ng mL ^{-1} PSA and the tested
383	interferents led to the same dramatic increase in current response. This revealed the
384	high specificity of the proposed electrochemical immunosensor. The reproducibility
385	of the present immunosensor was examined by using five equally modified electrodes
386	to detect 1 ng m L^{-1} PSA. The reproducible electrochemical signals were produced
387	with a relative standard deviation of 4.5%, indicating a good reproducibility of our
388	protocol. Successive cyclic potential scans for 50 cycles and long-term storage assay
389	were used to examine the stability of the proposed immunosensor. A 6.2% decrease of
390	initial peak current was found after 50 continuous cycle scans. Additionally, the
391	long-term stability experiment was carried out intermittently (every 5 days). When the
392	immunosensor was not in use, it was stored in a refrigerator at 4 °C. Over 96.3% and
393	89.5% of initial response remained after storage of 15 and 30 days, respectively. The
394	acceptable stability of the immunosensor may be ascribed the good chemical stability,
395	biocompatibility, and nontoxicity of the Au-Pd@flower-like SnO ₂ nanocomposites.

RSC Advances Accepted Manuscript

397 **3.6. Real sample analysis**

398	In order to evaluate the feasibility of the proposed immunosensor for real sample
399	analysis, the immunosensor was used for the determination of PSA by standard
400	addition methods in serum samples. A series of PSA standard solutions with various
401	concentrations was injected to 10-fold-diluted human serum samples, and DPV
402	measurements of the resulting solutions were subsequently recorded. Table 2 presents
403	the experimental results with recoveries from 97.2% to 106.0% and RSDs from 3.2%
404	to 6.5%. Therefore the proposed electrochemical immunosenor showed potential as an
405	effective tool for specific PSA diagnostics in real samples. As the PSA concentration
406	for a normal person ranges from 0 to 4 ng mL ^{-1} , the detection limit (3 pg mL ^{-1}) and
407	linear range (0.01 to 100 ng mL ^{-1}) obtained by the present work is able to determine
408	PSA in human serum samples, implying potential applications in immunoassays.
409	

410 **4. Conclusion**

411 In summary, we have successfully developed a novel electrochemical 412 immunosenor for PSA detection based on Au/Pd@flower-like SnO2 as sensing 413 platform and Au@CMK-3 as nanocarriers for signal amplification . The employment 414 of Au@CMK-3 as nanocarriers led to attachment of large amounts of redox-active 415 probe MB on the electrode surface. A remarkable signal amplification strategy was 416 achieved based on the electrocatalysis of monodispersed ultrafine Pd NPs supported 417 on flower-like SnO₂ and abundant HRP immobilized on Au@CMK-3 toward H₂O₂ 418 reduction, which resulted in an improved detection limit. In view of these advantages,

419	the	electrochemical sensing platform is thus expected to provide new insights for
420	othe	er biomarkers in clinical diagnosis.
421		
422	Acl	knowledgments
423	Thi	s work was supported by the National Natural Science Foundation of China
424	(31	160334) and the Natural Science Foundation of Yunnan Province (2012FB112,
425	201	4RA022), People's Republic of China.
426		
427	Ref	erences:
428	1	H. D. Jang, S. K. Kim, H. Chang, J. W. Choi, Biosens. Bioelectron., 2015, 63,
429		546–551.
430	2	B. Zhang, B. Liu, G. Chen, D. Tang, Biosens. Bioelectron., 2015, 64, 6-12.
431	3	L. Ding, J. You, R. Kong, F. Qu, Anal. Chim. Acta, 2013, 793, 19-25.
432	4	B. Kavosi, A. Salimi, R. Hallaj, K. Amani, Biosens. Bioelectron., 2014, 52,
433		20–28.
434	5	M. Yang, A. Javadi, H. Li, S. Gong, Biosens. Bioelectron., 2010, 26, 560-565.
435	6	F. Yang, Z. Yang, Y. Zhuo, Y. Chai, R. Yuan, Biosens. Bioelectron., 2015, 66,
436		356–362.
437	7	H. Fan, Z. Guo, L. Gao, Y. Zhang, D. Fan, G. Ji, B. Du, Q. Wei, Biosens.
438		<i>Bioelectron.</i> , 2015, 64 , 51–56.
439	8	W. Xu, S. Xue, H. Yi, P. Jing, Y. Chai, R. Yuan, Chem. Commun., 2015, 51,
440		1472–1474.

RSC Advances Accepted Manuscript

- 441 9 W. Xu, Y. Wu, H. Yi, L. Bai, Y. Chai, R. Yuan, Chem. Commun., 2014, 50,
- 442 1451–1453.
- 443 10 R. Das, S. Upadhyay, M. K. Sharma, M. Shaik, V. K. Rao, D. N. Srivastav, RSC
- 444 *Adv.*, 2015, **5**, 48147–48153.
- 445 11 F. Yang, J. Han, Y. Zhuo, Z. Yang, Y. Chai, R. Yuan, *Biosens. Bioelectron.*, 2014,
 446 55, 360–365.
- 447 12 R. Zhang, B. Pan, H. Wang, J. Dan, C. Hong, H. Li, RSC Adv., 2015, 5,
- 448 **38176–38182**.
- 449 13 K. Shang, X. Wang, B. Sun, Z. Cheng, S. Ai, *Biosens. Bioelectron.*, 2013, 45,
 450 40–45.
- 451 14 G. Sun, J. Lu, S. Ge, X. Song, J. Yu, M. Yan, J. Huang, *Anal. Chim. Acta*, 2013,
 452 775, 85–92.
- 453 15 H. Fan, Y. Zhang, D. Wu, H. Ma, X. Li, Y. Li, H. Wang, H. Li, B. Du, Q. Wei,
- 454 *Anal. Chim. Acta*, 2013, **770**, 62–67.
- 455 16 D. Wu, A. Guo, Z. Guo, L. Xie, Q. Wei, B. Du, *Biosens. Bioelectron.*, 2014, 54,
 456 634–639.
- 457 17 H. Wang, J. Zhang, Y. Yuan, Y. Chai, R. Yuan, *RSC Adv.*, 2015, **5**, 58019–58023.
- 458 18 B. Kuppan, P. Selvam, *Prog. Nat. Sci.*, 2012, **22**, 616–623.
- 459 19 A. Guo, Y. Li, W. Cao, X. Meng, D. Wu, Q. Wei, B. Du, Biosens. Bioelectron.,
- 460 2015, **63**, 39–46.
- 461 20 L. Li, J. Xu, X. Zheng, C. Ma, X. Song, S. Ge, J. Yu, M. Yan, Biosens.
- 462 *Bioelectron.*, 2014, **61**, 76–82.

- 463 21 X. Sun, Z. Ma, Anal. Chim. Acta, 2013, 780, 95–100.
- 464 22 X. Wang, L. Chen, X. Su, S. Ai, Biosens. Bioelectron., 2013, 47, 171–177.
- 465 23 J. Gao, Z. Guo, F. Su, L. Gao, X. Pang, W. Cao, B. Du, Q. Wei, Biosens.
- 466 *Bioelectron.*, 2015, **63**, 465–471.
- 467 24 Y. Liu, T. Yan, Y. Li, W. Cao, X. Pang, D. Wu, Q. Wei, *RSC Adv.*, 2015, 5,
- 468 19581–19586.
- 469 25 N. Lavanya, S. Radhakrishnan, C. Sekar, Biosens. Bioelectron., 2012, 36, 41–47.
- 470 26 H. Zhang, C. Hu, X. He, L. Hong, G. Du, Y. Zhang, J. Power Sources, 2011, 196,
- 471 4499–4505.
- 472 27 L. Yang, H. Zhao, S. Fan, B. Li, C.-P. Li, Anal. Chim. Acta, 2014, 852, 28-36.
- 473 28 C.-P. Li, Z. K. He, X. Y. Wang, L. Yang, C. Y. Yin, N. Zhang, J. Lin, H. Zhao,
- 474 *Food Chem.*, 2014, **148**, 209–217.
- 475 29 L. B. Yang, X. Jiang, W. D. Ruan, J. X. Yang, B. Zhao, W. Q. Xu, and J. R.
- 476 Lombardi, J. Phys. Chem. C, 2009, 113, 16226–16231.
- 477 30 H. Zhang, G. Wang, D. Chen, X. J. Lv, and J. H. Li, *Chem. Mater.*, 2008, 20,
 478 6543–6549.
- 479 31 A. Salimi, B. Kavosi, F. Fathi, R. Hallaj, *Biosens. Bioelectron.*, 2013, 42,
- 480 439–446.
- 481 32 H. Wang, Y. Zhang, H. Yu, D. Wu, H. Ma, H. Li, B. Du, Q. Wei, Anal. Biochem.,
- 482 2013, **434**, 123–127.
- 483 33 J. Han, Y. Zhuo, Y. Chai, R. Yuan, W. Zhang, Q. Zhu, Anal. Chim. Acta, 2012,
- 484 **746**, 70–76.

- 485 34 Y. Li, J. Han, R. Chen, X. Ren, Q. Wei, Anal. Biochem., 2015, 469, 76–82.
- 486 35 Y. Wan, W. Deng, Y. Su, X. Zhu, C. Peng, H. Hu, H. Peng, S. Song, C. Fan,
- 487 *Biosens. Bioelectron.*, 2011, **30**, 93–99.
- 488 36 M. Yang, A. Javadi, S. Gong, Sens. Actuators B, 2011, 155, 357–360.
- 489

490 **Figure captions:**

- 491
- 492 Scheme 1. Schematic diagram for the stepwise assembly procedure of the
- 493 electrochemical immunosensor and the signal amplification strategy.

494

- 495 Fig. 1. SEM image of flower-like SnO₂(A), TEM images of Pd@flower-like SnO₂ at
- 496 different magnifications (B for 100000 magnification and C for 800000
- 497 magnification), EDX analysis of Au/Pd@flower-like SnO₂ (D), TEM images of
- Au@CMK-3 at different magnifications (E for 15000 magnification and F for 100000
 magnification).

500

501	Fig. 2. (A) DPV	curves of the proposed	immunosensor incubat	ed with (a) 10 ng mL ^{-1}
-----	------------------------	------------------------	----------------------	---

502 PSA and (b) Ab2 bioconjugates in 0.1 M pH 7.0 PBS, and with (c) Ab2 bioconjugates

- 503 in 0.1 M pH 7.0 PBS containing 2.0 mM H₂O₂. DPV measurements were carried out
- by scanning the potential from 0.1 to -0.6 V with an amplitude of 0.05 V, a pulse
- width of 0.05 s, and a sample width of 0.0167s. DPV (B) and EIS (C) characterization
- 506 of different modified electrode (a) bare GCE; (b) Pd@SnO₂/GCE; (c)

507	Au/Pd@SnO ₂ /GCE; (d) Ab1/Au/Pd@SnO ₂ /GCE; (e) OVA/Ab1/Au/Pd@SnO ₂ /GCE;
508	(f) PSA/OVA/Ab1/Au/Pd@SnO ₂ /GCE; (g) Ab2
509	bioconjugate/PSA/OVA/Ab1/Au/Pd@SnO ₂ /GCE in 0.1 M pH 7.0 PBS containing 2.0
510	mM $[Fe(CN)_6]^{3-/4-}$ and 0.1 M KCl. DPV measurements were carried out by scanning
511	the potential from 0.5 to -0.1 V with an amplitude of 0.05 V, a pulse width of 0.05 s,
512	and sample width of 0.0167s. EIS was recorded in the frequency range of $10^{-1} \sim 10^5$
513	Hz with an amplitude of 5 mV. (D) DPV curves for different concentrations of target
514	PSA for the proposed immunosensor in 0.1 M pH 7.0 PBS containing 2.0 mM H_2O_2 .
515	DPV measurements were carried out by scanning the potential from 0.1 to -0.6 V
516	with an amplitude of 0.05 V, a pulse width of 0.05 s, and sample width of 0.0167s. (E)
517	The resulting calibration plot for log[target PSA] vs. DPV response in the range of
518	0.01 to 100 ng mL ⁻¹ . Error bars: SD, $n=3$. (F) Selectivity of the proposed
519	immunosensor with BSA (100 ng mL ^{-1}), glucose (100 ng mL ^{-1}), f-PSA (100 ng mL ^{-1}),
520	PSA (1 ng mL ^{-1}), and PSA (1 ng mL ^{-1}) containing the above mixture of three
521	interferents with the same concentrations.
522	
523	
524	
525	
526	
527	
528	

529 Figures:

570

571	Table	1

572 Comparison of different immunosensors for detection of PSA.

Electrode	Method	Liner range (ng m L^{-1})	$LOD (ng mL^{-1})$	Ref
Au-GR/GCE	CV	1.0–10	0.59	1
PS-Fc/GCE	SWV	0.01-20	0.001	3
Dendrimer/ILS/CNTs/GCE	DPV	0.05-80	0.001	4
MnO ₂ /Au/SPCE	DPV	0.005-100	0.0012	20
ILs/CNTs/GCE	DPV	0.2–40	0.02	31
AgNPs@MSNs/GCE	CV	0.05-50	0.015	32
AuNPs/PEI-PTCA/GCE	DPV	0.01-50	3.4	33
NH ₂ -GS@FCA/GCE	Amperometry	0.01-10	0.002	34
CNTs/SPCE	Amperometry	0.005–4	0.005	35
Quantum dot/GS/GCE	SWV	0.005-10	0.003	36
Au/Pd@flower-like SnO ₂ /GCE	DPV	0.01-100	0.003	This work

Table 2

576 Determination of PSA in human serum samples.

Sample	Added (ng m L^{-1})	Founded (ng m L^{-1})	RSD (%)	Recovery (%)
1	0.05	0.0486	5.7	97.2
2	1	0.988	6.5	98.8
3	5	5.18	5.1	103.6
4	10	10.6	4.2	106.0
5	30	29.2	3.2	97.3

584 Tables

585 Yang et al.