

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	
2	Transcriptional Regulation of Xylose Utilization in <i>Enterococcus mundtii</i> QU 25 †
3	
4	Hiroaki Yanase, ^a Tomoko Araya-Kojima, ^a Yuh Shiwa, ^{b¶} Satoru Watanabe, ^a Takeshi Zendo, ^c
5	Taku Chibazakura, ^a Mariko Shimizu-Kadota, ^{d,a} Kenji Sonomoto ^c and Hirofumi
6	Yoshikawa ^{*a,b}
7	
8	^a Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka,
9	Setagaya-ku, Tokyo 156-8502, Japan
10	^b Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture,
11	1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
12	^c Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of
13	Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University,
14	6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
15	^d Department of Environmental Sciences, Musashino University, 3-3-3 Ariake, Koto-ku,
16	Tokyo 135-8181, Japan
17	
18	★ Corresponding author
19	E-mail: hiyoshik@nodai.ac.jp.; Fax: +81-(0)3-5477-2668; Tel: +81-(0)3-5477-2758
20	
21	Present address: Iwate Tohoku Medical Megabank Organization, Iwate Medical University,
22	2-1-1 Nishitokuta, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan.
23	

- 24 † Electric Supplementary Information (ESI) is available: The RNA-seq data obtained in
- 25 this study were deposited in the DNA Data Bank of Japan Sequence Read Archive
- 26 (DRA)/National Center for Biotechnology Information Sequence Read Archive (SRA)/
- 27 European Bioinformatics Institute Sequence Read Archive (ERA) under the accession
- number DRA002964.

29

31

Abstract

RSC Advances

32	Enterococcus mundtii $QU 25$, a non-dairy lactic acid bacterium, produces optically pure
33	L-lactic acid (\geq 99.9%) via homo-fermentation when cultured in the presence of xylose at
34	high concentrations. However, as the xylose concentration decreases, a metabolic shift to
35	hetero-lactic fermentation occurs in this strain. Furthermore, this strain preferentially
36	metabolizes glucose when cultured in medium containing high concentrations of both
37	glucose and xylose, indicating that a previously uncharacterized carbon-catabolite
38	repression system may govern the regulation of these processes. Therefore, to increase the
39	productivity of pure L-lactate by QU 25, it is necessary to investigate this regulatory process.
40	In this study, we performed transcriptional analyses, including RNA sequencing to analyze
41	the transcriptome of QU 25 cultivated in the presence of various glucose and/or xylose
42	concentrations. Our results demonstrate that there was a gradual reduction in the expression
43	of several genes in the xylose gene cluster as the glucose concentration increased, and that
44	there was robust transcription of the genes involved in hetero-lactic fermentation under
45	homo-lactic fermentation conditions. The former result indicates that transcriptional
46	regulation of genes in the xylose gene cluster is involved in the catabolite repression
47	observed in QU 25. The latter results show that the metabolic shift between homo- and
48	hetero-lactic fermentation in QU 25 is not caused by the transcriptional regulation of related
49	genes under the conditions tested. We therefore propose that a yet uncharacterized
50	transcriptional regulation process is involved in the observed catabolite repression.
51	
52	

54 1. Introduction

55	Xylose is a major component of renewable plant-derived biomass. This aldopentose is
56	typically found in hemicellulose, which is present along with cellulose and lignin in
57	biomass. Currently, efforts have been focused on expanding the types of biomass used as
58	feedstock for bioconversion. After saccharification of plant-derived biomass, nonselective
59	utilization of xylose and glucose is highly desired. Green plastic poly-L-(+)-lactic acid is
60	comprised of optically pure L-lactic acid, which can be obtained only by microbial
61	fermentation. Furthermore, L-lactic acid has a number of valuable commercial uses,
62	including as a food preservative. ¹
63	Enterococcus mundtii QU 25 is a non-dairy lactic acid bacterium (LAB), isolated from
64	ovine feces, that ferments three aldopentoses (arabinose, ribose and xylose). ² This strain
65	produces high levels of L-lactic acid when cultured under optimal conditions using glucose
66	or xylose as the sole carbon source, and its use for bioconversion of plant-derived biomass
67	has been proposed. ^{3, 4} Recently, we analyzed and annotated the complete 3.02 Mb genome
68	sequence of QU 25, ⁵ and demonstrated that this organism encodes the genes necessary for
69	xylose utilization and homo- and hetero-lactic fermentation (Table 1).
70	In a previous study, when QU 25 was cultured in medium containing 50 g \cdot L ⁻¹ glucose
71	and 50 g \cdot L ⁻¹ xylose, both sugars were utilized simultaneously. Notably, however, while
72	glucose was preferred over xylose, this strain did not exhibit a diauxic two-step growth
73	curve. Specifically, the maximum glucose consumption rate of QU 25 was 5.72 g \cdot L ⁻¹ ·h ⁻¹ ,
74	while that of xylose was $1.17 \text{ g} \cdot \text{L}^{-1} \cdot \text{h}^{-1}$, and only 42.9% of the xylose was metabolized. ⁶
75	This phenomenon cannot be explained by the well-characterized mechanism of carbon
76	catabolite repression (CCR) exhibited by low G+C count Gram-positive bacteria

77	(Firmicutes). In CCR, genes encoding transporters and enzymes involved in the metabolism
78	of a particular sugar(s) are repressed in the presence of a preferred sugar such as glucose.
79	Subsequent exhaustion of the preferred sugar, however, triggers transcription of the
80	repressed genes followed by uptake and metabolism of the second sugar. This metabolic
81	process results in a canonical diauxic growth curve (reviewed in 7). While it is possible that
82	QU 25 employs a type of CCR when cultured in the presence of glucose, we previously
83	demonstrated that this strain consumed 98.0% of the xylose with a similar consumption rate
84	as glucose when cultured in medium containing 25 $g \cdot L^{-1}$ glucose and 50 $g \cdot L^{-1}$ xylose, which
85	is inconsistent with this hypothesis. ⁶
86	In a previous study, QU 25 produced optically pure (\geq 99.9%) L-lactic acid via
87	homo-fermentation when cultured in media containing xylose as the sole carbon source
88	(100 g \cdot L ⁻¹), and it was predicted that this process involved the pentose-phosphate
89	(PP)/glycolytic pathway. ⁴ While no phosphoketolase (PK) activity, which comprises the
90	first step in the hetero-lactic fermentative PK pathway, was detected at high xylose
91	concentrations, ⁴ a metabolic shift to hetero-lactic fermentation was observed at
92	concentrations less than 25 g \cdot L ⁻¹ , which was accompanied by the formation of byproducts,
93	such as acetic acid, formic acid, and ethanol, as well as PK activity, and the activity of
94	enzymes involved in the PP/glycolytic pathway. ⁴
95	To increase the yield of pure L-lactate produced by QU 25 from biomass, it is crucial to
96	investigate the CCR-like phenomenon that governs xylose metabolism and the metabolic
97	shift to hetero-lactic fermentation employed by this strain. In this study, we utilized RNA
98	sequencing (RNA-seq) to analyze the transcriptome of QU 25 in the presence of varying
99	concentrations of glucose and xylose, as well as Northern hybridization analysis to assess

RSC Advances Accepted Manuscript

100	the expression of genes involved in xylose fermentation, and primer extension analysis of
101	the xylose gene cluster to determine the transcriptional start site (TSS) of the xylose
102	isomerase gene (xylA). Using these approaches, we demonstrate that transcriptional
103	regulation is involved in the CCR observed in QU 25. However, the metabolic shift of QU
104	25 was not mediated by the transcriptional regulation of xylose metabolism-related genes
105	under the conditions tested.
106	
107	
108	2. Results
109	2.1 RNA-seq analysis of QU 25 cultured under low sugar conditions
110	A previous study demonstrated that CCR of xylose utilization genes does not occur in the
111	QU 25 strain when cultured in media containing xylose and glucose if the glucose
112	concentration is below 25 g \cdot L ^{-1.6} In addition, this strain exhibits hetero-lactic fermentation
113	in the presence of low concentrations ($\leq 25 \text{ g} \cdot \text{L}^{-1}$) of xylose as a sole carbon source. ⁴
114	Therefore, to examine the transcriptome of this strain when cultured in the presence of low
115	sugar concentrations, we performed RNA-seq analysis on QU 25 cultured in G5, X5, and
116	G1X5 media (see Experimental 4.1). The results of this analysis are summarized in Table 2
117	(genes involved in xylose metabolism and CCR) and Supplementary Table S2 (all genes).
118	Growth curves for cells cultured under these conditions are depicted in Supplementary Fig.
119	S1. The results demonstrate that QU 25 grew more slowly in the X5 medium than in all
120	other media evaluated.
121	2.1.1 Genes in the xylose gene cluster As shown in Table 2, high levels of

122 transcription of the xylA, xynB, araG, and xylB genes, which are encoded in the xylose gene

123	cluster, were observed when QU 25 was cultured in the presence of 5 $g \cdot L^{-1}$ xylose (reads per
124	kb of exon per million mapped reads [RPKM]; values ranged between 2,270.88 and
125	16,096.79). Furthermore, the expression levels of these genes were markedly higher when
126	cultured in the X5 medium than in the G5 medium, as the X5/G5 values (generated by
127	dividing the RPKM values obtained from cells cultured in the X5 medium by those obtained
128	from cells cultured in the G5 medium) ranged from 10.83 to 18.87, indicating that
129	expression of these loci was highly induced by xylose. Meanwhile, the G1X5/G5 expression
130	values ranged from 8.04 to 28.30, demonstrating that the presence of glucose in the G1X5
131	medium did not affect the expression levels of these four genes. Conversely, the xylR gene,
132	which was annotated as a ROK family xylose repressor ⁸ gene and is divergently transcribed
133	from the other genes in the cluster (see Fig. 2), was neither induced by xylose nor repressed
134	by glucose. The RPKM values obtained for this gene ranged between 122.39 and 214.78,
135	and the X5/G5 and G1X5/G5 values were 1.75 and 1.60, respectively.
136	2.1.2 Genes in the PP/glycolytic and PK pathways In contrast to the xylose cluster,
137	there was no discernible change in the expression of the genes involved in the PP/glycolytic
138	pathway and the PK pathway, with the exception of <i>adhE</i> , under the sugar conditions tested;
139	the X5/G5 and G1X5/G5 values for these genes ranged between 0.32–2.66 and 0.33–1.52,
140	respectively (Table 2). Conversely, the <i>adhE</i> gene exhibited high $X5/G5$ (7.70) and
141	
	G1X5/G5 values (3.46). Moreover, there was marked expression of the genes of both
142	G1X5/G5 values (3.46). Moreover, there was marked expression of the genes of both pathways in the X5 medium except for <i>tktA3</i> , a paralog of <i>tktA1</i> (RPKM values from
142 143	G1X5/G5 values (3.46). Moreover, there was marked expression of the genes of both pathways in the X5 medium except for <i>tktA3</i> , a paralog of <i>tktA1</i> (RPKM values from 201.08–11,246.12), which is consistent with a previous report demonstrating that QU 25
142 143 144	G1X5/G5 values (3.46). Moreover, there was marked expression of the genes of both pathways in the X5 medium except for <i>tktA3</i> , a paralog of <i>tktA1</i> (RPKM values from 201.08–11,246.12), which is consistent with a previous report demonstrating that QU 25 exhibited hetero-lactic fermentation in the presence of xylose concentrations lower than 25

RSC Advances Accepted Manuscript

- 146 2.1.3 Genes involved in CcpA-dependent CCR Lastly, we examined the
 147 transcriptional levels of the genes encoding catabolite control protein A (CcpA),
- 148 histidine-containing protein (HPr), and HPr kinase/phosphorylase, which are commonly
- 149 involved in the CcpA-dependent CCR pathway of *Firmicutes* in response to glucose.⁷ In
- 150 strain QU 25, there was robust and constitutive expression of the *ptsH* gene (RPKM =
- 151 4,088.60–7,039.75), which encodes HPr, compared to that of the genes in the xylose gene
- 152 cluster when cultured in the presence of xylose (X5/G5 and G1X5/G5 = 0.58 and 0.97,
- 153 respectively). While the RPKM values from the *ccpA* and *hprK* (encoding HPr
- 154 kinase/phosphorylase) genes were considerably lower than that from *ptsH* (167.39–535.85),
- 155 these loci were also transcribed constitutively (X5/G5 and G1X5/G5 = 0.65-1.57),
- 156 including the X5/G5 value for ccpA (1.57) (Table 2).
- 157

158 2.2 Northern hybridization analysis of the xylose gene cluster and identification of

159 the xylA TSS under low sugar conditions

- 160 To confirm the results of our RNA-seq analysis, we performed Northern hybridization to
- 161 examine the expression levels of the genes in the xylose gene cluster under identical
- 162 culturing conditions.

163 As shown in Fig. 1A, the *xylA* probe detected three mRNA molecules expressed by QU

- 164 25 that were approximately 1.3, 6.4, and 10 kilobases (kb) in size, when cultured in X5 and
- 165 G1X5 media. However, this probe did not detect any transcripts in the G5 medium,
- 166 indicating that the transcripts detected were induced by xylose and not repressed by glucose
- 167 in the medium containing both sugars. These results were therefore consistent with the gene
- 168 expression patterns obtained by our RNA-seq analysis. The 10 kb mRNA molecule that was

169	detected by the xylA probe was also detected in the QU 25 RNA samples by the xynB, araG,
170	and xylB probes after culturing in the X5 and G1X5 media. Likewise, the 6.4 kb mRNA was
171	detected by the xylA, xynB, and araG probes, but not by the xylB probe, in these samples.
172	Given that the <i>xylA</i> coding sequence is 1,308 base pairs (bp) in length (see Table 1), the two
173	larger mRNA molecules were likely polycistronic mRNAs, while the 1.3 kb mRNA
174	contained only the <i>xylA</i> sequence. In addition to the 10 kb band, the <i>xylB</i> probe detected a
175	5.7 kb mRNA in the samples from cells cultured in the X5 and G1X5 media, which was
176	larger than the <i>xylB</i> gene (1,485 bp in length; Table 1). Therefore, <i>xylB</i> seems to also be
177	transcribed as another operon that does not include xylA, xynB, or araG. Lastly, the xylR
178	probe detected a single 1.1 kb mRNA in the samples obtained from all three cultures. As the
179	xylR gene is 1,152 bp in length (see Table 1), this finding is consistent with the
180	monocistronic transcription of this gene. Furthermore, the transcriptional level of $xylR$ in the
181	G5 medium was less than that observed in the other two xylose-containing media, which
182	also corresponds to the results of the RNA-seq analysis.
183	Using primer extension analysis, we determined that the TSS of the xylA gene is a
184	thymidine (T) that is 63 bp upstream of the <i>xylA</i> translational start codon (Fig. 1B and 1C).
185	Within the whole genome sequence, this thymidine is base 2,917,497. As such, the 10 kb
186	transcript detected by Northern hybridization is estimated to start at this position and to
187	terminate near the end of the EMQU_2802 (base 2,906,796) locus, a region encompassing
188	the xynB, araG, EMQU_2807, EMQU_2806, xylB, EMQU_2804, and EMQU_2803 genes
189	(Fig. 2). Similarly, the 6.4 kb mRNA is predicted to comprise the sequences encoded at the
190	locus between this TSS and near the end of the EMQU_2806 (base 2,910,773), which
191	includes the xynB, araG, and EMQU_2807 genes. The predicted promoter region of xylA is

	Z	

RSC Advances Accepted Manuscr

192	indicated by double bars in Fig. 1C. Based on the results of the Northern hybridization and
193	primer extension analyses, we deduced the structure of the operon encoding the xylose gene
194	cluster (Fig. 2).
195	
196	2.3 RNA-seq analysis of QU 25 cultured under high sugar conditions
197	In previous analyses, QU 25 exhibited CCR when cultivated under high sugar conditions
198	(i.e. consumed glucose faster than xylose and left a portion of the xylose unused), such as in
199	medium containing a 50 g L^{-1} glucose and 50 g L^{-1} xylose mixture. ⁶ QU 25 also exhibited
200	homo-lactic fermentation when cultured with 100 g \cdot L ⁻¹ of xylose as the sole carbon source. ⁴
201	Therefore, to examine the gene expression profile of QU 25 under high sugar conditions, we
202	performed a second RNA-seq analysis of cells cultured in the following media: G150, X150,
203	G10X50, G25X50, G50X50, and G100X50 (see Experimental 4.1). Table 3 summarizes the
204	data regarding the genes involved in xylose metabolism and CCR while Supplementary
205	Table S3 contains the data for all genes. The growth curves of cells under the described

- $206 \qquad \text{conditions are shown in Supplementary Fig. S2. The results show that QU 25 grew more}$
- slowly in the X150 medium, compared to all other media evaluated.

208 **2.3.1 Genes in the xylose gene cluster** As shown in Table 3, there was robust

- 209 expression of all genes in the xylose gene cluster when QU 25 was cultured in the X150
- 210 medium (RPKM values for these genes ranged from 387.34–6,503.77).

211 However, a gradual reduction in the transcriptional expression levels of *xylA*, *xynB*, and

- 212 *araG* occurred in a glucose concentration-dependent manner. Indeed, while the
- 213 G10X50/G150 values for these genes ranged from 107.22 to 208.62, these values decreased
- 214 to 51.45–106.20 (G25X50/G150), 41.08–82.09 (G50X50/G150), and 8.62–37.19

215	(G100X50/G150) as the glucose concentration increased. Meanwhile, the RPKM values for
216	the <i>xylB</i> gene were nearly identical in the G10X50 and X150 media (1,851.55 and 1,930.46,
217	respectively); however, as the glucose concentration increased, the relative values for this
218	gene exhibited a reduction similar to that observed with the <i>xylA</i> , <i>xynB</i> , and <i>araG</i> genes.
219	Specifically, the G10X50/G150, G25X50/G150, G50X50/G150, and G100X50/G150 values
220	were 44.82, 21.01, 14.41, and 2.74, respectively. It is therefore conceivable that glucose or a
221	glucose metabolite negatively regulates transcription of the xylose gene cluster, resulting in
222	the CCR effect observed in QU 25. Notably, the transcriptional levels of the xylR gene,
223	which was annotated as a repressor, were nearly constant regardless of the glucose
224	concentration of the medium (G10X50/G150, G25X50/G150, G50X50/G150, and
225	G100X50/G150 = 2.78, 2.99, 2.79, and 3.22, respectively).
226	2.3.2 Genes in the PP/glycolytic and PK pathways As shown in Table 3, there was
227	robust expression of all genes in the PP/glycolytic and PK pathways when QU 25 was
228	cultured in X150 medium (RPKM values for these genes ranged from 13.33-4,982.09). Of
229	the genes in the PP/glycolytic pathway, the X150/G150 values for the <i>tktA1</i> , <i>tktA3</i> , and <i>talC</i>
230	genes were between 2.65–5.08, and the expression levels of each gene were highest in the
231	X150 medium (RPKM =507.90, 13.33, and 81.77, respectively). However, there was stable
232	expression of these genes, regardless of the glucose concentration, in mixed media.
233	Similar to the genes of the PP/glycolytic pathway, the highest expression levels of the
234	PK pathway genes <i>xfpA</i> and <i>ack</i> , which are involved in hetero-lactic fermentation, were
235	observed in the X150 medium (RPKM = 256.22 and 1,463.87, respectively), and the
236	transcript levels of these genes were not affected by changes in the glucose concentration.
237	Conversely, while <i>eutD</i> and <i>pflB</i> also exhibited the highest transcript levels in the X150

RSC Advances Accepted Manuscript

238	medium (RPKM = $1,676.58$ and $4,982.09$, respectively), the expression of these genes
239	decreased in a manner similar to that of the xylose gene cluster, albeit more moderately, as
240	the glucose concentration in the medium increased. The highest expression level of the
241	adhE gene was observed in the G10X50 medium (RPKM = 4,204.20), and the relative
242	RPKM values in the other xylose-containing media (compared to that in the G150 medium)
243	were between 1.26 and 2.67. It was noteworthy that multiple genes, including <i>xfpA</i> ,
244	demonstrated such robust expression in the X150 medium despite the fact that QU 25
245	exhibited homo-lactic fermentation. Furthermore, no phosphoketolase activity was
246	previously detected in the presence of high (100 g \cdot L ⁻¹) xylose concentration. ⁴
247	2.3.3 Genes involved in CcpA-dependent CCR Concerning the expression of the
248	three CCR-related genes, the transcript levels of <i>ptsH</i> were consistently high (RPKM =
249	6,777.32–10,533.67). In contrast, the transcriptional levels of <i>ccpA</i> and <i>hprK</i> were markedly
250	lower (RPKM = $356.97-829.44$) and were similar to the expression levels of these genes
251	under low sugar conditions. Meanwhile, the relative values of each were between 0.89 and
252	1.64, including the X150/G150 value for $ccpA$ (1.14) (Table 3).
253	2.3.4 Aldopentose transporter genes Notably, we found that several aldopentose
254	transporter genes were significantly repressed under high glucose conditions, as determined
255	by RNA-seq. These transporters consisted of three sets of gene clusters encoding the
256	D-xylose, ribose, and L-arabinose transport system proteins, as well as another three ribose
257	transport-related genes, EMQU_1846, EMQU_2382, and EMQU_2381 (Tables 1 and 4). In
258	particular, the EMQU_2808–2806 ribose transporter gene set, which includes the $araG2$
259	(EMQU_2808) located in the xylose gene cluster (Fig. 2), exhibited high levels of
260	expression in X150 and G10X50 media (RPKM = 1,882.41–2,921.43 and 1,589.56–

261	2,555.99, respectively). However, the expression of these genes was gradually repressed in
262	a glucose concentration-dependent manner (G10X50/X150 = 0.81–0.87, G25X50/X150 =
263	0.31–0.39, G50X50/X150 = 0.26–0.31, and G100X50/X150 = 0.03–0.07) (Table 4).
264	Furthermore, the G150/X150 values of these genes (0.01) were the lowest of all genes
265	examined (Table 4). Meanwhile, the other two transport systems and the three ribose
266	transport-related genes exhibited low transcript levels ($RPKM = 2.89-109.57$) in media
267	containing both glucose and xylose.
268	
269	2.4 Northern hybridization analysis of <i>xylA</i> under high sugar conditions
270	To confirm these results, we again performed Northern hybridization analysis of xylA gene
271	expression using RNA samples harvested from cells cultivated in G10X50, G25X50,
272	G50X50, and G100X50 media. As observed under low sugar conditions, the xylA probe
273	detected three mRNA species (1.3, 6.4, and 10 kb in size, respectively) after culturing in the
274	high xylose-containing media (Fig. 3A), and there was a gradual reduction in the densities
275	of these bands as the glucose concentration in the medium increased (Fig. 3B). These results
276	are therefore consistent with the RNA-seq data summarized in Tables 3 and S3 for all genes,
277	indicating the reproducibility and accuracy of our results.
278	
279	
280	3. Discussion

281 In this study, we utilized RNA-seq analysis to examine the gene expression profile of *E*.

282 mundtii QU 25, which is an efficient L-lactic acid-producing LAB in the presence of

283 varying glucose and xylose concentrations. Furthermore, we performed Northern

RSC Advances Accepted Manuscript

RSC Advances

284	hybridization analysis to assess the expression of genes involved in the xylose gene cluster
285	as well as their transcriptional activity. The results of the Northern analysis (Figs. 1 and 3)
286	were consistent with those of the RNA-seq analyses (Tables S2 and S3 for all genes),
287	indicating the reproducibility and accuracy of our results. Moreover, our results, particularly
288	those of the RNA-seq analysis of QU 25 cultured under high sugar conditions, indicate that
289	i) the CCR observed previously in $QU 25^6$ was controlled at the transcriptional level, while
290	ii) the metabolic shift between homo- and hetero-lactic fermentation, according to the initial
291	concentration of xylose as a sole carbon source in the media, was not under transcriptional
292	control under the conditions tested in this study.
293	Fujita categorized CCR in Firmicutes into two groups: CcpA-dependent and
294	CcpA-independent CCR. ⁷ The former involves the CcpA complex including the
295	seryl-phosphorylated form of HPr (P-Ser-HPr), which is a negative repressor. This complex
296	then binds to specific sites (cre sites) near promoter regions that function as operators to
297	regulate transcriptional expression. In this typical CCR, the bacterium exhibits a diauxic
298	two-step growth curve. However, CcpA-independent CCR mechanisms involve either the
299	transcriptional repressors CggR or CcpN, or the histidyl-phosphorylated form of HPr
300	(P-His-HPr), which is involved in the phosphotransferase transport system (PTS) (reviewed
301	in 7). However, <i>cggR</i> and <i>ccpN</i> are not present in the QU 25 genome, indicating that this
302	CCR mechanism may not occur in this organism.
303	Therefore, we examined the possibility that CcpA-dependent CCR may regulate xylose
304	and glucose utilization in QU 25. We identified a putative cre sequence
305	(ATGAAAGCGTATACTA) in the xylA promoter region, indicated by a dashed line in Fig.
306	1C, that exhibits 92% identity (excluding Ns) with the consensus cre sequence

307	$(WTG_3NNARC_8G_9NWWWC_{14}AW$, where W stands for A or T, R for A or G, and N for any
308	base). ⁹ Notably, however, G_{3} , C_{8} , G_{9} , and C_{14} are the only bases that are completely
309	conserved within experimentally verified cre sites. ⁹ The sequence identified in this study
310	also contains these four conserved bases, which supports the notion that this region is a cre
311	site. Furthermore, the 3'-end of this sequence included the -10 region of the predicted xylA
312	promoter. It is therefore possible that CcpA is involved in the CCR-mediated regulation of
313	xylose utilization by QU 25. In a previous study, however, Zomer et al. (2007) reported
314	several genes that contained a putative cre site but did not exhibit observable CCR
315	regulation. ¹⁰ Therefore, it is also conceivable that the <i>xylA</i> gene in QU 25 might be an
316	example of such a gene.
317	Next, we examined the phenomenon reported by Asanuma et al. (2004) that the
318	transcriptional expression level of <i>ccpA</i> was higher in media containing a more rapidly
319	utilizable energy source in Streptococcus bovis that exhibits CcpA-dependent CCR. ¹¹ In
320	contrast to these findings, there were similar expression levels of <i>ccpA</i> in QU 25 cultured
321	under low or high sugar conditions (X5/G5 and X150/G150 = 1.57 and 1.14 , respectively;
322	Tables 2 and 3). Moreover, QU 25 grew faster in media containing glucose only than in
323	media containing xylose (Supplementary Figs. S1 and S2). Therefore, the putative
324	involvement of CcpA in the CCR of QU 25 was unclear.
325	It was evident from our findings that the genes involved in xylose transport and
326	metabolism were transcribed in media containing a mixture of glucose and xylose. However,
327	the transcript levels of these genes decreased as the glucose concentration of the medium
328	increased. These observations, as well as the simultaneous consumption of glucose and
329	xylose by QU 25, are not consistent with a model of hierarchical metabolism of these sugars

330	via a CcpA-dependent CCR pathway. Therefore, we propose the existence of a
331	CcpA-independent CCR mechanism in QU 25 that regulates the simultaneous metabolism
332	of xylose and glucose. There is precedence for this phenomenon, as Mortera et al. (2012)
333	reported the coexistence of both CcpA-dependent and CcpA-independent CCR mechanisms
334	in Enterococcus faecalis. ¹²
335	Notably, QU 25 harbors more genes that encode transporters related to lactic acid
336	fermentation, including both ABC transporters and a PTS, than other enterococcal species
337	or even the other <i>E. mundtii</i> strain. ¹³ Xylose is a member of the aldopentose group, which
338	includes arabinose, ribose, and xylose. In QU 25, the aldopentose transporter genes were
339	highly repressed under high glucose conditions (Table 4). Furthermore, the ribose ABC
340	transporter genes in the xylose gene cluster (EMQU_2806-2808) were highly transcribed in
341	the presence of xylose but were gradually repressed as the glucose concentration increased,
342	indicating that these proteins could participate in the CCR of QU 25. That these genes
343	exhibited the lowest G150/X150 values among the transporter genes examined (Table 4)
344	strengthens this supposition. Conversely, no PTS genes specific to aldopentose transport
345	were identified in QU 25. We therefore predict that the ribose ABC transporter genes in the
346	xylose gene cluster contribute to the CCR observed in QU 25 under high glucose conditions,
347	and we summarize a model for the xylose fermentation pathway of QU 25 in Fig. 4.
348	We propose that the metabolic shift between homo- and hetero-lactic fermentation in the
349	presence of xylose as a sole carbon source is regulated in QU 25 downstream of the
350	transcriptional level. This conclusion is supported by our findings that transcription of the
351	genes involved in the PK pathway was maintained under homo-fermentation conditions,
352	indicating that the shift to hetero-lactic fermentation is not under transcriptional control;

353	however, the mechanism governing this switch remains unclear. For efficient production of
354	optically pure lactic acid, homo-lactic fermentation of pentoses and hexoses is highly
355	desired. In the case of pentoses, such as xylose, up to five moles of lactic acid are
356	synthesized from three moles of xylose via the homo-fermentative PP/glycolytic pathway.
357	As such, the theoretical yield of lactic acid produced per xylose consumed is 1.67 mol/mol.
358	In a previous study, the maximal yield of L-lactic acid produced by QU 25 was 1.51
359	mol/mol when cultured with 50 g \cdot L ⁻¹ xylose. ⁴ Considering that sugars are used to increase
360	cell mass rather than to produce lactate during exponential growth of bacteria, this is a
361	remarkable yield and strengthens the importance of QU 25 in the green plastic industry.
362	The role of the XylR repressor cannot be ignored when investigating the transcriptional
363	regulation of the xylose gene cluster. Like other known xylose gene clusters that are
364	repressed by XylR in the absence of xylose, ¹⁴ the expression of the genes within the xylose
365	gene cluster of QU 25 was also repressed in the absence of xylose and induced in its
366	presence. The putative XylR-binding site, GTTAGTTTGTTAGATAAACTAAC, which is
367	indicated by a dotted line in Fig. 1C, exhibited 95% identity (excluding Ns) to the
368	consensus sequence GTTWGTTTATNNNATAAACWAAC among all Firmicutes, except
369	Lactobacillus pentosus, Lactobacillus brevis, Lactococcus lactis, and Clostridium
370	acetobutylicum. ¹⁵ However, the position of the first base in this site in QU 25 was at +7,
371	which is markedly further downstream than that of other XylR regulons in <i>Firmicutes</i> . ^{15, 16}
372	Dahl et al. (1995) reported that XylR contributes to glucose repression because glucose
373	6-phosphate is an anti-inducer that prevents xylose-mediated induction in Bacillus subtilis,
374	<i>B. megaterium</i> , and <i>B. licheniformis</i> . ¹⁷ Accordingly, this possibility should also be
375	considered for QU 25.

RSC Advances Accepted Manuscript

376

377

- 378 4. Experimental
- 379 4.1 Bacterial strain and culturing conditions
- 380 *E. mundtii* QU 25, isolated from ovine feces,² was cultured in M17-2 medium (M17 medium

381 lacking yeast extract and lactose)¹⁸ supplemented with various concentrations of glucose

- 382 and/or xylose at 37°C. Media were named according to the type and concentration of sugars
- 383 used: 5 $g \cdot L^{-1}$ glucose (G5); 150 $g \cdot L^{-1}$ glucose (G150); 5 $g \cdot L^{-1}$ xylose (X5); 150 $g \cdot L^{-1}$ xylose
- 384 (X150); 1 g·L⁻¹ glucose and 5 g·L⁻¹ xylose (G1X5); 10 g·L⁻¹ glucose and 50 g·L⁻¹ xylose
- 385 (G10X50); 25 g·L⁻¹ glucose and 50 g·L⁻¹ xylose (G25X50); 50 g·L⁻¹ glucose and 50 g·L⁻¹
- 386 xylose (G50X50); and 100 $g \cdot L^{-1}$ glucose and 50 $g \cdot L^{-1}$ xylose (G100X50).

387

388 4.2 RNA preparation

Logarithmic phase cultures (OD₆₀₀ of 0.8) were utilized for RNA extraction. Cultures (8
mL) were collected by centrifugation and frozen at -80°C. Total RNA was then extracted
using the QIAGEN RNeasy Mini Kit (Qiagen, Venlo, Netherlands).

392

393 4.3 RNA-seq

The total RNA from each culture was prepared for analysis as follows: rRNA was removed from each sample using the Ribo-ZeroTM Magnetic Kit for Gram-Positive Bacteria (Epicentre [an Illumina company], Madison, WI, USA) and cDNA libraries were generated using the

397	NEBNext mRNA Library Prep Reagent Set for Illumina (New England BioLabs, Ipswich,
398	MA, USA). Libraries prepared from cultures under low sugar conditions (Table 2) were then
399	analyzed using the GAIIx Next-Generation Sequencing (NGS) platform (Illumina, San Diego,
400	CA, USA) by 50-base-paired-end sequencing. Meanwhile, libraries prepared from cultures
401	under high sugar conditions (Table 3) were analyzed using the HiSeq 2000 system (Illumina)
402	by 50-base-single-end sequencing. Each sequence was mapped to the QU 25 genome
403	(deposited in GenBank/DDBJ/EMBL under accession numbers AP013036-AP013041) using
404	the CLC Genomics Workbench software version $7.0.4$ (length fraction = 0.5 , similarity
405	fraction = 0.8, maximum number of hits for a read = 1) (CLC bio, Aarhus, Denmark).
406	Mapped reads of each gene were normalized using the RPKM approach. ¹⁹
407	
407 408	4.4 Northern hybridization analysis
407 408 409	4.4 Northern hybridization analysis Chemically labeled RNA probes were prepared using the DIG RNA Labeling Kit (SP6/T7)
407 408 409 410	 A.4 Northern hybridization analysis Chemically labeled RNA probes were prepared using the DIG RNA Labeling Kit (SP6/T7) (Roche, Basel, Switzerland) by <i>in vitro</i> transcription using T7 RNA polymerase of the cloned
 407 408 409 410 411 	 A.4 Northern hybridization analysis Chemically labeled RNA probes were prepared using the DIG RNA Labeling Kit (SP6/T7) (Roche, Basel, Switzerland) by <i>in vitro</i> transcription using T7 RNA polymerase of the cloned region into the pSPT18 vector. Oligonucleotide primers used for PCR amplification of the
 407 408 409 410 411 412 	 A.4 Northern hybridization analysis Chemically labeled RNA probes were prepared using the DIG RNA Labeling Kit (SP6/T7) (Roche, Basel, Switzerland) by <i>in vitro</i> transcription using T7 RNA polymerase of the cloned region into the pSPT18 vector. Oligonucleotide primers used for PCR amplification of the corresponding DNA fragments for cloning into the vector were synthesized by Hokkaido
 407 408 409 410 411 412 413 	 A.4 Northern hybridization analysis Chemically labeled RNA probes were prepared using the DIG RNA Labeling Kit (SP6/T7) (Roche, Basel, Switzerland) by <i>in vitro</i> transcription using T7 RNA polymerase of the cloned region into the pSPT18 vector. Oligonucleotide primers used for PCR amplification of the corresponding DNA fragments for cloning into the vector were synthesized by Hokkaido System Science Co., Ltd. (Sapporo, Japan; shown in Supplementary Table S1). RNA (10 µg)
 407 408 409 410 411 412 413 414 	 A.4 Northern hybridization analysis Chemically labeled RNA probes were prepared using the DIG RNA Labeling Kit (SP6/T7) (Roche, Basel, Switzerland) by <i>in vitro</i> transcription using T7 RNA polymerase of the cloned region into the pSPT18 vector. Oligonucleotide primers used for PCR amplification of the corresponding DNA fragments for cloning into the vector were synthesized by Hokkaido System Science Co., Ltd. (Sapporo, Japan; shown in Supplementary Table S1). RNA (10 μg) was denatured by incubation at 65°C for 10 min and then subjected to agarose gel
 407 408 409 410 411 412 413 414 415 	4.4 Northern hybridization analysis Chemically labeled RNA probes were prepared using the DIG RNA Labeling Kit (SP6/T7) (Roche, Basel, Switzerland) by <i>in vitro</i> transcription using T7 RNA polymerase of the cloned region into the pSPT18 vector. Oligonucleotide primers used for PCR amplification of the corresponding DNA fragments for cloning into the vector were synthesized by Hokkaido System Science Co., Ltd. (Sapporo, Japan; shown in Supplementary Table S1). RNA (10 µg) was denatured by incubation at 65°C for 10 min and then subjected to agarose gel electrophoresis on a 1% agarose gel containing 2.22% formaldehyde and 1X
 407 408 409 410 411 412 413 414 415 416 	4.1 Northern hybridization analysis Chemically labeled RNA probes were prepared using the DIG RNA Labeling Kit (SP6/T7) (Roche, Basel, Switzerland) by <i>in vitro</i> transcription using T7 RNA polymerase of the cloned region into the pSPT18 vector. Oligonucleotide primers used for PCR amplification of the corresponding DNA fragments for cloning into the vector were synthesized by Hokkaido System Science Co., Ltd. (Sapporo, Japan; shown in Supplementary Table S1). RNA (10 µg) was denatured by incubation at 65°C for 10 min and then subjected to agarose gel electrophoresis on a 1% agarose gel containing 2.22% formaldehyde and 1X 3-(<i>N</i> -morpholino)propanesulfonic acid (MOPS) buffer (20 mM MOPS, 1 mM)

418 Markers (0.2–10 kb; Novagen [a brand of Merck KGaA], Darmstadt, Germany) was used as

RSC Advances Accepted Manuscript

419	a size marker. The RNA was then transferred to Hybond N^+ membranes (GE Healthcare,
420	Little Chalfont, United Kingdom) by capillary action using 20X SSC (1X SSC = 0.15 M
421	NaCl and 0.015 M sodium citrate) as transfer buffer and by placing a weight on the
422	gel-contacted membrane and incubating at room temperature (r. t.) overnight. Hybridization
423	was performed at 60°C overnight using DIG Easy Hyb Granules (Roche), followed by
424	washing twice at r.t. for 5 min with 2X SSC-0.1% SDS solution. This was then followed by
425	another two washes at 60°C for 15 min with 0.5X SSC-0.1% SDS solution. An
426	anti-Digoxigenin-AP Conjugate (Roche) treatment was then performed and the membrane
427	was washed twice at r.t. for 15 min with 2X SSC-0.1% SDS solution. The density of each
428	band was quantified using Image Lab TM software (version 2.0; Bio-Rad, Hercules, CA,
429	USA).
430	

431 **4.5** Primer extension method for identification of the *xylA* TSS

432	RNA was extracted from 8 mL of cells cultured in M17-2 medium supplemented with 5 $g \cdot L^{-1}$
433	xylose. Primer extension analysis was performed using <i>Bca</i> BEST [™] RNA PCR Kit Ver.1.1
434	(Takara Bio Inc., Otsu, Japan) by annealing 10 pmol of IRDye800-labeled primer (MS
435	TechnoSystems, Osaka, Japan) to 15 μ g of RNA. This was followed by incubation at 58 °C
436	for 1 h. The GATC sequence ladder was produced using the DNA fragment that was
437	amplified by PCR using two oligonucleotide primers (Supplementary Table S1), the same
438	primer described above, and Ex Taq DNA polymerase (Takara Bio). Following an initial
439	5-min denaturation at 95°C, 30-cycle amplifications were performed with denaturation at 95°C
440	for 30 sec, annealing at 55°C for 30 sec, and extension at 70°C for 1 min. A 6% Long Ranger

441	running gel (Long Ranger TM Gel Solutions [Lonza], Basel, Switzerland) was used for
442	analysis.
443	
444	4.6 RNA-seq data accession numbers
445	The RNA-seq data obtained in this study were deposited in the DNA Data Bank of Japan
446	Sequence Read Archive (DRA)/National Center for Biotechnology Information Sequence
447	Read Archive (SRA)/European Bioinformatics Institute Sequence Read Archive (ERA)
448	under the accession number DRA002964.
449	
450	
451	5. Conclusion
452	In this paper, we examined the atypical CCR mechanism employed by the QU 25 strain
453	under high glucose conditions, and provided evidence that the transcriptional regulation of
454	the genes in the xylose gene cluster played a role in this CCR process. We propose that this
455	regulation pathway involves a CcpA-independent mechanism. Furthermore, we speculate
456	that the ribose ABC transport system encoded in the xylose gene cluster may contribute to
457	this process. We also demonstrated that the observed metabolic shift between homo- and
458	hetero-lactic fermentation in QU 25 is regulated downstream of the transcriptional
459	expression of the enzymes involved in xylose metabolism.
460	
461	
462	Acknowledgements

463 We thank Shiori Sonobe for performing the Northern hybridization analysis, Kiyotaka Abe

RSC Advances Accepted Manuscript

- 464 for generating the growth curves under high sugar conditions, and Yu Kanesaki for
- 465 submission of the RNA-seq data to DDBJ. This study was supported by the
- 466 MEXT-Supported Program for the Strategic Research Foundation at Private Universities,
- 467 2013–2017 (S1311017).

468

469

470 References

- 471 1 M. A. Abdel-Rahman, Y. Tashiro and K. Sonomoto, J. Biotechnol., 2011, 156, 286-301.
- 472 2 M. A. Abdel-Rahman, Y. Tashiro, T. Zendo, K. Shibata and K. Sonomoto, *Appl. Microbiol.*
- 473 Biotechnol., 2011, 89, 1039-1049.
- 474 3 M. A. Abdel-Rahman, Y. Tashiro, T. Zendo and K. Sonomoto, *RSC Adv.*, 2013, 3,
 475 8437-8445.
- 476 4 M. A. Abdel-Rahman, Y. Tashiro, T. Zendo, K. Hanada, K. Shibata and K. Sonomoto,
- 477 Appl. Environ. Microbiol., 2011, 77, 1892-1895.
- 478 5 Y. Shiwa, H. Yanase, Y. Hirose, S. Satomi, T. Araya-Kojima, S. Watanabe, T. Zendo, T.
- 479 Chibazakura, M. Shimizu-Kadota, H. Yoshikawa and K. Sonomoto, DNA Res., 2014, 21,
- 480 369-377.
- 481 6 M. A. Abdel-Rahman, Y. Xiao, Y. Tashiro, Y. Wang, T. Zendo, K. Sakai, and K. Sonomoto,
- 482 J. Biosci. Bioeng., 2015, 119, 153-158.
- 483 7 Y. Fujita, *Biosci. Biotechnol. Biochem.*, 2009, **73**, 245-259.
- 484 8 F. Titgemeyer, J. Reizer, A. Reizer and M. H. Sailer, Jr., *Microbiology*, 1994, 140,

485 2349-2354.

- 486 9 M. A. Schumacher, M. Sprehe, M. Bartholomae, W. Hillen and R. G. Brennan, *Nucleic*
- 487 *Acids Res.*, 2011, **39**, 2931-2942.
- 488 10 A. L. Zomer, G. Buist, R. Larsen, J. Kok and O. P. Kuipers, J. Bacteriol., 2007, 189,
- 489 1366-1381.
- 490 11 N. Asanuma, T. Yoshii and T. Hino, *Appl. Environ. Microbiol.*, 2004, **70**, 5244-5251.
- 491 12 P. Mortera, M. Espariz, C. Suárez, G. Repizo, J. Deutscher, S. Alarcón, V. Blancato and
- 492 C. Magni, Appl. Environ. Microbiol., 2012, 78, 1936-1945.
- 493 13 Y. Shiwa, Ph.D. Thesis, Tokyo University of Agriculture, 2014.
- 494 14 D. Gärtner, J. Degenkolb, J. A. E. Ripperger, R. Allmansberger and W. Hillen, *Mol. Gen.*
- 495 Genet., 1992, 232, 415-422.
- 496 15 D. A. Rodionov, A. A. Mironov and M. S. Gelfand, *FEMS Microbiol. Lett.*, 2001, 205,
- 497 305-314.
- 498 16 Y. Gu, Y. Ding, C. Ren, Z. Sun, D. A. Rodionov, W. Zhang, S. Yang, C. Yang and W.
- 499 Jiang, BMC Genomics, 2010, 11, 255.
- 500 17 M. K. Dahl, D. Schmiedel and W. Hillen, J. Bacteriol., 1995, 177, 5467-5472.
- 501 18 M. Machii, S. Watanabe, T. Zendo, T. Chibazakura, K. Sonomoto, M. Shimizu-Kadota
- 502 and H. Yoshikawa, J. Biosci. Bioeng., 2013, 115, 481-484.
- 503 19 A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer and B. Wold, Nat. Methods, 2008,
- **5**04 **5**, 621-628.

505 **Table 1** Feature IDs, gene names, chromosomal regions, strand directions, GC%, and predicted function of the gene

Feature ID	Gene	Chromosomal		Strand	GC (%)	Predicted function		
	name	Start	End	direction				
Genes conceri	Genes concerned in xylose fermentation and carbon catabolite repression (CCR) (examined in Tables 2 and 3)							
Xylose gene cl	uster							
EMQU_2811	xylR	2917694	2918845	+	40.54	xylose repressor		
EMQU_2810	xylA	2916127	2917434	-	41.13	xylose isomerase		
EMQU_2809	xynB	2914407	2916023	-	42.86	xylan β-1,4-xylosidase		
EMQU_2808	araG	2912855	2914366	-	40.41	ribose transport system ATP-binding protein		
EMQU_2805	xylB	2909196	2910680	-	44.18	D-xylulose kinase		
Pentose-phosp	hate/glvc	olytic pathy	vav					

Pentose-phosphate/glycolytic pathway

EMQU_1275 *tktA1* 1334628 1336622 + 45.61 transketolase

EMQU_2812	tktA3	2918972	2920966	-	46.22	transketolase		
EMQU_2814	talC	2921874	2922527	-	44.19	transaldolase		
Phosphoketolase pathway								
EMOLI 1827	xfpA	1012014	1016190		12 72	D-xylulose 5-phosphate/D-fructose 6-phosphate		
EMQU_1857	$(ptk)^{a}$	1913014	1910109	-	45.75	phosphoketolase		
EMQU_2620	ackA	2690711	2691892	-	37.23	acetate kinase		
EMOLI 2110	eutD	2204462	2205442		20.45			
EMQU_2119	(pta) ^a	2204462	2205442	-	39.45	phosphotransacetylase		
EMQU_1120	pflB	1175401	1177632	+	40.37	formate acetyltransferase		
EMQU_0224	adhE	221500	224107		40.00	bifunctional acetaldehyde-CoA/alcohol		
		231590	234187	+	40.99	dehydrogenase		
CCR proteins								
EMQU_0954	ptsH	989353	989619	+	38.95	PTS system transporter protein HPr		
EMQU_1943	ссрА	2032634	2033635	-	38.42	catabolite control protein A		

EMQU_1951	hptK	2039941	2040879	-	42.07	HPr kinase/phosphorylase
Aldopentose ti	ransport	ter genes (e	xamined in Ta	ble 4)		
D-xylose transp	port syst	em proteins				
EMQU_1845		1925107	1926198	-	39.93	D-xylose transport system substrate-binding protein
EMQU_1844	araG	1923280	1924812	-	40.77	D-xylose transport system ATP-binding protein
EMQU_1843	araH	1922078	1923280	-	42.39	D-xylose transport system permease protein
Ribose transpo	rt system	n proteins (i	ncluded in xylo	se gene	cluster)	
EMQU_2808	araG	2912855	2914366	-	40.41	ribose transport system ATP-binding protein
EMQU_2807		2911848	2912813	-	39.03	ribose transport system permease protein
EMQU_2806		2910773	2911822	-	41.52	ribose transport system substrate-binding protein
Other ribose tra	ansport s	ystem prote	ins			
EMQU_1846		1926425	1927390	+	39.65	ribose transport system substrate-binding protein
EMQU_2382		2453523	2453918	-	38.64	ribose transport protein RbsD
EMQU_2381		2452618	2453505	-	41.78	ribose uptake protein

L-arabinose transport system proteins							
EMOLI 1592		1 (402 42	1641622	-	41.01	lactose/L-arabinose transport system	
EMQU_1382		1040343	1641632			substrate-binding protein	
EMOU 1501	lacF2	1639118	1(20097	-	35.29	lactose/L-arabinose transport system permease	
EMQU_1581			103998/			protein	
		1 (202 42	1 (20101			lactose/L-arabinose transport system permease	
EMQU_1580	<i>lacG2</i> 1638243	1639121	-	37.77	protein		

507 ^aAliases are described in parenthesis.

Gene name	RPKM ^a (G5)	RPKM (X5)	RPKM (G1X5)	X5/G5 ^b	G1X5/G5 ^b
Xylose gene c	luster				
xylR	122.39	214.78	195.41	1.75	1.60
xylA	856.04	16,096.79	13,383.75	18.80	15.63
xynB	594.43	10,023.59	12,473.84	16.86	20.98
araG	323.81	6,110.76	9,164.44	18.87	28.30
xylB	282.55	3,059.00	2,270.88	10.83	8.04
Pentose-phosp	hate/glycolytic path	way			
tktA1	120.15	201.08	116.81	1.67	0.97
tktA3	37.04	11.68	12.40	0.32	0.33
talC	218.56	208.95	160.38	0.96	0.73

Table 2 RNA-seq data for genes involved in xylose fermentation and carbon catabolite repression (CCR) under low sugar conditions

Phosphoketolase pathway

xfpA	158.58	421.98	196.78	2.66	1.24
ackA	920.55	595.13	483.45	0.65	0.53
eutD	716.65	585.16	895.70	0.82	1.25
pflB	4,501.62	11,246.12	6,833.48	2.50	1.52
adhE	1,089.53	8,384.88	3,772.75	7.70	3.46
CCR proteins					
ptsH	7,039.75	4,088.60	6,796.87	0.58	0.97
ссрА	209.62	329.06	167.39	1.57	0.80
hptK	504.83	327.44	535.85	0.65	1.06

^aRPKM stands for reads per kb of exon per million mapped reads.

510 ^bX5/G5 and G1X5/G5 indicate the RPKM (X5)/RPKM (G5) and RPKM (G1X5)/RPKM (G5) values, respectively.

Gene name	RPKM ^a (G10X50)	RPKM (G25X50)	RPKM (G50X50)	RPKM (G100X50)	RPKM (G150)	RPKM (X150)	G10X50/ G150 ^b	G25X50/ G150 ^b	G50X50/ G150 ^b	G100 X50/ G150 ^b	X150 /G150 ^b
Xylose	gene cluster										
xylR	285.70	306.97	286.65	330.83	102.60	387.34	2.78	2.99	2.79	3.22	3.78
xylA	4,645.56	2,364.84	1,828.10	828.19	22.27	6,503.77	208.62	106.20	82.09	37.19	292.06
xynB	2,888.53	1,581.22	1,264.01	420.03	19.65	3,328.79	146.99	80.47	64.32	21.38	169.40
araG	1,837.77	881.84	704.14	147.71	17.14	2,265.47	107.22	51.45	41.08	8.62	132.17
xylB	1,851.55	868.18	595.27	113.08	41.31	1,930.46	44.82	21.01	14.41	2.74	46.73
Pentose	e-phosphate/g	lycolytic path	hway								
tktA1	364.42	490.99	462.83	333.90	191.32	507.90	1.90	2.57	2.42	1.75	2.65
tktA3	7.36	5.50	4.49	4.70	2.63	13.33	2.80	2.09	1.71	1.79	5.08
talC	31.94	14.78	20.72	13.77	23.35	81.77	1.37	0.63	0.89	0.59	3.50

512 **Table 3** RNA-seq data for genes involved in xylose fermentation and carbon catabolite repression (CCR) under high sugar conditions

Phospho	oketolase pat	hway									
xfpA	110.50	93.15	137.87	147.80	135.94	256.22	0.81	0.69	1.01	1.09	1.88
ackA	973.39	1,150.10	922.43	1,129.22	954.51	1,463.87	1.02	1.20	0.97	1.18	1.53
eutD	1,487.04	1,435.64	1,242.74	1,210.44	1,170.2 4	1,676.58	1.27	1.23	1.06	1.03	1.43
pflB	3,903.36	3,811.22	2,596.54	1,900.55	1,211.7 3	4,982.09	3.22	3.15	2.14	1.57	4.11
adhE	4,204.20	1,986.76	2,483.65	2,388.84	1,577.4 8	2,582.87	2.67	1.26	1.57	1.51	1.64
CCR pr	oteins										
ptsH	9,658.17	10,533.67	9,079.38	9,383.88	7,610.3 3	6,777.32	1.27	1.38	1.19	1.23	0.89
ссрА	631.45	829.44	800.99	737.95	506.26	577.99	1.25	1.64	1.58	1.46	1.14
hptK	390.59	356.97	418.84	412.58	371.45	374.78	1.05	0.96	1.13	1.11	1.01

- ^aRPKM stands for reads per kb of exon per million mapped reads.
- ^bG10X50/G150, G25X50/G150, G50X50/G150, G100X50/G150, and X150/G150 indicate the RPKM (G10X50)/RPKM (G150), RPKM
- 515 (G25X50)/RPKM (G150), RPKM (G50X50)/RPKM (G150), RPKM (G100X50)/RPKM (G150), and RPKM (X150)/RPKM (G150)
- 516 values, respectively.
- 517

518	Table 4 RNA-seq data for	the aldopentose tr	ransporter genes t	hat are highly repressed	under high sugar conditions
-----	--------------------------	--------------------	--------------------	--------------------------	-----------------------------

Feature ID	RPKM ^a (G10X5	RPKM (G25X50	RPKM (G50X50	RPKM	RPKM	RPKM	G10 X50/	G25 X50/	G50 X50/	G100 X50/	G150/
	0)))	(G100X50)	(G150)	(X150)	X150 ^b				
D-xylose transp	ort system	proteins									
EMQU_1845	46.11	3.50	7.23	5.43	8.25	107.76	0.43	0.03	0.07	0.05	0.08
EMQU_1844	20.10	4.01	7.38	6.86	8.20	70.03	0.29	0.06	0.11	0.10	0.12
EMQU_1843	17.96	4.85	10.99	8.41	12.83	72.50	0.25	0.07	0.15	0.12	0.18
Ribose transpor	rt system pr	oteins (inclu	ded in xylos	e gene cluster))						
EMQU_2808	1,837.77	881.84	704.14	147.71	17.14	2,265.47	0.81	0.39	0.31	0.07	0.01
EMQU_2807	1,589.56	576.10	490.50	76.12	17.79	1,882.41	0.84	0.31	0.26	0.04	0.01
EMQU_2806	2,555.99	993.96	750.61	95.35	22.27	2,921.43	0.87	0.34	0.26	0.03	0.01
Other ribose tra	insport syste	em proteins									
EMQU_1846	31.26	20.64	21.16	23.61	20.06	47.03	0.66	0.44	0.45	0.50	0.43

EMQU_2382	107.58	81.37	81.75	84.64	261.49	224.77	0.48	0.36	0.36	0.38	1.16
EMQU_2381	109.57	73.36	83.26	93.44	252.13	212.93	0.51	0.34	0.39	0.44	1.18
L-arabinose tran	sport system	n proteins									
EMQU_1582	7.78	4.21	7.16	6.98	12.10	31.92	0.24	0.13	0.22	0.22	0.38
EMQU_1581	4.99	2.89	5.67	5.81	6.35	16.04	0.31	0.18	0.35	0.36	0.40
EMQU_1580	5.41	5.04	6.50	8.46	9.17	20.64	0.26	0.24	0.31	0.41	0.44

^aRPKM stands for reads per kb of exon per million mapped reads.

520 ^bG10X50/X150, G25X50/X150, G50X50/X150, G100X50/X150, and G150/X150 indicate the RPKM (G10X50)/RPKM (X150), RPKM

521 (G25X50)/RPKM (X150), RPKM (G50X50)/RPKM (X150), RPKM (G100X50)/RPKM (X150), and RPKM (G150)/RPKM (X150)

522 values, respectively.

523

Figure legends

<i>Enterococcus mundtii</i> QU 25 (A) Northern hybridization analysis was utilized to examine the expression levels of the genes involved in the xylose gene cluster under low sugar conditions. Lanes 1, 2, and 3 represent the samples harvested from cells cultured in M17-2 medium containing 5 g·L ⁻¹
(A) Northern hybridization analysis was utilized to examine the expression levels of the genes involved in the xylose gene cluster under low sugar conditions. Lanes 1, 2, and 3 represent the samples harvested from cells cultured in M17-2 medium containing 5 $g \cdot L^{-1}$
genes involved in the xylose gene cluster under low sugar conditions. Lanes 1, 2, and 3 represent the samples harvested from cells cultured in M17-2 medium containing 5 $g \cdot L^{-1}$
represent the samples harvested from cells cultured in M17-2 medium containing 5 $g \cdot L^{-1}$
glucose (G5), 5 g·L ⁻¹ xylose (X5), and 1 g·L ⁻¹ glucose and 5 g·L ⁻¹ xylose (G1X5),
respectively. Arrowheads indicate the bands corresponding to the transcripts of each
respective gene, and the subsequent numbers denote the size of each band in kilobases.
Below each lane, ethidium bromide-stained 16S rRNA is included as a loading control.
(B) Primer extension analysis was performed to identify the transcriptional start site of
the <i>xylA</i> gene. T, A, C, G, and S indicate the corresponding nucleotide bases and a sample,
respectively. The arrowhead denotes the transcriptional start point. (C) Graphic depiction
of the DNA sequence located between the <i>xylR</i> and <i>xylA</i> ORFs. The transcriptional start
site, the predicted promoter region of <i>xylA</i> , the putative CcpA-binding site, and the
predicted XylR-binding site are denoted by the bent arrow, the double lines, the dashed
line, and the dotted line, respectively. The partial ORFs of <i>xylR</i> and <i>xylA</i> are bracketed
with single lines.

RSC Advances Accepted Manuscript

541

542 Fig. 2 Structure of the operon encoding the genes in the xylose gene cluster543

g
SC
D
teo
0 0
Ö
A
S
C
/ar
6
4
S
K

544	Fig. 3 Northern analysis of <i>xylA</i> gene expression under high sugar conditions
545	(A) <i>Enterococcus mundtii</i> QU 25 was cultured in M17-2 medium containing 50 $g \cdot L^{-1}$
546	xylose and either 10 g·L ⁻¹ (G10X50), 25 g·L ⁻¹ (G25X50), 50 g·L ⁻¹ (G50X50), or 100
547	g·L ⁻¹ (G100X50) glucose. Arrowheads indicate the bands corresponding to <i>xylA</i>
548	transcripts, and the adjacent values denote the sizes of each band. Below each lane,
549	ethidium bromide-stained 16S rRNA is included as a loading control. (B) Quantification
550	of the density of the three bands corresponding to <i>xylA</i> transcripts in (A). The <i>xylA</i>
551	expression value, in arbitrary units, obtained from each sample was divided by that from
552	the G10X50 sample and used as the relative transcriptional amount.
553	
554	Fig. 4 Map of the xylose fermentation pathway in <i>Enterococcus mundtii</i> QU 25
554 555	Fig. 4Map of the xylose fermentation pathway in <i>Enterococcus mundtii</i> QU 25The genes that exhibited glucose-dependent variations in transcriptional expression in
554 555 556	Fig. 4Map of the xylose fermentation pathway in <i>Enterococcus mundtii</i> QU 25The genes that exhibited glucose-dependent variations in transcriptional expression inmedia containing high sugar concentrations are indicated with bold type (see Tables 2 and
554 555 556 557	 Fig. 4 Map of the xylose fermentation pathway in <i>Enterococcus mundtii</i> QU 25 The genes that exhibited glucose-dependent variations in transcriptional expression in media containing high sugar concentrations are indicated with bold type (see Tables 2 and 3). Thick arrowheads denote that there was a marked decrease in the transcriptional
554 555 556 557 558	 Fig. 4 Map of the xylose fermentation pathway in <i>Enterococcus mundtii</i> QU 25 The genes that exhibited glucose-dependent variations in transcriptional expression in media containing high sugar concentrations are indicated with bold type (see Tables 2 and 3). Thick arrowheads denote that there was a marked decrease in the transcriptional expression levels of the corresponding genes under high glucose conditions. Conversely,
554 555 556 557 558 559	 Fig. 4 Map of the xylose fermentation pathway in <i>Enterococcus mundtii</i> QU 25 The genes that exhibited glucose-dependent variations in transcriptional expression in media containing high sugar concentrations are indicated with bold type (see Tables 2 and 3). Thick arrowheads denote that there was a marked decrease in the transcriptional expression levels of the corresponding genes under high glucose conditions. Conversely, for genes where there was minimal change or fluctuation in expression under these
554 555 556 557 558 559 560	Fig. 4 Map of the xylose fermentation pathway in <i>Enterococcus mundtii</i> QU 25 The genes that exhibited glucose-dependent variations in transcriptional expression in media containing high sugar concentrations are indicated with bold type (see Tables 2 and 3). Thick arrowheads denote that there was a marked decrease in the transcriptional expression levels of the corresponding genes under high glucose conditions. Conversely, for genes where there was minimal change or fluctuation in expression under these conditions, the arrow was omitted. Abbreviations in this figure are as follows: P,
554 555 556 557 558 559 560 561	Fig. 4 Map of the xylose fermentation pathway in <i>Enterococcus mundtii</i> QU 25 The genes that exhibited glucose-dependent variations in transcriptional expression in media containing high sugar concentrations are indicated with bold type (see Tables 2 and 3). Thick arrowheads denote that there was a marked decrease in the transcriptional expression levels of the corresponding genes under high glucose conditions. Conversely, for genes where there was minimal change or fluctuation in expression under these conditions, the arrow was omitted. Abbreviations in this figure are as follows: P, phosphate; GAP, glyceraldehyde 3-phosphate. Dotted lines indicate the phosphoketolase
554 555 556 557 558 559 560 561 562	Fig. 4 Map of the xylose fermentation pathway in <i>Enterococcus mundtii</i> QU 25 The genes that exhibited glucose-dependent variations in transcriptional expression in media containing high sugar concentrations are indicated with bold type (see Tables 2 and 3). Thick arrowheads denote that there was a marked decrease in the transcriptional expression levels of the corresponding genes under high glucose conditions. Conversely, for genes where there was minimal change or fluctuation in expression under these conditions, the arrow was omitted. Abbreviations in this figure are as follows: P, phosphate; GAP, glyceraldehyde 3-phosphate. Dotted lines indicate the phosphoketolase (PK) pathway, which exerts only in the hetero-fermentation conditions. Solid lines

which exert both in the homo- and hetero-fermentation conditions.