
 

 

 

Predicting the Optimum Compositions of a Parenteral 
Nanoemulsion System Loaded with Azithromycin Antibiotic 

Utilizing Artificial Neural Network Model 
 

 

Journal: RSC Advances 

Manuscript ID: RA-ART-07-2015-014913.R1 

Article Type: Paper 

Date Submitted by the Author: 23-Aug-2015 

Complete List of Authors: Albana, Ghaidaa; Universiti Putra Malaysia, Medicine Department 
Basri, Hamidon; Universiti Putra Malaysia, Medicine 
Stanslas, Johnson; Universiti Putra Malaysia, Medicine 

Fard Masoumi, Hamid Reza; Universiti Putra Malaysia, Chemistry 
BASRI, MAHIRAN; UNIVERSITI PUTRA MALAYSIA,  

  

 

 

RSC Advances



  

 

 

 

254x190mm (96 x 96 DPI)  

 
 

Page 1 of 14 RSC Advances



RSC. Advances  

ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 1  

Please do not adjust margins 

Please do not adjust margins 

Received 00th January 20xx, 

Accepted 00th January 20xx 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ 

Predicting the Optimum Compositions of a Parenteral 
Nanoemulsion System Loaded with Azithromycin Antibiotic 
Utilizing Artificial Neural Network Model  

Ghaidaa S. Daooda, Hamidon Basri a, b*, Johnson Stanslasa, b, Hamid Reza Fard Masoumic   and 
Mahiran Basric, d 

 

For the purpose of brain delivery via intravenous administration, formulation of azithromycin- loaded nanoemulsion system 

was optimized utilizing artificial neural network (ANN) as a multivariate statistical technique. The input effective variables 

for nanoemulsion formulation were drug loading, Surfactant and co-surfactant content, concentration of glycerol, and 

vitamin E while the particle size was the output response since the size reduction will improve the stability of nanoemulsion 

and the biological efficacy of the drug in-vivo after parenteral administration. To achieve the optimum topologies; ANN was 

trained by Incremental Back-Propagation (IBP), Batch Back-Propagation (BBP), Quick Propagation (QP), and Levenberg-

Marquardt (LM) algorithms for testing data set. The topologies were confirmed by the indicator of minimized root mean 

squared error (RMSE) for each. Based on that indicator; the BBP-5-14-1 was selected as the optimum topology to be used 

as a final model to predict the desirable particle size and relative importance of the formulation’s effective variables. The 

ANN analysis showed that the actual particle size (54.7 nm ± 0.8) of the formulated nanoemulsion was quite close to the 

predicted value (53.9 nm) obtained from batch back propagation-ANN model which support the conclusion that ANN model 

has the potential to predict a stable nanoemulsion system that could be used efficiently for parenteral administration of 

azithromycin antibiotic.

 Introduction 

Azithromycin(9-deoxo-9a-aza-9a-methyl-9a-

homoerthromycin) is a semi-synthetic antibiotic “derived from 

the naturally occurring antibiotic erythromycin” representing 

the first of a subclass of macrolides classified as azalides 1. It was 

first produced in 1980’s by the insertion of methyl-substituted 

nitrogen on the lactone ring of erythromycin at position 9a (Fig. 

1) creating a 15-membered macrolide.  

 

This alteration increases the stability of the compound in acidic 

media and subsequently improving its oral bioavailability 

compared to erythromycin and it provides a larger spectrum of 

activity against Gram-negative bacteria as well 2. Azithromycin 

has a unique pharmacokinetic profile that distinct it from 

macrolides and other antibiotics, it is a tissue selective antibiotic 
3 that can achieve high cellular concentrations after 

administration and subsequent slow, sustained release into the 

blood stream which results in therapeutic level of the drug 

being maintained for several days in the tissues, thus enabling 

the drug to be given once daily over a short course treatment 

regimen of 3-5 days.  

Bacterial meningitis (BM) is an acute infection of the protective 

membranes surrounding the brain (meninges) 4 which is 

followed by a central nervous system (CNS) inflammatory 

reaction that causes coma, seizure activity, increased 

intracranial pressure and stroke or even death 5. BM is a serious 

threat to global health accounting for an estimated 171000 

deaths worldwide per year 6. It is fatal in 50% of the cases if 

untreated, even when the disease is diagnosed early and 

adequate treatment is started, 5-10% of patients die, typically 

within 24-48 h after the onset of symptoms 7. 
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Fig.1: The chemical structure of azithromycin antibiotic  

 

Despite advances in antibacterial therapy and vaccine 

development, BM constitutes a significant cause of morbidity 

and mortality, mostly in pediatric patients. Several antibiotics 

have been used for the treatment of meningitis (e.g. ampicillin, 

ceftriaxone, vancomycin, gentamycin), but the continuous 

increase in the number of infections caused by bacteria 

resistant to one or more antibiotic classes represents a serious 

threat as it may lead to treatment failures. Although resistance 

cannot be prevented, but its development and spread can be 

slowed, one of the tools is maximizing diversity in the 

prescription of the treatment regimen 8. 

Despite the fact that azithromycin is highly effective against two 

out of the three main causative agents of bacterial meningitis 

(Haemophilusinfluenzae (H. influenzae) type b (Hib) 

and Streptococcus pneumonia (S. pneumoniae)) 9, it cannot be 

used for the treatment of meningitis because it doesn’t possess 

the appropriate physicochemical criteria that enables it to 

penetrate the blood brain barrier (BBB) which encapsulate the 

brain. Though it is lipophilic but it is a large molecule with a 

molecular weight of 749 Da. The presence of the BBB represents 

a big challenge for effective delivery of therapeutics to the 

brain. The BBB acts very effectively to protect the brain from 

common pathogens circulating in the blood 10, thus infections 

of the brain are not very common. However, since antibodies 

and antibiotics are too big to cross the BBB, infections that do 

occur are often very serious and too difficult to treat. 

Incorporating azithromycin in the oil core of a nanoemulsion 

system will protect the drug from being metabolized early by 

the hepatic enzymes, thereby increasing the circulation time of 

the drug in the blood stream and consequently will increasing  

the probability of its arrival to the brain. Making an advantage 

of the nanosized molecule, the drug may permeate the BBB and 

reach the meninges in adequate quantities to produce its 

therapeutic effect.  

Optimizing the effective variables; percentage of azithromycin, 

lecithin, Tween 80, glycerol, and vitamin E, appears curtail to 

minimize the particle size and maximize the stability of the 

nanoemulsion system. Since, nanoemulsion is a multivariate 

system during performance; the traditional optimization 

techniques such as one-variable-at-a-time method may involve 

a higher number of experimental trials to evaluate the 

interaction between the independent variables and the 

response 11. Furthermore, it does not consider the potential 

interaction between the affecting variables which might leads 

to sub-optimal results12.  On the other hand, the multivariate 

methods have been widely applied for the modeling of input 

effective variables to optimize the compositions of 

nanoemulsion system as output 13. One of the multivariate 

methods is artificial neural networks (ANNs) that models the 

interaction of the variables simultaneously during the 

performance by using universal mathematical learning 

algorithms. The algorithms are Incremental Back-Propagation, 

Batch Back-Propagation, Quick Propagation, and Levenberg-

Marquardt  14. The artificial neural networks have been used for 

representing non-linear functional relationships between 

variables. The ability of an ANN to learn and generalize the 

behavior of any complex and non-linear process makes it a 

powerful modeling tool. Solving and modeling the complex 

relation between input and output variable can be simply 

performed by an ANN model imitated by biological neuron 

processing. The generated model is used to predict the 

importance and the optimum value of each variable in the 

multivariate formulation process. In this research, the 

percentage of nanoemulsion compositions [drug 

(azithromycin), surfactant (lecithin), co-surfactant (Tween 80), 

glycerol, and antioxidant (vitamin E)] were modeled as effective 

variables by the multilayer feed-forward neural network. To 

obtain the appropriate model, the network was trained by using 

IBP, BBP, QP, and LM learning algorithms. The optimum 

topologies of each algorithm were determined by minimizing 

root mean squared error (RMSE) 15.  

The performance of the obtained topologies was compared by 

minimized absolute average deviation (AAD) and maximized R-

squared (R2) to select the final optimum model of the 

nanoemulsion system. The model was used to determine the 

importance and narrow levels of the effective variable. 

Moreover, the appropriate particle size of the nanoemulsion 

was predicted at the optimum conditions 16. 

 

Experiment 
Materials and methods 
 
Materials 

Soya bean oil was obtained from Sigma- Aldrich Chemie GmbH, 

Germany. The main unsaturated fatty acids in soya bean oil 

triglycerides are the poly-unsaturates, alpha-linolenic acid (C-

18:3); 7-10%, and linoleic acid (C-18:2); 51%, and the mono-

unsaturate, oleic acid (C-18:1); 23%. It also contains the 

saturated fatty acids, stearic acid, (C-18:0); 4%, and palmitic 

acid, (C-16:0); 10%. A lipophilic surfactant; pure soya bean 

lecithin with 70% phosphatidylcholine (Lipoid S75) was 

purchased from Lipoid GmbH, Ludwigshafen-Germany. The 

non-ionic surfactant Tween 80 (polyoxyethylene sorbitan 

monooleate), Oleic acid, Vitamin E were purchased from Fluka, 

Sigma- Aldrich Chemie GmbH, Germany. Glycerol was 

purchased from JT Baker, USA. Azithromycin (Fig. 1) was 

purchased from Euroasian Chemicals Private limited, India. 
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Water that was used as an aqueous phase for the nanoemulsion 

system, was deionized by Milli-Q filtration system, USA. 

The modeling and optimizing of nanoemulsion system was 

carried out using Neural Power software version 2.5. To design 

the experiments, the levels of the effective input variables were 

considered such as azithromycin (0.8- 1.6 %), lecithin (0.5- 2 %), 

Tween 80 (0.6- 2 %), glycerol (0- 2.75 %), vitamin E (0- 0.25 %) 

while the particle size was the interested response (Table 1). As 

shown in Table 1, the total of 39 experiment points have been 

randomly divided into two data sets, training set (32 points) and 

testing set (7 points). The measurements were conducted in 

duplicate to donate standard deviations. The software 

facilitates the option of randomization, the training and testing 

data sets were used to compare and ensure robustness of the 

network parameters, respectively. Moreover, the testing set 

was utilized to avoid over fitting by controlling errors. 

Additionally, the validation data set (6 points) which was 

excluded from training and testing sets, evaluates the predictive 

ability of the generated model (Table 2). 

 

Formulation of nanoemulsion system 

 

According to the experimental design, nanoemulsion was 

prepared using different types of emulsification method; low 

energy and high energy emulsification. The oil phase (which 

consist of soya bean oil and oleic acid as the oil core; Tween 80 

and lecithin as the surfactant mixture; azithromycin antibiotic, 

and vitamin E as an antioxidant) was titrated drop wise into the 

aqueous phase (which was prepared by dissolving glycerol that 

serves as a co-surfactant and an isotonic agent in the deionized 

water). The coarse emulsion that was formed using the 

overhead stirrer (Stirrer RW16 Basic IKA®, USA) for 30 minutes 

at 300- 310 rpm, and it was further homogenized using high 

shear homogenizer (PT3100 High Shear Homogenizer, 

POLYTRON, Kinematica AG, Switzerland) for 20 minutes at 4000 

rpm. The emulsion was then subjected to high pressure 

homogenization (GEA NiroSoavi NS1001L2K, GEA NiroSoavi, 

Italy) at 1000 bar for 8 cycles to produce the nano-sized 

emulsion. The temperature of the whole homogenization 

process was maintained below 40°C using ice-water bath. The 

actual particle size for the formulated nanoemulsions was 

measured by dynamic light scattering (DLS) with an angle of 

137° at room temperature of 25°C using Malvern Nano ZS90 

apparatus (Malvern, UK).  

 

The ANN description  

 

Artificial neural networks which consist of input, hidden and 

output layers are mathematic free functionalization of the 

complicated practical process. The layers which contain several 

nodes, are connected by multilayer normal feed-forward or 

feed-back connection formula. The hidden layer could be more 

than one parallel layer, however the single hidden layer is 

universally suggested. The connection in such a way that the 

nodes of particular layer are connected to the nodes of the next 

layer 15. The qualification is carried out by associated weights 

during learning process by well-known learning algorithms.  

The learning process 

 

In the learning process, the weights are calculated by the 

weighted summation of the received data from the former layer 

and transfer the next layer. The universal learning algorithms 

are IBP, BBP, QP, GA, and LM while the multilayer is the nodes’ 

connection type 16. The scaled data will be passed into the first 

layer, propagated to the hidden layer and finally meet the 

output layer of the network. Each node in the hidden layer or in 

output layer acts as a summing junction which modifies the 

inputs from the previous layer using the following equation: 

 

𝑦𝑖 =  ∑ 𝑥𝑖 𝑤𝑖𝑗 + 𝑏𝑗                                                (1)

𝑖

𝑗=1

 

 

where 𝑦𝑖 is the input of the network to 𝑗 node in hidden layer, 𝑖 

is the number of nodes, 𝑥𝑖  is the output of the previous layer 

while 𝑤𝑖𝑗  17 are the weights of connection between the  𝑖th 

node and the 𝑗th node. The bias associates with node 𝑗 is 

presented by 𝑏𝑗 . The main aim of the process is to find the 

weights for minimizing the error of RMSE which is obtained 

from the difference between network prediction and actual 

responses. 

 

𝑅𝑀𝑆𝐸 = (
1

𝑛
∑(𝑦𝑖 − 𝑦𝑑𝑖)2

𝑛

𝑖=1

)

1 2⁄

                           (2) 

 

where 𝑛 is the number of the points, 𝑦𝑖 is the predicted value 

and 𝑦𝑑𝑖  is the actual value. The learning process within an 

algorithm is continued until finding the minimum RMSE which 

is known as topology. In order to avoid random correlation due 

to the random initialization of the weights, learning of a 

topology is repeated several times. As a net result; the topology 

with the lowest RMSE is selected to be compared with other 

nodes’ topologies 18. Following the same manner; the 

topologies for the 𝑛 numbers of hidden layer for the specific 

algorithm are obtained. Finally the topologies of the algorithms 

are compared to select the provisional model that gives the 

maximum R2 (Eq. 3), minimum RMSE and AAD (Eq. 4). 

 

 

𝑅2 = 1 − 
∑ (𝑦𝑖 − 𝑦𝑑𝑖)2𝑛

𝑖=1

∑ (𝑦𝑑𝑖 − 𝑦𝑚)2𝑛
𝑖=1

                              (3) 

 

 

𝐴𝐴𝐷 =  
1

𝑛
∑

|𝑦𝑖 − 𝑦𝑑𝑖|

𝑦𝑑𝑖

𝑛

𝑖=1

× 100                          (4) 

 

where 𝑛 is the number of points, 𝑦𝑖 is the predicted value, 𝑦𝑑𝑖  

is the actual value and 𝑦𝑚 is the average of the actual values. 
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Run No. 

 
Azithromycin 

(w/w %) 
 

 
Lecithin 
(w/w %) 

 

 
Tween 80 
(w/w %) 

 

 
Glycerol 
(w/w %) 

 

 
Vitamin E 
(w/w %) 

 

 
Particle Size (nm) 

Actual Predicted 

Training Set 

1 1.4 2.0 0.6 0 0 94.0  ± 1.8 93.2 

2 1.4 2.0 1.0 0 0 100.7  ± 2.3 99.4 

3 1.4 2.0 1.2 0 0 104.6  ± 1.2 96.5 

4 1.4 2.0 1.8 0 0 85.7  ± 2.6 86.7 

5 1.4 2.0 2.0 0 0 82.7  ± 0.9 84.2 

6 1.4 1.0 0.6 0 0 89.9  ± 1.4 84.3 

7 1.4 1.0 
.0 

0.8 0 0 82.6  ± 4.6 87.2 

8 1.4 1.0 1.4 0 0 73.7  ± 2.6 73.2 

9 1.4 1.0 1.6 0 0 67.6  ± 0.7 70.5 

10 1.4 1.0 
.. 

1.8 0 0 71.7  ± 1.1 69.3 

11 1.4 1.0 2.0 0 0 69.5  ± 0.9 68.7 

12 1.4 1.0 0.6 0 0.25 117.9  ± 1.7 109.0 

13 1.4 1.0 0.8 0 0.25 97.7  ± 1.3 103.2 

14 1.4 1.0 1.2 0 0.25 89.8  ± 0.8 92.8 

15 1.4 1.0 1.8 0 0.25 74.4  ± 2.1 74.1 

16 1.4 1.0 2.0 0 0.25 77.6  ± 3.9 73.7 

17 1.4 2.0 1.6 0 0.25 77.9  ± 2.7 79.5 

18 1.4 2.0 1.6 1.5 0.25 73.0  ± 1.1 71.1 

19 1.4 2.0 1.6 2.75 0.25 76.3  ± 2.0 82.7 

20 1.4 0.5 1.6 2.5 0.25 102.2  ± 3.1 103.4 

21 1.4 2.0 1.6 2.5 0.25 85.2  ± 1.2 80.1 

22 1.0 1.0 1.2 2.5 0.25 96.9  ± 4.1 89.0 

23 1.6 1.0 1.2 2.5 0.25 82.7  ± 2.3 80.8 

24 0.8 1.0 1.0 2.5 0.25 64.6  ± 1.0 68.9 

25 1.4 1.0 1.0 2.5 0.25 86.0  ± 1.3 87.0 

26 1.0 1.0 2.0 2.5 0.25 59.0  ± 0.7 55.6 

27 1.2 1.0 2.0 2.5 0.25 67.8  ± 1.9 70.9 

28 1.4 1.0 2.0 2.5 0.25 80.2  ± 1.6 80.5 

29 0.8 2.0 2.0 2.5 0.25 50.6  ± 0.5 49.2 

30 1.2 2.0 2.0 2.5 0.25 59.2  ± 0.9 59.8 

31 1.4 2.0 0.8 0 0 92.4  ± 2.2 98.2 

32 1.4 1.0 1.6 2.5 0.25 98.7  ± 2.0  97.2 

 

Test Set 

1 1.4 2.0 1.4 0 0 93.0  ± 1.4 92.7 

2 1.2 1.0 1.2 2.5 0.25 95.8  ± 0.8 95.5 

3 1.4 1.0 1.0 0 0 84.7  ± 3.5 85.1 

4 1.0 2.0 2.0 2.5 0.25 54.2  ± 1.1 52.0 

5 1.4 1.0 1.2 0 0 76.4  ± 0.9 78.7 

6 1.4 2.0 1.6 1.0 0.25 71.7  ± 1.6 70.6 

7 1.4 2.0 1.6 2.25 0.25 75.6  ± 2.0 77.3 

 

Table 1: The experimental design that consist of training and testing data sets, each row represents an individual experiment 

while the columns refer to the compositions of nanoemulsion system.    The data are presented as mean ± SD (n=2). 
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Back Propagation algorithm 

 

In the application of artificial neural network, the BP network 

and its varied pattern are adopted in most of the neural 

network models, in fact, BP algorithm is a method to monitor 

learning 19. It utilizes the methods of mean square error and 

gradient descent to realize the modification to the connection 

weight of network. The modification to the connection weight 

of network is aimed at achieving the minimum error sum of 

squares. In this algorithm, a little value is given to the 

connection value of network first, and then, a training sample is 

selected to calculate gradient of error relative to this sample. 

The difference between the real output and expect output of 

the network is defined as the error signal; in the back 

propagation of error signal, the error signal is propagated from 

the output end to the input layer in a layer-by-layer manner. 

During the back propagation of error signal, the weight value of 

network is regulated by the error feedback 20. The continuous 

modification applied to make the real output of network closer 

to the expected one. The ideology guiding the learning rules of 

BP network is: the modification to the weight value and 

threshold value of network shall be done along the negative 

gradient direction reflecting the fastest declining of function. 

 
                 𝑥𝑘+1 = 𝑥𝑘 −  ɳ𝑘  

𝑔𝑘                                   (5) 

 

where, 𝑥𝑘  represents the matrix of current weight value and 

threshold value; 𝑔𝑘  represents the gradient of current function; 

ɳ𝑘  represents the learning rate 20. 

 

Results and discussion 
 
Modeling process 

The topologies of the algorithms 

The network of the nanoemulsion system has been organized 

for five nodes (percentage of each azithromycin, lecithin, Tween 

80, glycerol, and vitamin E) in input layer while the particle size 

of nanoemulsion was the only node in the output layer. The 

structure of the hidden layer was determined by examining a 

series of topologies with a range of node number from 1-15 for 

each individual algorithm. The learning model was performed 

for testing data set to determine minimum value of RMSE as a 

function of error 21. The performance was repeated 10 times for 

each node to exclude random correlation due to random 

initialization of the weight. The training was carried out 

identically for LM, QP, IBP, and BBP algorithms to obtain the 

optimum topology for each algorithm. Among the 10 times 

learning replicated data for each node; the minimum value of 

RMSE was selected and plotted versus the nodes of the 

algorithms’ hidden layer (Fig. 2). As shown, one node out of 15 

topologies for each algorithm represented the lowest RMSE and 

selected as the best topology for comparison. The chosen 

topologies were 5-7-1, 5-13-1, 5-13-1, and 5-14-1 for LM, QP, 

IBP, and BBP algorithms, respectively.      

 

 

 

Fig. 2 revels that; the topology of BBP-5-14-1 represents the 

lowest RMSE among the others, thus selected as provisional 

model for the formulation of nanoemulsion system. 

 

 

 

Fig. 2: The selected RMSE vs. node number of the nanoemulsion 

system network’s hidden layers for LM, QP, IBP, and BBP. The 

lowest RMSE value presented by the node of 7 (LM), 13 (QP), 13 

(IBP), and 14 (BBP). 

 

 

The selection of model 

 

To finalize the model that should be selected for the 

formulation of nanoemulsion, the values of RMSE, R2 and ADD 

were relatively studied for the chosen topology of each 

algorithm (LM-5-7-1, QP-5-13-1, IBP-5-13-1, and BBP-5-14-1). 

For the calculation of R2, the topologies prediction and actual 

values of nanoemulsion particle size were plotted for testing 

data set (Fig.3) as well as the training set (Fig. 4). As the scatter 

plots shows, BBP-5-14-1 present the highest R2 value for testing 

(0.984) and training (0.930) data sets. The AAD of testing and 

training sets for those chosen topologies were calculated in 

Table 3. As observed in Fig. 5, the lowest value among the AADs 

belongs to BBP-5-14-1. Having the minimum RMSE and AAD as 

well as maximum R2 from all the other topologies for testing 

data set; BBP-5-14-1 was therefore selected as a final optimum 

model for the formulation of nanoemulsion system. 

 

Validation of the selected model 

 

The validation of the optimized model was assessed by 6 

experimental points which were initially exclude from training 

and testing data sets (Table 2). The results shown in Table 2 

reveal the predicted and actual particle size values. No big 

differences were noted between the experimentally observed 

and the predicted particle size values. Additionally, RMSE (1.67) 

and AAD (1.55) values were quite acceptable to manifest a good 

predictive accuracy of the model.  
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Components Droplet Size (nm) 

 AZO % Lecithin % Tween 80 % Glycerol % Vitamin E %  Actual Value 
Predicted 

Value 
RSE % 

 1.4 2 2 2.5 0.25  54.7  ± 0.8 53.9 1.32 

 1.4 1 1.4 0 0.25  84.1  ± 3.6 86.7 2.98 

Validation 
Set 

1.4 2 1.6 2 0.25  72.8  ± 2.1 75.9 4.15 

 0.8 1 2 2.5 0.25  49.8  ± 1.9 50.5 1.52 

 1.4 2 1.6 0 0  90.9  ± 2.7 89.4 1.64 

 1.4 2 1.6 2.5 0.25  77.3  ± 1.1 80.1 3.56 

 

Table 2: The validation data set of the effective variables together with actual and predicted particle size of nanoemulsion system. 
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Fig. 4: The scatter plots of the predicted vs. the actual particle size values for the training data set which show the performed R2 of the optimized 

topologies, LM-5-7-1, QP-5-13-1, IBP-5-13-1, and BBP-5-14-1. 

Learning 

algorithm 
Architecture 

Training data Testing data 

RMSE R2 AAD RMSE R2 AAD 

LM 5-7-1 3.91 0.930 3.86 2.50 0.961 2.60 

QP 5-13-1 3.33 0.949 3.34 2.03 0.973 2.32 

IBP 5-13-1 4.13 0.922 3.89 1.82 0.978 2.16 

BBP 5-14-1 3.93 0.930 3.66 1.59 0.984 1.83 

 

Table 3: The performance results of the optimized topologies, LM-5-7-1, QP-5-13-1, IBP-5-13-1, and BBP-5-14-1on the particle size 

of the formulated nanoemulsion. 
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Fig. 5: The AAD values of the selected topologies in testing data 

set. 

 

 

The network of BBP-5-14-1 

 

Fig. 6 revels the network of BBP-5-14-1 as a final model for 

nanoemulsion system which consists of input, hidden, and 

output layers. The input layer with 5 nodes (percentage of 

azithromycin, lecithin, Tween 80, glycerol, and vitamin E) is the 

distributor for the hidden layer with 14 nodes which were 

determined by learning process.   

The input data of hidden nodes are calculated by weighted 

summation. Then the output data of the hidden layer are 

transferred to output layer (particle size) using log-sigmoid 

function. 

 

𝑆 =  ∑(𝑏 −  𝑊𝑖 𝐼𝑖)                                  (6)

𝑛

𝑖=1

 

where 𝑆 is the summation, 𝑏 is a bias, 𝐼𝑖  is the 𝑖th input to the 

hidden neuron and 𝑊𝑖 is the weight associated with 𝐼𝑖. The bias 

shifts the space of the nonlinearity properties 22. 

 

 

𝑓(𝑥) =  
1

1 + 𝑒𝑥𝑝(−𝑥)
                                 (7) 

 

 

 

 

where 𝑓(𝑥) is the hidden output neuron. As a result, BBP-5-14-

1 was used to determine the optimum as well as the importance 

values of the input variables of nanoemulsion system in order 

to achieve the desirable particle size. 

 

 

Fig. 6: The network architecture (5-14-1) of the multilayer 

normal feed-forward connection type of Batch Back 

Propagation algorithm which consist of 5, 14, and 1nodes in 

input, hidden and output layer, respectively. 

 

Verification of the model 

The optimum azithromycin loaded nanoemulsion was achieved 

with a composition of 1.4% azithromycin, 2% lecithin, 2% Tween 

80, 2.5% glycerol, and 0.25% vitamin E. With these optimum 

compositions, the predicted particle size value was 53.9 nm. 

The predicted and actual values were compared to check the 

adequacy of ANN analysis (Table 4). No significant difference 

was noted between the experimentally observed and the 

theoretically predicted particle size values. The sufficiency of 

the corresponding ANN model was verified based on this 

observation. 

 

 

 

 

Table 4: The optimized effective variables, model prediction and actual particle size of nanoemulsion system. 

 

Method 
 

 

Independent Variables 
  

 

Particle Size (nm) 

 

 

Azithromycin 

% 

 

Lecithin 

% 

 

Tween 80 

% 

 

Glycerol 

% 

 

Vitamin E 

% 

 

 

Actual 

Value 

 

Predicted 

Value 

 

RSE 

(%) 

 

ANN-BBP 

 

1.4 

 

2 

 

2 

 

2.5 

 

0.25 
 

 

54.7 ± 0.8 

 

53.9 

 

 

1.32 
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The variables’ graphical optimization 

 

The validated model (BBP-5-14-1) simulated the influence of 

the effective variables on the particle size of nanoemulsion 

system without further need for mathematic knowledge. The 

simulations demonstrate the impact of non-linear relationship 

of two variables on the response (particle size) while keeping 

other variables constant at optimum conditions and are   

represented graphically by a three dimensional plots (Fig. 7).  

Fig. 7 (A) demonstrates the interactive effect of surfactant 

concentration lecithin and co-surfactant Tween 80 on particle 

size. A decrease in particle size with increasing surfactant 

concentrations is well established in the literatures. The results 

obtained in this study recorded a decrease in particle size of 

azithromycin- loaded nanoemulsions with increasing surfactant 

and co-surfactant concentrations. The average particle size 

decreased significantly when the concentration of Tween 80 

was increased giving the lowest particle size at the highest 

concentration of Tween 80 (2%). Similarly; increasing lecithin 

concentration reduced the particle size giving the optimum size 

in a range of 1.2- 2% in the presence of 2% Tween 80. This 

phenomena could be attributed to excess amount of surfactant 

molecules adsorbed to oil/ water interface lowering the 

interfacial tension and reducing the Laplace pressure, thereby 

facilitating the formation of smaller oil droplets 23, 24. 

Furthermore, at higher surfactant levels, excess surfactant 

molecules will be available to efficiently cover the surfaces of 

the freshly formed oil droplets during homogenization, thus 

reducing droplets coalescence rate 25 and favoring droplet 

breakup process. Regarding the influence of Tween 80 % and 

drug loading on nanoemulsion particle size; Fig. 7 (B) reveals 

that increasing drug loading resulted in notable increase in 

particle size (at  highest levels of Tween 80) with minimum 

particle size recorded at the lowest drug loading 0.8% and the 

highest Tween 80 concentration 2%. This observation could be 

presumably due to the incorporation of more drug molecules in 

the oil core that lead to the formation of larger entities.  

 

 

 

 

Additionally, the drug may also exhibits amphiphilic properties 

that portion of drug molecules may merge themselves as spacer 

into the surfactant/ co-surfactant monolayer at the interface 

between oil and aqueous phases producing a rise in particle size 
26. Despite the fact that increase in drug loading led to increase 

in nanoemulsion particle size, yet; maximum drug loading of 

1.4% was chosen in the current study since commercially as well 

as therapeutically it is often essential to improve loading 

capacity of nanoemulsion- based delivery systems.  Fig. 7 (C) 

shows the effect of vitamin E % and Tween 80 % on particle size. 

It is evident from the plot that at low concentrations of Tween 

80, increment in vitamin E concentration (from 0% to 0.27 %) 

led to moderate increase in particle size which could be related 

to the effect of vitamin E on the viscosity of nanoemulsion. It is 

well known that the higher the viscosity of oil phase; the more 

difficult and inefficient the disruption of oil droplets within high 

pressure homogenization is, consequently; oil droplets break- 

up rate will be more restricted leading to creation of larger 

droplets 27 28 and 29. With the increase in Tween 80 

concentration, particle size decreases most probably due to 

their ability to decrease the interfacial tension between the oil 

and aqueous phases 30. 

 

Importance of the effective variables 

 

The validated model has determined the relative importance of 

the nanoemulsion system effective variables at optimum 

condition (Fig. 8). As shown, Tween 80 exerts the highest 

influence on the nanoemulsion system formulation with a 

relative importance of 29.47%. However, the effect of other 

variables such as percentage of azithromycin, lecithin, glycerol, 

and vitamin E were quite strong on the particle size as well. 

Thus, none of the variables was negligible in this work. 

 

Fig. 7: Predicted response surface plots illustrating the interactive effects of input variables on average particle size of azithromycin- loaded 

nanoemulsion 4E, (A): effect of % of lecithin surfactant, (B): % of drug loading, (C): % of vitamin E. 
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Fig. 8: The relative importance of the nanoemulsion formulation 

input variables, percentage of azithromycin, lecithin, Tween 80, 

glycerol, and vitamin E. 

 

Azithromycin-Loaded Nanoemulsions’ Stability Assessment  

Physical Stability during Storage: 

 

For therapeutic as well as commercial applications, it is often 

critical that nanoemulsion- based delivery systems remain 

physically stable throughout storage, transport, and 

administration. The physical appearance, particle size, PDI, zeta-

potential, pH, osmolality, as well as viscosity are the main 

parameters used to evaluate the physical stability of 

nanoemulsion formulations and these were employed in this 

study. Storage stability of azithromycin- loaded nanoemulsions 

at room temperature (25˚C ± 1˚C) and under extreme conditions 

(4˚C ± 1˚C and 45˚C ± 1˚C) over a period of 12 months was 

monitored. 4, 25, and 45˚C were chosen to represent cooling 

conditions, ambient storage in mild climates, and storage in 

warm climates, respectively. Particle size, polydispersity index, 

and zeta potential were determined during this period of 

storage. Insignificant changes in these parameters indicate 

nanoemulsion stability.  

 

 
Fig. 9: Long- term stability assessment of optimized nanoemulsion 

(4E) upon storage under variable temperature conditions (4˚C, 25˚C, 

and 45˚C). Particle size was measured as a function of time over a 

period of 12 months. Number of batches per study = 3.  

Fig. 9 depicts particle size of optimized nanoemulsion 

formulation 4E as a function of time in three different 

temperatures compared to nanoemulsion 5E (Fig. 10). All 

azithromycin- loaded nanoemulsions formulated based on the 

recommended optimum conditions (4E) were highly stable at 

4˚C as well as at room temperature during the tested period (12 

months). It was noted that nanoemulsions stored at 4˚C were 

remarkably stable with almost unchanged particle size (from 

54.7 nm ± 0.8 on day one to 56.5 nm ± 0.9 on day 360) over the 

12 months examination period, whereas for those formulations 

kept at room temperature (25˚C) the particle size increased up 

to 62.2 nm ± 5.3. Generally, 4˚C was the most appropriate 

storage temperature, however; long- term storage at 25˚C did 

not result in nanoemulsion aggregation, phase separation or 

drug precipitation compared to 4˚C storage conditions. The 

good stability could be attributed to the steric stabilizing effect 

of the non-ionic emulsifier (lecithin) by which a bulk steric 

barrier is formed preventing particle collision and limiting the 

occurrence of flocculation and coalescence12. However, it was 

also observed, as expected, that nanoemulsions stored at 45˚C 

exhibited a notable increase in particle size (from 54.7 nm ± 0.8 

up to 106.7 nm ± 3.9). This relatively slow destabilization 

process may be due (in part) to Ostwald ripening in which big 

particles grow at the expense of smaller particles due to the 

higher molecular diffusion of the smaller particles in the 

continuous phase 31 and because OR is a temperature sensitive 

phenomena; the increment recorded in particle size were 

significant at 45˚C  32. Additionally, up on increasing the 

temperature water evaporation from the continuous phase will 

take place which may disrupt the interfacial tension, 

electrostatic and static repulsions as well as the viscosity of the 

outer phase leading to significant particle size enlargement. 

Intravenous administration of large particles may induce 

several undesirable consequences. First; irritation at the site of 

injection 33, second; large particles could be recognized by the 

macrophages in the blood stream which results in rapid removal 

of nanoemulsion particles from circulation 34.  

 

Fig.10:  Long- term stability assessment of non- optimized 

nanoemulsion (5E) upon storage under variable temperature 

conditions (4˚C, 25˚C, and 45˚C). Particle size was measured as 

a function of time over a period of 12 months. Number of 

batches per study = 3.  
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Third; large nanoemulsion particles are unable to penetrate the 
BBB efficiently if they are designed to reach the brain cells for 
targeted therapy 35.Thus; as though no phase separation was 
observed at the end of the examination storage period, yet 
those formulations stored at 45˚C are practically considered 
unaccepted for intravenous administration. Fig. 10 reveals the 
results recorded for the stability assessment of azithromycin- 
loaded nanoemulsions (5E) over 12 months period of storage. 
Freshly prepared samples possess particle size of 72.9 ± 1.0 nm. 
Upon storage at 4˚C for 12 months; no appreciable change in 
particle size was observed (78.5 ± 2.3 nm), whereas keeping the 
formulations at 25˚C and 45˚C produced a significant increase in 
size (127.6 ± 4.7 nm, and 169.5 ± 2.6 nm, respectively).  
Compared to the optimized nanoemulsion (4E), non- optimized 
nanoemulsion 5E showed a rapid growth in particle size over the 
examined storage period when the formulated nanoemulsions were 
kept at 25˚C ± 1˚C and 45˚C ± 1˚C manifesting higher rate of physical 
instability than that recorded for nanoemulsion 4E. This observation 
could be explained by the presence of extra free emulsifier in form 
of micelles in formulations 4E (total surfactant / co-surfactant 4%) 
compared to formulations 5E (total surfactant mixture 2.5%) that will 
help improving the stability and preventing coalescence. At 4˚C, both 
4E and 5E nanoemulsion formulations were said to have good 
physical stability since the storage temperature was almost 
approaching freezing temperature, where by all particles were 
believed to be in frozen state preserving their properties with slower 
movement  and lower kinetic energy. It is proposed that; upon 
increasing the temperature, the movement of oil droplets will 
increase, subsequently their physical contact will also increase 
leading to higher tendency to flocculation and coalescence 36. 
Additionally, the noticeable difference between the stability of the 
formulation stored at 4˚C and those stored at higher temperatures 
(25˚C and 45˚C) could be due to alteration in the optimum curvature 
of surfactant monolayer on account of the progressive dehydration 
of the hydrophilic head group non-ionic surfactant Tween 80 at 
higher temperatures which favors an ultralow interfacial tension and 
promotes droplet coalescence 37. Furthermore; this process 
decreases the hydration repulsion among oil droplets allowing them 
to aggregate with each other’s. Similar results were reported by Rao 
and McClements in their study [Food-grade microemulsions, 
nanoemulsions and emulsions: Fabrication from sucrose mono 
Palmitate and lemon oil] 38. Temperature affects the rate of buildup 
of interface layer by modifying the adsorption rate and interface 
features. Also influences film compressibility by altering surfactant 
solubility in the continuous phase promoting for the formation of 
larger particles 39. Thus; even though 4E and 5E nanoemulsion 
formulations were properly stabilized against the coagulation/ 
coalescence process, OR could still be the cause for their substantial 
breakdown 40.  

Morphological Studies 

Particle size determination should utilize at least two complementary 
techniques since the size ranges usually expand beyond the capacity 
of detection of any single instrument. For particle size lower than 
1µm, dynamic light scattering, electron microscopy both are useful 
41. In order to confirm the DLS data and to gain details about the form 
and size of nanoemlsion oil droplets, transmission electron 
microscopy (TEM) was applied (Fig. 11). For size determination, TEM 
has the utility of direct visualization of each particle, which provide 

more accurate information about the size, size distribution and more 
important, the shape of the particles 42. Additionally, particles other 
than nanoemulsions if present can be clearly observed in TEM 
images. When employing TEM technique for the characterization of 
nanoemulsions, the existence of larger particles is not an entirely 
uncommon observation 43 44. When the size of an individual particle 
was determined for freshly prepared samples with the help of scale 
bars on the right side of each image, almost all particles were found 
to be smaller than 100 nm (Fig. 11) ranging between (42.2 - 68.1 nm) 
in size with nearly mono-dispersed and almost spherical shape oil 
droplets which is closely corresponding to the results obtained by 
dynamic light scattering (DLS). Therefore, from the view point of 
particle size and shape; it could be deduced that the optimized 
nanoemulsion 4E was safe for intravenous administration.  

Fig. 11: TEM photomicrographs of freshly prepared azithromycin-
loaded nanoemulsion 4E after negative staining with uranyl acetate. 
The scale bars represent 100, 200, and 500 nm respectively. 

Conclusions 

The compositions of nanoemulsion system including 
percentage of each azithromycin, lecithin, Tween 80, glycerol, 
and vitamin E as effective variables were modeled by ANN to 
identify the desirable particle size of the optimum 
nanoemulsion system. To obtain the qualified network, 
different algorithms were learned using training and testing 
data sets. The results of the learning program were 4 topologies 
(LM-5-7-1, QP-5-13-1, IBP-5-13-1, and BBP-5-14-1). The 
performance of these topologies were optimized by RMSE, R2, 
and AAD. The topology (BBP-5-14-1) with the lowest RMSE, AAD 
and the highest R2 was chosen as provisional network of the 
nanoemulsion. The model has determined the optimum values 
and relative importance of the effective variables. The 
importance of each variable was Tween 80 (29.47%), 
azithromycin (21.38 %), lecithin (18.36 %), glycerol (16.72 %), 
and vitamin E (14.07 %) which indicate that none of the 
variables is neglect able. The predicted optimum point was 
azithromycin percentage of 1.4%, lecithin of 2%, Tween 80 of 
2%, glycerol of 2.5%, and vitamin E of 0.25% that experimentally 
performed to obtain actual particle size of (54.7nm ± 0.8). In 
conclusion, batch back propagation-ANN is an efficient 
quantitative tool that is capable of modeling the effective input 
variables to predict the desirable particle size for a stable 
nanoemulsion system loaded with azithromycin antibiotic. 
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