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ABSTRACT 22 

Aromatic hydrocarbons (benzene, toluene, ethylbenzene et al.) are part of main 23 

components of air pollution and odor nuisance. However, previous studies on 24 

simultaneous detection of aromatic mixtures and analysis of odor intensity by 25 

electronic nose (E-nose) were limited. The aim of this study is to develop a novel 26 

E-nose system to simultaneously determine chemical concentrations and odor 27 

intensity of benzene, toluene and ethylbenzene mixtures . The system consists of a 28 

sensor array with 5 gas sensors, a signal converter and a pattern recognition system 29 

which based on Back Propagation (BP) neural network. 300 groups of aromatic 30 

hydrocarbons mixtures (benzene, toluene and ethylbenzene) with different 31 

concentrations were determined by sensor array and gas chromatography (GC) to 32 

build, test and optimize the BP neural network. Then the optimum structure and 33 

functions of the BP network were verified by about 50 times of contrast tests. Results 34 

showed that the average relative error of concentrations measured by the E-nose 35 

system was 9.71% relative to the results of GC. Furthermore, six odor intensity 36 

prediction models were used to convert the concentrations of the aromatic mixtures to 37 

their odor intensity. Based on the comparison with sensory analysis, Weber-Fechner 38 

law model, Vector model and Simplified Extended Vectorial model were adopt to 39 

predict the odor intensity of single, binary and ternary compounds respectively.  40 

Keywords: Aromatic hydrocarbons, Electronic nose, Artificial neural network, 41 

Odor intensity, Gas sensor 42 
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1.  Introduction 43 

Aromatic hydrocarbons (benzene, toluene, ethylbenzene et al.) form an important 44 

group of volatile organic compounds (VOC) and have been confirmed as part of the 45 

most malodorous components
1, 2

. Previous studies showed that the emission of 46 

aromatic hydrocarbons may occur in both indoor (living room, plants et al.) 
3, 4

 and 47 

outdoor (landfill, industrial area, oil refineries et al.) environments 
5, 6

 which may 48 

cause leukemia, lung tumors, myelitis, epilepsy and other occupational health 49 

problems to residents nearby
7, 8

. With the increase of public concern, monitoring 50 

aromatic hydrocarbons became vital and the analysis methods as well as the apparatus 51 

have attracted much attention. 52 

Since the 21st century, there has been increasing researches in order to achieve 53 

more objective and faster methods to analyze VOC, which led to the development of 54 

E-nose system. An E-nose system is a gas monitor instrument that mainly comprises a 55 

sensor array and an appropriate pattern-recognition system capable of recognizing 56 

simples
9-11

. At present, pattern-recognition system was the key part because it affected 57 

analysis results greatly. For example, principal component analysis (PCA), support 58 

vector machines (SVM) and partial least square (PLS) were most used for qualitative 59 

analysis of multiple VOC 
12-14

, independent component analysis (ICA) and singular 60 

value decomposition (SVD) were most applied in quantitative analysis of single gas
12, 

61 

15-17
 while the most common method for odor identification and determination of odor 62 

intensity were artificial neural network (ANN) 
9, 17-19

.  63 

Page 3 of 35 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



4 
 

However, to the best of our knowledge, most existing E-noses always failed to 64 

achieve precise quantitative analysis of mixture gases. In addition, most E-noses 65 

associated the sensors response values with odor intensity directly and used odor 66 

sensory method to test the odor intensity
20-22

. Once the target compound was changed, 67 

the whole E-nose system had to be rebuilt, requiring more efforts. In previous studies, 68 

odor intensity prediction models which can convert chemical concentrations to odor 69 

intensity by mathematical formulas had been applied in odor determination
17, 23-25

. 70 

The formulas can be compiled to code and written into ANN that expanded the scope 71 

of application. Meanwhile, air quality need to be evaluated by both odor intensity and 72 

chemical concentrations of VOC
26

. Taking the complicated sources of aromatic 73 

hydrocarbons into account, it is necessary to develop a novel E-nose system to 74 

analyze concentrations and odor intensity of aromatic hydrocarbons. 75 

In this study, a novel E-nose system which included a sensor array, a signal 76 

converter and a pattern recognition system was developed to simultaneously 77 

determine chemical concentrations and odor intensity of benzene, toluene and 78 

ethylbenzene mixtures. The sensor array was equiped with 5 selected sensors, the 79 

signal converter converted electrical signals to response values and back propagation 80 

(BP) neural network was chosen as the pattern recognition system which converted 81 

response values of component in mixtures to individuals’ concentrations. Then the 82 

concentrations determined by the E-nose were correlated to the results of gas 83 

chromatography-flame ionization detector (GC-FID)
27

. Furthermore, six prediction 84 
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models were adopted to convert the concentrations to odor intensity of mixtures and 85 

the results were verified by the comparison with sensory analysis. 86 

2. Materials and methods 87 

2.1. Sensors array for E-nose 88 

The most significant component of an artificial olfaction system is sensor array. 89 

The signal of the sensor array is interpreted by some computational methods to 90 

present the measuring results of gas concentrations or other characteristics. Among 91 

most of E-noses, metal oxide type of sensor was used due to its long-term stability 
28

. 92 

Catalytic combustion type and electrochemical type were also selected occasionally 
29

. 93 

In this study, 12 sensors, which belonged to above three types and were from three 94 

manufacturers, were selected to compose the sensor array. The basic data of them was 95 

shown in Table 1. 96 

2.2 E-nose system setup 97 

A customized E-nose has been developed and used for determining 98 

concentrations of aromatic hydrocarbons gases in this study and the schematic was 99 

presented in Fig.1. A cylindrical glass container (volume of 17.3 L) with a hole 100 

(diameter of 4 cm) on its lid worked as the gas vessel. A simple plug was just used to 101 

seal the vessel while another one was applied to seal and connect to the sensor array. 102 

Therefore, when the latter was used, the hole was plugged up and the gas in the sealed 103 
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vessel would have full contact with the array at the same time. The whole gas vessel 104 

was kept in a constant temperature and humidity instrument, the temperature was 25 ± 105 

0.5 °C and the relative humidity was 45% to 50%. 106 

Originally, the sensor array was composed of 12 gas sensor, a temperature sensor 107 

and a humidity sensor, as the experiments proceeded, the unsuitable sensors were 108 

removed while the suitable sensors were retained (the select method was shown in 109 

Section 2.4). The response values of the sensor array were converted from electrical 110 

signals to digital signals by the signal converter and recorded by the pattern 111 

recognition system. The method of pattern recognition used in this study was BP 112 

neural network 
30

 and its procedure code was compiled by Matlab (Matrix & 113 

Laboratory, programming software). 114 

2.3 Databases measurement method 115 

2.3.1 Preparation of working gases 116 

In this study, the working solutions were benzene, toluene and ethylbenzene with 117 

purity > 99.9% (J & K Chemical Technology, China). A certain volume of working 118 

solutions was injected to the gas vessel by a micro-injector, and then the plug without 119 

sensors was plugged immediately to seal the gas vessel. After that the electric fan was 120 

turned on and kept for ten minutes to make the solution evaporate rapidly and 121 

uniformly to form aromatic hydrocarbon gaseous mixture with target concentration. 122 

The plug was replaced by the one with sensor array to make the sensor array contact 123 
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with the gas completely. 124 

2.3.2 GC-FID analysis procedure 125 

After gaseous mixture reached target concentration, 1 mL gas was extracted by a 126 

micro-injector through the gas export (shown in Fig.1). The chemical concentration of 127 

the gas was measured by a gas chromatography (GC-2014, Shimadzu, Japan) with a 128 

flame ionization detector and a Rtx-5 capillary column (30 m × 0.25 mm ID, 0.5 µm 129 

film thickness). The carrier gas (nitrogen) was operated at 1.0 mL min
-1

 and the flow 130 

rate of hydrogen and air was 20 mL min
-1

. The inlet temperature was 200 °C and the 131 

split ratio was 1:10. The column oven temperature was set at 60 °C for 3 min and up 132 

to 150 °C at 10 °C min
−1

 and held for 3 min. 133 

2.3.3 E-nose preheating 134 

After the E-nose was turn on, it needed 2 hours to preheat the sensor array, 135 

making all sensors stable to prevent any baseline drift in the experiment.  136 

2.3.4 E-nose response 137 

After the E-nose was turned on, the computer began to record the response 138 

values of sensor array. The response values increased gradually as the sensor array 139 

contacted with the gas in the gas vessel (after 2.3.2). After a period of time the values 140 

became stable, these data were the response values of the tested gas
31

. The response 141 

values and the response time were recorded in the computer. 142 

Page 7 of 35 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



8 
 

2.3.5 E-nose recovery 143 

After the determination was finished, the lid of the gas vessel was opened. With 144 

the rotation of the electric fan, the gas spread to the fuming cupboard gradually. 145 

Meanwhile, the response values began to decrease and returned to the baseline after 146 

some time. The recovery time was recorded in the computer
31

. The above was a 147 

complete gas determination process. 148 

GC-measured concentrations and E-nose response values composed the 149 

databases used to build, test and optimize the BP network. 150 

2.4 Selection and characterization of sensor array 151 

In accordance with the method in Section 2.3, 0.4 µL working solution of 152 

benzene was injected into the vessel. After completely volatilizing, the concentration 153 

of gaseous benzene in the vessel was 20 mg m
-3

. If the response value of a sensor 154 

remained on the baseline, this meant that the sensor was not suitable for measuring 155 

benzene. The same procedure was used to select the suitable sensors for toluene and 156 

ethylbenzene. Finally, the sensors unsuitable for all three compounds were weeded 157 

out and the rest of the sensors composed the array of the E-nose. 158 

2.5 Concentrations determination 159 

2.5.1 Databases measurement  160 

In order to build a complete E-nose system, a database composed of response 161 
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values and corresponding chemical concentrations was needed. That database was 162 

called training database and the data in it were called training data 
32

. In the national 163 

standard of China, the concentrations of aromatic compounds in the workplace have 164 

strict standards. The maximum permissible concentration-time weighted averages 165 

(PC-TWA) of benzene, toluene, ethylbenzene were 6 mg m
-3

, 50 mg m
-3

, 100 mg m
-3

 166 

respectively 
33

. Therefore, the testing range of concentration of aromatic hydrocarbons 167 

was 5 to 200 mg m
-3

 in this study. Specifically, the training database contained 210 168 

groups of data which included benzene, toluene and ethylbenzene in the scope of 5 169 

mg m
-3

 to 200 mg m
-3

. In the training database, 60 groups were single compounds, 45 170 

groups were binary mixtures, and 105 groups were ternary mixtures.  171 

Another database composed of different response values and the corresponding 172 

chemical concentrations was needed to test and optimize the E-nose system, which 173 

was called test database and the data in it were called test data. The test database 174 

included 80 groups of data which were also uniformly distributed in the range of 5 mg 175 

m
-3

 to 200 mg m
-3

. All test data were different from training data and were measured 176 

by the method in Section 2.3. 177 

2.5.2 BP network structure design 178 

Five sensors were selected and composed the sensor array of the E-nose system. 179 

Due to the cross-sensitivity, selection differences and stability differences of gas 180 

sensors
34

, when a single sensor is used to measure gas mixtures, it may have response 181 
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to more than one kind of gas, so it is difficult to use general mathematical method to 182 

analyze the response values. The problem can be solved by pattern recognition 183 

technique which employs computer to recognize the sample from the sample library
9
. 184 

BP neural network algorithm has been one of the most frequently-used pattern 185 

recognition techniques in the field of E-nose because it is powerful, easy to 186 

understand and simple to train
30

. Thus BP neural network was chosen to build E-nose 187 

software system and Matlab was used to write program code. 188 

BP neural network is a nonlinear and self-adaptive information processing 189 

system and consists of a large number of processing unit
30

. The basic structure 190 

includes input layers, hidden layers and output layers. Each layer is composed of 191 

neurons and transfer function. In this study, the dimensions of input and output vector 192 

were consistent with that of input and output layer and were determined by the 193 

number of the sensors and the types of the measured gases. The number of input layer 194 

neurons was five and the number of output layer neurons was three. The hidden layers 195 

had a most important influence on BP neural network’s results, so the amount of the 196 

hidden layers and neurons in each layer as well as the transfer function types need to 197 

be tested and optimized.  198 

The BP neural network can be built with the simplest hidden layer structure, but 199 

the training failed to converge with too few hidden layers or neurons. Therefore, the 200 

system began with only one hidden layer and added one each time until the 201 

convergence started.  202 
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  Before the training, the training data were normalized 
35

, the normalization 203 

formula was 204 

� = �� −Min	
�Max − Min			�1	 

Where A is original training data, B is normalized training data, Min is the 205 

minimum of all the original training data, and Max is the maximum of all the original 206 

training data.  207 

After normalization and training convergence, the BP network was built. Since 208 

the result of each training was different, in order to reduce the random error, the data 209 

were trained three times, and every result was stored respectively. These three same 210 

networks were called parallel networks. 211 

After training completion, each parallel neural network was invoked again, and 212 

the 80 groups of test data (which were normalized by the same method) were led in, 213 

the measuring results were calculated by Matlab. Because of the simple structure of 214 

the network, the results were of low accuracy, so the BP neural network need be tested 215 

and optimized. Firstly, the transfer function and training function were tested in 216 

sequence to make the measuring more accurate. Then, the number of hidden layer was 217 

added from the minimum to the number which could make the measuring result 218 

achieve best accuracy. The same method was used for testing and optimizing the 219 

number of neurons in each hidden layer. The whole process of modification was 220 

single variable experiment and all tests were repeated three times.  221 
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2.5.3 Comparison with GC-FID 222 

The GC-FID technology for aromatic hydrocarbons determination was already 223 

well-developed, so the concentrations measured by GC-FID were used as the true 224 

values while the results of E-nose were used as treated measured values 
16

. Those two 225 

kinds of values were compared, and the average relative errors (ARE) of test data 226 

were calculated as the criterion of accuracy. Through the modification, the best 227 

parameters of the neural network were ascertained and the codes of them were written 228 

into the final software system. 229 

2.6 Odor intensity determination 230 

Till date, many prediction models have been proved its ability to convert 231 

concentrations to odor intensity
24

. In this study, the optimum models for aromatic 232 

hydrocarbons were selected and the constants of each of model were also calculated. 233 

The odor intensity of a series of aromatic hydrocarbons gases of different 234 

concentrations (5 mg m
-3

 to 200 mg m
-3

) were measured by odor sensory method. 235 

Then linear regression and nonlinear regression were used to calculate constants. 236 

Detailed measurement method was as follow: each tested compound was respectively 237 

injected into an olfactory-bag (3 L volume and full of clear air), when all the 238 

compounds had completely evaporated, odor sample was prepared through 239 

transferring a certain quantity of gas from the previous olfactory-bag to a new bag by 240 

injector. Then 6 sniffing panelists evaluated the testing gas according to the odor 241 
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intensity referencing scale (OIRS, from level 1 (aqueous solution of 1-butanol of 12 242 

mg m
-3

) to level 8 (1550 mg m
-3

) with a geometric progression of two) 
23

, the mean 243 

results were calculated as the final odor intensity. 244 

 After all the constants were confirmed, the odor intensity of the gases whose 245 

concentrations were same as the test database was measured by odor sensory method. 246 

The prediction models were employed to predict the odor intensity and the results 247 

were compared with sniffed values, then the optimum models were determined. 248 

3. Results and discussion 249 

3.1 The sensor array  250 

After selecting all sensors, the suitable sensors MC119, MQ6 and TGS2610 were 251 

responded to benzene, toluene and ethylbenzene. Sensor 2M008 was responded to 252 

toluene and ethylbenzene. Sensor WSP2620 was only responded to ethyl benzene.  253 

For E-nose, the very short measuring time is one of the significant advantages, 254 

while the response and recovery time are the main restricting factors. So in 255 

accordance with the method in Section 2.3, the response values of 100 mg m
-3

 256 

benzene, toluene and ethylbenzene were measured respectively. As shown in Fig.2, 257 

the response values, response time and recovery time were all recorded and the 258 

response recovery curve was drawn. The values of MC119 were not very stable, so 259 

the average of 15 continuous tested values was defined as the its response value
36

. 260 

The response time of all sensors was less than 4 minutes and the recovery time was 261 
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less than 2 minutes. The rapid measuring speed made the determination process finish 262 

in 10 minutes, compared with the traditional method, the determination time was 263 

greatly shortened. 264 

In order to test the stability of the sensor array, twenty groups of response values 265 

of single gas of benzene, toluene and ethylbenzene were measured respectively. The 266 

concentrations ranged from 5 mg m
-3

 to 200 mg m
-3

 and the interval was 10 mg m
-3

. 267 

All the data were measured three times and the relative standard deviations (RSD) of 268 

response values were calculated, the results were shown in Fig.3. All RSD values 269 

were less than 7%, which showed the experiment had good precision. 270 

3.2 BP network test and optimization 271 

The purpose of this section is to get the minimum error results by testing and 272 

optimizing BP network structure. As the method in 2.5, transfer function, training 273 

function, number of hidden layers and number of neurons in each hidden layer all 274 

needed to be modified. The functions ‘logsig’, ‘purelin’ and ‘trainbfg’ were set as 275 

default, and the minimum number of hidden layers and neurons which can make 276 

training convergent were 3 and 16 respectively. Other parameters would be 277 

discussed then. 278 

3.2.1 Function 279 

Six kinds of transfer functions named ‘logsig’, ‘dlogsig’, ‘tansig’, ‘dtansig’, 280 

‘purelin’ and ‘dpurelin’ were tested. The former four ones were hidden layer functions 281 
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and ‘logsig’ was considered as the best one since the normalized training data were all 282 

smaller than 1. The last two functions were output layer functions and only ‘purelin’ 283 

could make the training converge, so ‘purelin’ was adopted. 284 

Relative to the transfer function, the training function have a greater significanc. 285 

In Matlab, fifteen kinds of training functions were provided. With ‘logsig’ and 286 

‘purelin’, 3 hidden layers and 16 neurons as parameters, all training functions were 287 

used to train the network. The AREs of all funtions were calculated and the results 288 

showed that ‘trainlm’ had the smallest error and the value was 12.77%. 289 

3.2.2 Hidden layer 290 

The network with less than 3 hidden layers can’t converge. Therefore, only 3 291 

hidden layers were employed in the first training process. Then the process was 292 

repeated with increasing one layer at a time until the ARE reached the minimum. 293 

Through 6 times training (3 layers to 8 layers), ultimately, the optimum number of 294 

hidden layers was 6 and the ARE was 11.62%. 295 

3.2.3 Neurons  296 

The first training process was carried out with 16 neurons in each layer and 297 

repeated with increasing one neuron at a time to modify. Through 7 times training (16 298 

neurons to 22 neurons ), 20 neurons had the samllest ARE and the value was 9.71%. 299 

Discussed above, the BP neural network used ‘logsig’ and ‘purelin’as transfer 300 
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function and ‘trainlm’ as training function and was composed of 210 groups of 301 

training data, 5 dimensions input layer and 3 dimensions output layer, 6 hidden layers 302 

and 20 neurons in every layers.  303 

3.3 Comparative analysis of E-nose and GC-FID 304 

Through measurement of 80 groups of test data, the results showed that the 305 

network could measure the chemical concentrations of benzene, toluene, ethylbenzene 306 

in the scope of 5 mg m
-3

 to 200 mg m
-3

. The test set was used to validate the 307 

determination capabilities of the E-nose ( Fig.4 ). The Pearson correlation coefficient, 308 

the Significance of paired-sample T-test with 95% confidence interval, the ARE of the 309 

predicted results and the correlation coefficient between E-nose and GC-FID 310 

measured values were shown on Table 2. The results showed that the E-nose system 311 

could determine respective concentrations of aromatic hydrocarbon mixtures 312 

simultaneously and it had a high accuracy relative to GC-FID. 313 

3.4 Odor intensity analysis 314 

Odor pollution has been one of the seven major environmental pollution hazards 315 

and aromatic hydrocarbon is one of the most common causes of odor pollutants. After 316 

years of experimental researches, a conclusion had been found that for a single 317 

material, the odor intensity increased with the increasing of chemical concentration, 318 

but it was not a simple linear relationship. Furthermore, due to the interaction between 319 

odor compounds，the total odor intensity of multiple mixtures is not simply the sum of 320 
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all the components which let the prediction become difficult. 321 

3.4.1 Prediction models review 322 

In the recent researches, some prediction models have been proved to have high 323 

prediction accuracy, such as Weber-Fechner law, Power Law Model and Linear Model 324 

for single compounds, the Vector Model for the binary compounds, Extended 325 

Vectorial Model (EV Model) for ternary compounds and Strongest Component Model 326 

(SC Model) and Euclidean Additivity Model (EA Model) for both of binary and 327 

ternary
25, 37-39

. Their formulas were shown in Table 3. 328 

3.4.2 Prediction models simplification 329 

The EV model was used to predict the odor intensity of ternary compounds, the 330 

formula of which contains 3 constants. When one of the compounds changed, all the 331 

three constants would change accordingly. So model simplification was significant.  332 

Through the study of the interaction of odor, for the ternary mixtures, there was a 333 

linear relationship between the sum of the odor intensity of the entire single 334 

compound (sum intensity, Is) and the odor intensity of the mixture (total intensity, It). 335 

If the odor intensity of each single compound (single intensity, IA) is approximately 336 

equal, the degree of interaction of the compounds remains the same
24

. For the benzene, 337 

toluene and ethylbenzene, through sniff and calculation, the formula was  338 

�� = 0.36815 · �� = 0.36815 · �3 · ��	 = 1.10445 · �� (2) 339 
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the R
2
 was 0.996. 340 

When the single intensity was approximately equal, the formula of EV model 341 

was 342 

��� = 3 · ��� + 2 · ��� · �cosα�! + cosα�" + cosα!"	 (3) 343 

For this study, the constants were confirmed, so set 344 

cosα�! + cosα�" + cosα!" = 3 · cosα (4) 345 

The formula was changed as 346 

��� = 3 · ��� + 6 · ��� · cosα = 3 · ����1 + 2cosα	 (5) 347 

The formula (2) was put into the formula (5), the formula was changed as 348 

�1.10445 · ��	� = 3 · ����1 + 2cosα	 (6) 349 

Then, the cosα was calculated, the result was -0.30, the formula of simplified 350 

Extended Vectorial (SEV) model was 351 

��� = ��� + �!� + �"� − 0.60 · ��� · �! + �� · �" + �! · �"			�7	 

3.4.3 Prediction of the odor intensity  352 

For each single compound in aromatic hydrocarbons，the constants of every 353 

models were calculated by linear regression or non-linear regression，the results were 354 

shown in Fig.5 and the formulas and the correlation coefficients (R
2
) of each model 355 

were shown in Table 4, all of R
2
 were higher than 0.97. 356 

The measuring method in Section 2.5 was used to measure the chemical 357 

concentrations of test database by the E-nose, then the prediction models were used to 358 
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convert the chemical concentrations to the odor intensity, the results were called 359 

predicted results. The method in Section 2.7 was used to measure the odor intensity of 360 

all samples, the results were called measured results. 361 

These predicted results and measured results were compared and the best models 362 

were applied in E-nose system. The Pearson correlation coefficient, the Significance 363 

of paired-sample T-test with 95% confidence interval and the ARE of the predicted 364 

results were shown on Table 5. As shown in the results，the Weber-Fechner law model, 365 

the Vector model and the SEV model had the smallest average relative error which 366 

meant the best precision and accuracy. So the three models were used to predict the 367 

odor intensity, the total ARE was 5.31%, Pearson correlation coefficient was 0.947 368 

and Significance of paired-sample T-test was 0.175. 369 

Finally, the Matlab was used to edit code and the formula of each best prediction 370 

model was written into the program to realize the function that can simultaneously 371 

determines the chemical concentrations and the odor intensity. 372 

3.5 Comparison with previously reported E-noses 373 

Compared with previously reported E-noses, the testing time for one test was 374 

less than ten minutes, which kept the advantage of fast determination. 375 

On the analysis of the error, the relative errors of chemical concentrations and 376 

odor intensity were 9.71% and 5.31% respectively. Therefore, the accuracy of the 377 

novel E-nose maintained a similar level in comparison to previously reported E-noses.  378 

In the field of environmental research, the application of previously reported 379 

E-noses focused on qualitative analysis single or mixed gases, quantitative 380 
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determination of concentrations of single gas or odor analysis. However, there has 381 

been few study on the simultaneously quantitative analysis of mixed gas, so it was 382 

still a problem needed to be solved. The E-nose in this paper could quantitatively 383 

determine the chemical concentrations and measure odor intensity of aromatic 384 

hydrocarbon mixed gases simultaneously, which extended the range of application. 385 

4. Conclusion 386 

In the present study, an E-nose system which is based on the BP neural network 387 

was designed. It could rapidly, conveniently and accurately determine the chemical 388 

concentrations and odor intensity of the mixtures of benzene, toluene, ethylbenzene in 389 

the scope of 5 mg m
-3 

to 200 mg m
-3

, the average relative error of concentrations and 390 

odor intensity were 9.71% and 5.31% respectively. The concentrations were measured 391 

by BP neural network while the odor intensity was measured by model prediction. 392 

The different models for single, binary and ternary compounds were Weber-Fechner 393 

law model, Vector model and Simplified Extended Vectorial model respectively. The 394 

overall results of the study suggest the potential of E-nose as a device for 395 

determination of the chemical concentrations and odor intensity of aromatic 396 

hydrocarbon mixtures. 397 
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Figure caption 477 

Fig.1. The basic structure of the E-nose system 478 

Fig.2. The sensor array response recovery curve 479 

Fig.3. The relative standard deviation of the benzene, toluene and ethylbenzene 480 

Fig.4. The relationship of CG-FID versus E-nose results from linear regression 481 

Fig.5. The results of regression of Weber-Fechner law, Power Law Model and Linear 482 

Model 483 
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Table.1 The basic data of the sensor array 499 

Name Manufacturer Type 

2M008  Guotaihengan metal oxide 

TGS2610 Figaro metal oxide 

TGS822  Figaro metal oxide 

TGS823  Figaro metal oxide 

TGS825  Figaro metal oxide 

TGS826  Figaro metal oxide 

MQ6 Winsen  metal oxide 

WSP2620 Winsen  metal oxide 

MC115 Winsen  catalytic combustion  

MC119 Winsen  catalytic combustion  

ME3-C6 Winsen   electrochemical 

ME3-C7 Winsen   electrochemical 
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Table.2 The comparative result of E-nose and GC-FID 514 

  Pearson Significance ARE/% R
2
 

Single 0.996  0.911 4.90  0.992 

Binary 0.991  0.982 7.13  0.982 

Ternary 0.984  0.559 12.34  0.982 

Total 0.990  0.622 9.71  0.986 
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Table.3The formulas of prediction models 539 

Models Formula 

Weber-Fechner law I = K · logC + n 

Power Law Model I = K · $	% 

Linear Model I = K · ln(OAV) + n 

Vector Model ��� = ��� + �!� + 2 · cosα · �� · �! 

EV Model ��� = ��� + �!� + �"� + 2 · �� · �! · cosα�! + 

2 · �� · �"cosα�" + 2 · �! · �"cosα!" 

EA Model 
��� =&�'�

(

)
 

SC Model �� = MAX� �'	 

I: odor intensity 540 

C: odorant concentration (mg m
-3

) 541 

It: the total odor intensity 542 

Ii, IA, IB and IC : independent odor intensity of every component 543 

p: the number of gases 544 

k, n and cosα: constant specific to the odorant 545 

OAV: the result of concentration value divided by odor threshold. 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 
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Table.4 The formulas of prediction models for aromatic hydrocarbons 554 

Compound Weber-Fechner Law R
2
 Power Law  R

2
 Linear Model R

2
 

Benzene I= 2.6704·logC + 0.1531 0.9893 I=1.5040·C
0.2765

 0.9803 I=1.1598·ln(OAV)-5.1174 0.9871 

Toluene I= 2.8372·logC + 0.9766 0.9823 I=2.1482·C
0.2459

 0.9845 I=1.2322·ln(OAV)-5.5470 0.9787 

Ethylbenzene I= 2.5710·logC + 1.7742 0.9875 I=2.6727·C
0.2098

 0.9798 I=1.1166·ln(OAV)-6.6476 0.9851 

I: odor intensity 555 

C:odorant concentration (mg m
-3

) 556 

OAV: the result of concentration value divided by odor threshold. 557 
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Table.5 The correlation analysis and average relative error of each prediction results 567 

 
Sample quantity Models Pearson Significance ARE 

Single 24 

Weber-Fechner law 0.971 0.468 4.96% 

Power Law Model 0.971 0.524 6.10% 

Linear Model 0.971 0.089 6.67% 

Binary 27 

Vector Model 0.929 0.596 5.21% 

SC Model 0.818 0.255 8.37% 

EA Model 0.934 0 20.58% 

Ternary 29 

SEV Model 0.909 0.301 5.86% 

SC Model 0.731 0.025 9.98% 

EA Model 0.884 0 53.85% 

 568 
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Fig.1. The basic structure of the E-nose system 
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Fig.2. The sensor array response recovery curve 
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Fig.3. The relative standard deviation of the benzene, toluene and ethylbenzene 
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Fig.4. The relationship of CG-FID versus E-nose results from linear regression 
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Fig.5. The results of regression of Weber-Fechner law, Power Law Model and Linear 

Model 
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