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Abstract 

 
Here we present a highly efficient ammonia (NH3) gas sensor made of copper (II) 

tetrasulfophthalocyanine supported on three-dimensional nitrogen-doped graphenebased 

frameworks (CuTSPc@3D-(N)GFs)/ poly(3,4-ethylenedioxythiophene)-

poly(styrenesulfonate) (PEDOT-PSS) nanocomposite sensing film with high uniformity 

over a large surface area. The NH3 gas sensing performance of the nanocomposite was 

also compared with those of the sensors based on pure PEDOT-PSS and pristine 

CuTSPc@3D-(N)GFs. It was revealed that the synergetic behavior between both of the 

candidates allowed excellent sensitivity and selectivity to NH3 gas in a low concentration 

range of 1–1000 ppm at room temperature. The CuTSPc@3D-(N)GFs/PEDOT-PSS 
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nanocomposite gas sensor exhibited much better (~ 5 and 53 times, respectively, with the 

concentration of NH3 gas at 200 ppm) response to NH3 gas than those of the pure 

PEDOT-PSS and pristine CuTSPc@3D-(N)GFs gas sensors. The combination of the 

CuTSPc@3D-(N)GFs and PEDOT-PSS facilitated the enhancement of the sensing 

properties of the final nanocomposite, and pave a new avenue for the application of 

CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite in the gas sensing field. 

Keywords: CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite, Gas sensor, NH3 

detection, Conducting polymer 
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Introduction 

 
Graphene, as a two-dimensional of sp

2
 bonded carbon sheet, has attracted much attention in 

many divers application especially chemical sensors [1-8] owing to its excellent electronic, high 

mechanical stiffness and specific surface-to-volume ratio, as well as superior conductivity [9-

12].   Three-dimensional (3D) graphene-based frameworks (3D-GFs) such as sponges, foams, 

and aerogels are an important class of new-generation porous carbon materials, which exhibit 

high porosity, large surface area, and high electrical conductivity [13-17]. These materials can 

serve as strong matrix for functionalizing metal, metal oxide, and electrochemically active 

polymers for various applications in electrochemical capacitors [18-20], batteries [21, 22], 

catalysis [23-25]. In the following, Dong et al. [26] demonstrated that 3D graphene electrode as 

an electrochemical sensor for detection of dopamine exhibited remarkable sensitivity (619.6 µA 

mM−1 cm−
2
) and lower detection limit (25 nM at a signal-to-noise ratio of 5.6), with linear 

response up to ∼ 25 µM. Therefore, 3D-GFs can provide a promising platform for the 

development of high performance electrochemical sensors for dangerous volatile organic 

compounds (VOCs).  

Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) as conjugated polymer 

(a mixture of two ionomers) has been extensively studied as the active material in sensing 

applications because of its good electrical conductivity, high transparency, low redox potential 

and good processability [27-29]. Nevertheless, its limited chemical and structural properties 

prevent its use in various practical applications especially electrochemical sensing [30]. It seems 

that the PEDOT-PSS composites with carbon nanostructures could be promising solution to its 

failures. In the following, Jian et al [31] used PEDOT-PSS composite film with O2 plasma-

treated single-walled carbon nanotubes for detection of ammonia (NH3) and trimethylamine 

gases. Seekaew et al [27] reported the NH3 sensing behavior of graphene-PEDOT-PSS 

composite film at room temperature. These evidence indicate that PEDOT-PSS composite films 

show potential as useful sensing materials, but their low sensivity restrict their application in 

practical VOC sensors.  

Because the above-mentioned reasons and also our interest in the synthesis of graphene based 

materials for various applications [25, 32-34], especially as new sensors [35-37], herein, we 

demonstrate the use of copper (II) tetrasulfophthalocyanine supported on three-dimensional 
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nitrogen-doped graphene-based frameworks (CuTSPc@3D-(N)GFs) and PEDOT-PSS 

nanocomposite as a novel gas sensor. This new architecture holds great appeal as a chemical 

sensor owning to large surface area, 3D multiplexed and highly conductive pathways, and 

continuously interconnected macroporous structures as well as modified active surface. To 

demonstrate its potential, we used it here for the detection of NH3 as highly toxic gas which leads 

to irritates skin, eyes and respiratory tract of humans.  

Experimental  

Preparation of CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite 

The CuTSPc@3D-(N)GFs were synthesized based on our previous work [25]. The obtained 

CuTSPc@3D-(N)GFs were dispersed in DI water (~ 1 mg/ml) and mildly sonicated for 30 min 

in a bath sonicator (EUROSONIC® 4D, 50 kHz). The PEDOT-PSS aqueous solution (weight 

ratio = 1-6, Clevios™ P VP AI 4083, solid content 1.3–1.7 %) was first dissolved in a DI water 

with a weight concentration of 89.82 %. The CuTSPc@3D-(N)GFs dispersion with 6 wt% 

Dimethyl sulfoxide (DMOS, Sigma-Aldrich Co) were added into the PEDOT-PSS solution and a 

homogeneous aqueous dispersion was obtained after 2 h stirring and sonicated for 30 min. 

Fabrication of CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite gas sensor 

The nanocomposite gas sensor was prepared from PEDOT-PSS and CuTSPc@3D-(N)GFs 

materials with chemical structures schematically illustrated in Fig. 1. For fabrication of 

CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite gas sensor, interdigitated Au electrodes with 

100 nm thickness were deposited on a SiO2/Si substrate (10×4 mm
2
) by physical vapor 

deposition method. The prepared CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite solution 

was then drop casted over an interdigitated electrode (Fig. 2a). The width and inter-spacing of 

the electrodes are 200 µm and 400 µm, respectively. Then the nanocomposite gas sensor was 

backed for 1 h in furnace (Exciton, EX1200-4L) at 80 °C in nitrogen atmosphere (Fig. 2b). The 

pristine CuTSPc@3D-(N)GFs and PEDOT-PSS gas sensors were also fabricated and tested for 

comparison. The fabricated CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite gas sensor is 

displayed in Fig. 2c,d.  

Characterization methods 

Transmission electron microscopy (TEM) was examined under LEO 912AB electron microscopy 

operated at an accelerating voltage of 120 kV. Scanning electron microscopy (SEM) was 

measured with S-4160 electron microscopy. Atomic force microscopic (AFM) images were 
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performed in the tapping mode with an ARA AFM (0201/A, Ara research Co, Iran). Brunauer–

Emmett–Teller (BET) surface area measurements were carried out by nitrogen adsorption at 77 

K using an ASAP2020 instrument. The conductivity of sensing films was measured by 4-point 

technique probe at 10 nA applied current. The sensor resistances were measured in a closed steel 

chamber (lab-made) with a LCR meter (Pintek-LCR900) and vapor gas flows were injected into 

the closed steel chamber by a mass flow meter (Alicat scientific, Tucson, USA). The reference 

humidity and sensor temperature were monitored by PT100 and HIH4000, respectively. The 

response and selectivity of the gas sensors were then assessed by the standard flow-through 

method towards NH3, methanol, ethanol, acetone, toluene, chlorobenzene, and water with gas 

concentrations ranging from 1 ppm to 1000 ppm at room temperature. A constant flux of 

synthetic air of about 50 cm
3
.min

-1
 was mixed with the NH3 gas source at different flow rate 

ratios to desired concentrations using mass flow controllers. All experiments were performed at 

room temperature (25 ± 2 °C) and the relative humidity of 10 ± 2 %. The sensitivity defined by 

the following equation: 

Sensitivity=
∆�

��

×100             (1) 

and  

∆� = ��	
 −  ��                             (2) 

 

where �� and ��	
 are the resistances of the sensor in synthetic air and test gas, respectively. 

 

Results and discussion 

The surface morphology of the CuTSPc@3D-(N)GFs has been presented in the SEM and TEM 

images of Fig. 3a-b, respectively. Fig. 3a exhibits the 3D morphology and an interconnected 

porous structure ultrathin graphene nanosheets. Moreover, the pore size ranges from a few 

hundred nanometers to several micrometers. Fig. 3b not only clearly shows the presence of 

mesopores in the carbon walls, but also reveals a wrinkled paper-like texture to the sheets, 

consistent with previous reports [38]. In addition, based on the BET method, the synthesized 

support (3D-(N)GFs) in our previous work has a high surface area (up to 266.0 m
2
.g

-1
) to put 

CuTSPc as active sensing sites. The chemical composition of 3D-(N)GFs and CuTSPc@3D-

(N)GFs was confirmed by several characterization method such as elemental analysis, fourier 
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transform infrared spectroscopy, thermogravimetric analysis, X-ray powder diffraction and X-

ray photoelectron spectroscopy [25].  

Fig. 4a-b show the surface morphology of drop-coated pure PEDOT-PSS and CuTSPc@3D-

(N)GFs/PEDOT-PSS nanocomposite film, respectively. As can be seen that the pure PEDOT-

PSS has relative smooth surface (Fig. 4a). On the other hand, Fig. 4b exhibits that the 

CuTSPc@3D-(N)GFs are uniformly dispersed into the PEDOT-PSS matrix without obvious 

agglomeration. This was ascribed to the hydrophilic nature of CuTSPc on the surface of the 3D-

(N)GFs which not only ensured the strong bonding with PEDOT-PSS but also improved the 

dispersity and stability of the CuTSPc@3D-(N)GFs in aqueous solution (Fig. S1). Further 

roughness evaluations by AFM show that the average surface roughness (Ra) of pure PEDOT-

PSS films is 1.98 nm while Ra of the CuTSPc@3D-(N)GFs/PEDOT-PSS is 7.52 nm (Fig. S2). 

The much larger Ra of CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite film compared to its 

PEDOT-PSS film suggests a significant enhancement of the active surface-area for gas 

adsorption by CuTSPc@3D-(N)GFs [25, 27].  

Fig. 5a shows dynamic response of the CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite gas 

sensor towards 1000 ppm NH3 at room temperature in air. It exhibits that the sensor presents 

good repeatability of response towards repeated NH3-sensing cycles at room temperature. The 

sensivity of the nanocomposite gas sensor increases upon exposure to NH3 and recovers to the 

initial value upon the removal of NH3 in air. As shown in Fig. 5b, the sensivity of the 

CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite gas sensor increases dramatically when 

exposed to various concentrations of NH3 ranging from 200 ppm to 800 ppm, and recovers 

towards the original values when NH3 is replaced by air. The changing behavior of sensivity may 

be ascribed to the adsorption and desorption of NH3 molecules of the nanocomposite sensing 

film [27]. The details of sensing mechanism for CuTSPc@3D-(N)GFs/PEDOT:PSS 

nanocomposite gas sensor will be discussed in further. In addition, the conductivities of pure 

PEDOT-PSS and CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite sensing films are 650 and 

1430 Scm
-1

, respectively. It indicates that the conductivity of pure PEDOT-PSS is increased by 

more than two factor, leading to significant increase of charge carrier concentration owning to 

CuTSPc@3D-(N)GFs incorporation. Therefore, CuTSPc@3D-(N)GFs shows a dominant effect 

in the charge transport through the PEDOT-PSS matrix. 
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The PEDOT-PSS based gas sensors usually operate at rather low temperatures with respect to 

gas sensors based on metal oxide [27, 35, 39]. It can be seen that the CuTSPc@3D-

(N)GFs/PEDOT-PSS nanocomposite gas sensor shows low sensitivity to NH3 with increase of 

temperature (Fig. 6). Therefore, the optimal temperature of the CuTSPc@3D-(N)GFs/PEDOT-

PSS nanocomposite gas sensor for NH3 detection was found to be room temperature. Since the 

interaction between CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite sensing film and volatile 

organic compounds (VOCs) gas is exothermic, the activation energy of desorption is larger than 

that of the adsorption NH3 molecules of nanocomposite sensing film. This revealed that the 

decrease in sensivity at higher temperatures is resulted from the higher desorption rate of NH3 

gas. 

The response time of the pure PEDOT-PSS and CuTSPc@3D-(N)GFs/PEDOT-PSS 

nanocomposite gas sensors are estimated to be ~ 6 min and ~ 2.5 min, respectively when it was 

experiencing the 95 % of the resistance change. Moreover, the recovery time of pure PEDOT-

PSS and CuTSPc@3D-(N)GFs /PEDOT-PSS nanocomposite gas sensors are ~ 2.5 min and ~ 1 

min, respectively. Therefore, CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite gas sensor 

indicates relatively short response and recovery times compared with PEDOT-PSS one (see 

Fig.7). 

Fig. 8 demonstrates the sensivity of pure PEDOT-PSS, pristine CuTSPc@3D-(N)GFs and 

CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite gas sensors as function of NH3 concentration 

at room temperature. At 1000 ppm NH3 concentration, the sensivity of pure PEDOT-PSS, 

pristine CuTSPc@3D-(N)GFs and CuTSPc@3D-(N)GFs/PEDOT-PSS gas sensors are 14.8 %, 9 

%, and 91 %, respectively. At low concentration (50 ppm), the sensivity as for mentioned gas 

sensors are 4 %, 0.35 %, and 9 %, respectively (inset of Fig. 8). As can be seen that the room 

temperature sensivity of pure PEDOT-PSS is less high than that of CuTSPc@3D-(N)GFs, but its 

response is substantially increased after CuTSPc@3D-(N)GFs incorporation. Thus, 

CuTSPc@3D-(N)GFs improves NH3 interaction leading the higher charge reduction only when 

it is included in PEDOT-PSS network. The detection limit of NH3 for CuTSPc@3D-

(N)GFs/PEDOT-PSS nanocomposite gas sensor is thus estimated to be 10 ppm at the room 

temperature. 

Fig. 9 demonstrates the selectivity of the CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite gas 

sensor to various VOCs vapors at concentration of 200 ppm. The sensivity of the CuTSPc@3D-
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(N)GFs/PEDOT-PSS nanocomposite gas sensor to NH3, methanol, ethanol, acetone, toluene, 

chlorobenzene, and water are 18.7 %, 9.4 %, 5.5 %, 4.5 %, 2.3 %, 2.9 %, and 4.4 %, 

respectively. The CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite gas sensor exhibits a 

remarkably high response to NH3 and is almost sensitive to other VOCs vapors. The 

performance of the as-prepared nanocomposite gas sensor in this work was better than the 

previous reports in the literatures towards NH3 detection (Table 1). 

Table 1. Sensivity (S), response time (R1), recovery time (R2), studied detection range (Dr), materials 

(M) and measured temperature (Tm) of the various NH3 gas sensors. 

Authors S (%) R1 (s) R2 (s) Dr (ppm) M Tm (°C) 

Our work 8 (50 ppm), 91 (1000 

ppm) 

138 63 1-1000  CuTSPc@3D-

(N)GFs/PEDOT-PSS 

25  

Xu et al. [40] 2 (10 ppm), 12 (70 ppm) 10  10  10-70  PEDOT nanowire 25  

Kwon et al. 

[41] 

2.1 (5 ppm), 24 (100 

ppm) 

< 1  30 5-100  PEDOT nanotube 25  

Seekaew et al. 

[27] 

0.9 (5 ppm), 7 (1000 

ppm) 

180 ---- 5-1000  Graphene/PEDPT-

PSS 

25  

Jian et al. [31] 0.1 (2 ppm), 33 (300 

ppm) 

12  18 2-300  SWCNTs/PEDOT-

PSS 

25  

Yoo et al. [42] 0.015 (20 ppm), 0.075 

(100 ppm) 

100  700 0-100  pf-MWCNT/PANI 25  

Tai et al. [43] 1.67 (23 ppm), 5.55 (117 

ppm) 

18  58 23-141  PANI/TiO2 25  

Matsughi et al. 

[44] 

1.16 (500 ppm) 1500 - - PANI 30  

Kebiche et al. 

[45] 

7.1 (92 ppm) 834 600 92-4628  PANI 25  

Hong et al. 

[46] 

0.14 (20 ppm), 0.2 (100 

ppm) 

14  148 20-2000  Palladium/Polypyrrol

e 

25  

Crowley et al. 

[47] 

0.24 (100 ppm) 90  90  1-100  Inkjet-printed PANI 80  

Verma et al. 

[48] 

0.9 (200 ppm) 1  420 50-200  PANI 25  

Sengupta et al. 

[49] 

2.3 (100 ppm) 120 300 100  PANI 25  

PANI: Polyaniline; SWCNTs: Single wall carbon nanotubes; MWCNT: Multi wall carbon nanotube 

 

The improved NH3 sensing properties of CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite gas 

sensor are mainly ascribed to (i) the increased Ra in CuTSPc@3D-(N)GFs/PEDOT-PSS 

nanocomposite sensing film compared with PEDOT-PSS one, (ii) inherently sensing properties 

of CuTSPc@3D-(N)GFs and (iii) π-π interaction by CuTSPc@3D-(N)GFs loading including 3D-

(N)GFs as a support and Cu(II) complex as an active site in sensing film. (i) Since, the Ra of 

sensing film is directly proportional with gas sensivity [27, 50], so the much larger Ra of 

CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite sensing film improves the active surface area 
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for gas adsorption (ii) It is well-known that graphene under ambient conditions behaves p-type 

semiconductors like conjugated polymers because their electronic properties can be reversibly 

controlled by doping/dedoping at room temperature [27, 51-53]. In addition, the electron-

withdrawing sulfonic acid groups of the CuTSPc can be viewed as a charge delocalization of 

holes in the valence band. Therefore, when CuTSPc@3D-(N)GFs gas sensor is exposed to an 

electron donating gas like NH3, proton transfer from the sulfonic acid groups of CuTSPc to the 

nitrogen atoms of NH3 directly gives the self-doped zwiterionic form. Therefore, depletion of 

holes from the valence band of CuTSPc@3D-(N)GFs occurs, leading to a significant increase in 

resistance (iii) NH3 molecules may interact with not only CuTSPc@3D-(N)GFs and PEDOT-

PSS but also π-π bonding between CuTSPc@3D-(N)GFs and PEDOT-PSS [9]. Under the 

exposure to polar molecules like NH3, the interaction not only can induce charge-transfer across 

delocalized π-electrons but also can lead to the formation of neutral polymer backbone and 

decrease in charge carries resulting in the improved sensing performances.  

The NH3 sensing mechanism of the CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite gas 

sensor may be explained based on three possible mechanisms: (1) According to the reversible 

reaction [27, 45, 54]: CuTSPc@3D-(N)GFs/PEDOT-PSS ̶ H
+
 + NH3  CuTSPc@3D-

(N)GFs/PEDOT-PSS + NH4
+
, the protons transfer from the sulfonic acid groups of CuTSPc to 

the nitrogen atoms of NH3 molecules directly gives ammonium ions (NH4
+
). This process is 

reversible, and in fact, when NH3 atmosphere is removed, the NH3 molecules decrease the 

doping level of CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite sensing film by partially 

compensating for the influence of the initial dopants [55], which may change the resistance. (2) 

The NH3 molecules are absorbed on the surfaces of CuTSPc@3D-(N)GFs/PEDOT-PSS 

nanocomposite sensing film by physisorption, the holes of conductive CuTSPc@3D-

(N)GFs/PEDOT-PSS nanocomposite sensing film will interact with the electron-donating NH3 

analyte [27, 54]. The charge transfer from adsorbed NH3 molecules not only increases the 

delocalization degree of conjugated π-electrons of nanocomposite sensing film, but also 

decreases the electrical conductivity of the nanocomposite sensing film [31, 41]. This mechanism 

is widely adopted for explanation of the change in conductivity of conductive polymer to 

acidic/basic analytes (doping/dedoping process). (3) The swelling of the CuTSPc@3D-

(N)GFs/PEDOT-PSS nanocomposite sensing film can increase the PEDOT distance and 

decrease the CuTSPc@3D-(N)GF’s conductive pathways, leading to significant increase in 
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resistance of the CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite gas sensor upon NH3 

exposure and therefore enhanced NH3 response. 

Conclusion 

In this work, novel NH3 gas sensor based on CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite 

have been successfully fabricated and studied for the first time. The resultant CuTSPc@3D-

(N)GFs/PEDOT-PSS nanocomposite exhibited excellent sensivity, dynamic behavior and 

selectivity to NH3 owning possibly to the increase of the specific surface area, intrinsic sensing 

properties of CuTSPc@3D-(N)GF, and π-π interaction in CuTSPc@3D-(N)GFs/PEDOT-PSS. 

The nanocomposite gas sensor indicated much better (~ 5 and 53 times respectively with the 

concentration of NH3 gas at 200 ppm) response to NH3 gas than those of the sensors based on 

pure PEDOT-PSS and pristine CuTSPc@3D-(N)GFs. The response and recovery times of 

nanocomposite gas sensor (2.5 min, and 1 min, respectively) is much lower than that of pure 

PEDOT-PSS (6 min, and 2.5 min, respectively) towards 200 ppm NH3. It demonstrates that the 

CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite gas sensor which offers several distinct 

advantages on NH3 detection over other fabricated sensors including high sensivity, high 

productivity, low temperature processing and low cost, is expected to hold great promise for real-

world applications. 
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Fig. 1 Schematic structures of (a) PEDOT-PSS, and (b) CuTSPc@3D-(N)GFs. 
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Fig. 2 Schematic steps of gas sensor fabrication process. 
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Fig. 3 Microstructure of as-prepared CuTSPc@3D-(N)GFs: (a) SEM, and (b) TEM images. 
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Fig. 4 SEM images of the pure PEDOT-PSS (a), and CuTSPc@3D-(N)GFs/PEDOT-PSS 

nanocomposite films (b).  
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Fig. 5 (a) Dynamic responses of the CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite gas sensor to 

1000 ppm NH3, and (b) Sensivity of the CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite gas sensor 

exposed to different concentrations of NH3 at room temperature. 
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Fig. 6 Sensivity of the CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite gas sensor as function of 

temperature towards 200 ppm NH3.  
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 Fig. 7 Response and recovery of gas sensors based on (a) pure PEDOT-PSS, and (b) CuTSPc@3D-

(N)GFs/PEDOT-PSS nanocomposite for 200 ppm NH3 at room temperature.  
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Fig. 8 Sensivity of pure PEDOT-PSS, pristine CuTSPc@3D-(N)GFs and CuTSPc@3D-

(N)GFs/PEDOT-PSS nanocomposite gas sensors towards 1-1000 ppm of NH3 at room temperature.  
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Fig. 9 Selectivity of the CuTSPc@3D-(N)GFs/PEDOT-PSS nanocomposite gas sensor to various VOCs 

vapors of 200 ppm. 
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The novel CuTSPc@3D-(N)GFs)/PEDOT-PSS nanocomposite gas sensor allowed excellent 

sensitivity and selectivity to NH3 at room temperature. 
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